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Abstract: Turning of light alloys as aluminum-based UNS A92024-T3 is broadly implemented in
the manufacture of critical aircraft parts, so ensuring a good functional performance of these pieces
is essential. Moreover, operational conditions of these pieces include saline environments where
corrosion processes are present. In this paper, a methodology for the evaluation of the functional
performance in turned pieces is proposed. Specimens affected and not affected by corrosion are
compared. In addition, performance in service through tensile stress tests of these parts is considered.
The results show that turning improves the functional performance of UNS A92024-T3 alloy and that
corrosion can enhance the mechanical properties of this alloy.

Keywords: turning; UNS A92024-T3; corrosion; surface integrity; Ra; residual stress; functional
performance; ultimate tensile strength

1. Introduction

The evaluation of the performance of a manufacturing process is a complex task that can be better
approached when four fundamental and complementary points of view are recognized: economical,
energetic, environmental, and functional. In this context, the global process performance has been
defined as the center of gravity of a tetrahedron defined by setting these four elements in its apexes [1].

In particular, the aeronautical industry considers high-performance manufacturing, even at
the cost of a loss in economic performance, provided the process is enhanced from the energetic,
environmental and especially, functional points of view [2–4]. Functionality can be understood as the
state of health of the workpiece [5]. Therefore, the workpiece functionality is described as its ability to
meet quality standards in order to fulfill the required performance in service.

For example, the critical components of an aircraft must be manufactured under high specifications
of dimensional accuracy, surface finishing, and mechanical properties. In particular, the turning
of aluminum alloy pieces by removing cutting fluids increases its environmental performance.
This implies a loss of surface integrity that compromises safety and therefore functionality [1,6–8],
as dry turning is a very aggressive process that enables tool wear or more specifically, secondary
adhesion. This kind of wear involves the addition of machined material to the edge and to the rake face
of the tool, giving rise to the so-called built-up edge (BUE) and built-up layer (BUL), respectively [9].

Additionally, functional properties of manufactured elements can be changed by the action
of its environment. This action can be more or less intense depending on the surface state of the
manufactured element. Therefore, in the case of saline environments, corrosion depends on the surface
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finishing of the worked elements [10] and, consequently, on the manufacturing process. In these cases,
the influence of the corrosion damage on the surface properties of the workpieces must be taken
into account [11]. This is the case of different structural elements of aircrafts, especially transoceanic
ones. All considered, in order to approach conditions of the actual service, it is necessary to research
the influence of manufacturing process on mechanicals properties in conjunction with a corrosion
environment. However, to our knowledge, there are no studies in the current literature that consider
the salinity effect and its relationship with the machining process and the functional performance of
the workpiece. For this reason, this paper analyses the influence of turning processes in the surface
integrity of UNS A92024-T3 alloys, before and after corrosion by a saline atmosphere. More specifically,
the ultimate tensile strength (UTS) is measured as a reference parameter to assess the functional
performance of the material under corrosion.

2. Materials and Methods

An experimental methodology was designed to achieve the proposed goal (Figure 1).
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Figure 1. Experimental methodology scheme.

Al-Cu alloy UNS A92024-T3 specimens (composition in Table 1 [12]) were machined using a CNC
lathe Eclipse from Alecop (Mondragón, Spain) (Figure 1). Specimens were designed according to ISO
6892-1:2016 (Figure 2a) [13]. The entire machining process was performed in absence of cooling fluids,
therefore improving environmental performances.

Table 1. Composition of aluminum-copper alloy UNS A92024 (% weight).

Cu Mg Mn Si Fe Zn Ti Cr Al

4.0 1.5 0.6 0.5 0.5 0.25 0.15 0.10 Rest
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Blocks of 32 specimens—divided in two equal sets of 16 pieces—were dry machined for this study.
Workpieces for Set I were only dry turned before being tensile tested, while samples for Set II were
exposed to corrosion after being dry turned and before being tensile tested.

Machining procedure of all specimens involved a roughing process using a cutting speed (Vc) of
80 m/min, a feed rate (f ) of 0.03 mm/min and a cutting depth (d) of 0.50 mm as cutting parameters.
The finishing pass of the sample surfaces were carried out in dry conditions and using a new tool for
each machined specimen with the cutting parameters shown in Table 2.

The cutting tools used were neutral interchangeable insert (WC-Co) with commercial reference
SECO, ref. DCMT 070208-F2 HX (Seco Tools AB, Fagersta, Sweden).

The surface microgeometry of the samples was evaluated through the average surface roughness
parameter (Ra) according to the standard ISO 4288:1996 [14]. Four profiles were acquired in four
equidistant generatrices for each sample using a Mahr Perthometer M1 profilometer (Mahr GmbH,
Göttingen, Germany). Each specimen Ra was calculated as the mean value of the four Ra of the
measured profiles.

Table 2. Cutting parameters performed in machining test for a total of 16 experiments.

Vc (m/min) f (mm/r) d (mm)

40 0.02 0.50
60 0.05 0.50
80 0.10 0.50
100 0.20 0.50

Next, Set II was exposed to corrosion by immersion in a 10-L solution of distilled and
deionized water and NaCl (3.5%) for 72 h at 296.15 K (Figure 2b) following standard ASTM
NACE/ASTMG31-12a [15]. Water evaporation was controlled every day.

After each corrosive treatment, the workpieces were cleaned with distilled water in a similar way
to overseas aircrafts.

Finally, in order to obtain the UTS, both sets underwent a tensile test with a Shimadzu Autograph
AG-X (50 kN) tensile-compression machine (Shimadzu, Kyoto, Japan) for a precision within 1%.
The crosshead velocity was u = 14.5 mm/min for all tests and the standard ISO 6892-1:2016 was used.
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Figure 2. (a) Specimen dimensions according to standard UNE-EN ISO 6892-1:2016. (b) Set II samples
during a corrosion test by immersion.

On the other hand, residual stress measurements were carried out by blind hole drilling,
following the ASTM E837-13a standard [16], using a RS-200 equipment from Vishay (Raleigh, North
Carolina, USA) (Figure 3) [17,18]. For this purpose, CEA-13-062UM strain gages (Vishay Precision
Group—Micro-Measurements, Raleigh, NC, USA) were used in this study. This method was conducted
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on bigger specimens with a radius of 50 mm as demonstrator, as blind hole drilling is not suitable for
the 3.81 mm radii of curvature specimens. These samples followed the same turning and corrosion
procedures as the original set of 32 specimens for reproducibility.
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Figure 3. (a) Residual stress measurement of noncorroded specimen. (b) Specimen corroded
after 72 h in solution of distilled and deionized water and NaCl (3.5%). (c) Set up of measures in
corroded specimen.

Because residual stress in machined workpieces varies with depth from the specimen surface,
the integral method was used to transform strains into stresses. Measurements had a probability
bound of 90%.

3. Results and Discussion

As the time of machining is very short—ranging from 8.51 s for the shortest combination of
cutting speed and feed rate to 212.74 s for the largest—no microstructural changes on the tool were
expected [9,19–21]. However, the temperature can be high enough for softening the Al matrix and
developing primary BUL. Figure 4 shows Stereoscopic Optical Microscopy (SOM) images of tools after
machining under two different cutting parameters and a scheme of tool wear by secondary adhesion.

BUL was developed onto the rake face of the tool and its size was bigger when cutting speed
increased (Figure 4a,c). Primary BUL was formed in the first 5 to 10 s of machining, and it was formed
by pure aluminum (Figure 4e (1)) [9]. Tool changes facilitated the mechanical adhesion of the machined
alloy, giving rise to BUE (Figure 4b,d). BUE was formed by the alloy material and it grew to a critical
size (Figure 4e (2)) [1,9]. When the temperature was sufficiently high, BUE softened and extruded
onto the rake face, giving rise to a secondary BUL (Figure 4e (3)) [1,9]. The temperature in the cutting
region was higher for increasing cutting speeds [7]. This explains the aforementioned BUL thickness.
According to that, a lower BUE thickness was detected when lower cutting speed was applied. On the
other hand, a higher feed involved a higher lateral chip compression, facilitating BUL through the
increase of temperature caused by the relaxation process after deformation [22].
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m/min, f = 0.2 mm/r. (c,d) Vc = 40 m/min, f = 0.05 mm/r. (e) Scheme of the BUL and BUE formation.

From geometric considerations, Ra depends directly on f and the edge position angle of the tool
for horizontal turning processes [1,9]. The BUE development diminished this angle and, consequently,
the height of the peaks in the profile reduced and smoothened, thereby decreasing Ra (Figure 5a).
This shows that the effect of the tool wear seems to be responsible for a decrease in Ra in certain sets of
parameters. Secondary adhesion is a dynamic process, that is to say, the morphology of the tool can
change at any time (Figure 5a). In this sense, when BUE was extruded, the height of peaks increased
and so did Ra (Figure 5b) [1,9].
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dry turning process.

According to this, the extreme value of Ra found in (Vc, f ) = (60, 0.05) can be explained (Figure 6).
On the other hand, despite dry turning significantly shortening the tool life, it may have a positive effect
on the microgeometrical properties of the specimen, at least in a controlled length of machining [23].
In fact, surface integrity got worse as feed increased for every tested cutting speed, as expected
(Figure 6). These results are in good agreement with previous studies [19,24].
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Figure 7 shows how the UTS increased with the feed rate for each tested specimen.
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We can observe that the machining process enhanced the tensile strength for all the studied cases.
In fact, the standardized value of UTS for UNS A92024-T3 lies between 440 and 450 N/mm2 [12,25,26].
Although the UTS variation is less than 4% of the reference value for this alloy, it is worth noting that the
best results are achieved for higher feed conditions. Our findings show that higher Ra results in higher
UTS. This can suggest that physicochemical properties of the material prevail over microgeometrical
properties for surface integrity functional performance [27–29].

As expected, higher feed rates resulted in higher compressive stresses in the surface of the
specimens (Figure 8) [29–32]. However, the stress distribution was not homogeneous. The region
between 0.1 to 0.9 mm was under compression, while tensile stresses were located in the first 0.1 mm
of the surface where the corrosion process took place. In fact, corrosion of Al-Cu alloys in aerated
NaCl solutions is complex. As a first step, the Cu of anodic intermetallics is dissolved, changing their
character to a cathodic behavior. The rest of intermetallics are cathodic to the Al matrix and therefore
OH− is produced in the surrounding of those intermetallics. As a result, the metal matrix is dissolved
by alkaline action, provoking them to fall. This process is known as Localized Alkaline Corrosion
(LAC), and it does not promote the presence of cracks onto the alloy surface [11,33]. At macroscopic
scale, a preferential attack cannot be seen. Moreover, different mechanisms are responsible for the
deterioration [33], although the final results are homogeneously distributed onto the surface. Therefore,
no pitting is developed on the specimen surfaces (Figure 9). For this reason, corrosion only affects
the first layers of material, removing the tensile stress region and therefore enhancing the functional
performance by a significant increase in the UTS for each workpiece, (Figure 7).
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Figure 8 shows the behavior of the axial residual stress with depth in the material surface.
Axial residual stresses must be taken into account because they contribute to the stress carried out
by the tensile tests. Furthermore, microgeometrical defects are disposed perpendicularly to the
tensile strength, so any compressive stress will tend to close surface defects, improving the functional
performance [29,34]. In addition, the level of compressive residual stress increases with feed for
noncorroded specimens, strengthening the compressive residual stress that the unmachined material
originally supports [30–32]. By contrast, for decreasing feeds, compressive residual stresses are
lower than that of the unmachined specimens. This is to say, functional performance is improved at
higher feeds.
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4. Conclusions

A novel approach to study the influence of turning processes in the UTS performance after
corrosion of the UNS A92024-T3 alloy has been carried out. From analysis of the results, the conclusions
can be summarized as follows:

1. Machining process can improve the tensile strength of horizontal dry turned samples of
aeronautical alloy UNS A92024-T3. In this limited context, functional performance is favored by
machining. Physicochemical properties are responsible for improving the mechanical properties
and hence the functional performance.

2. Generally speaking, the UTS increases with the feed. Thus, there is no predominant influence
of the microgeometrical properties acquired after machining over the UTS. In this sense, tensile
residual stress taking place on the surface after machining is not large enough to generate
a decrease of UTS value.

3. The compressive residual stress after machining is responsible for the best results of UTS.
Furthermore, as the feed increases, the compressive residual stress increases too, thereby
improving the value of compressive residual stress of the unmachined material. Thus, the
higher the compressive residual stress, the higher the UTS value.

4. The results of the test of tensile stress after corrosion show a generalized improvement of the UTS
value. The corrosion process removes the first layers of material. These layers, as shown in the
results, carry a tensile residual stress and are softer than the unmachined material.
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