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Abstract: Gallium (Ga) and some of its alloys have a range of properties that make them an attractive
option for microelectronic interconnects, including low melting point, non-toxicity, and the ability to
wet without fluxing most materials—including oxides—found in microelectronics. Some of these
properties result from their ability to form stable high melting temperature solid solutions and
intermetallic compounds with other metals, such as copper, nickel, and aluminium. Ga and Ga-based
alloys have already received significant attention in the scientific literature given their potential
for use in the liquid state. Their potential for enabling the miniaturisation and deformability of
microelectronic devices has also been demonstrated. The low process temperatures, made possible
by their low melting points, produce significant energy savings. However, there are still some issues
that need to be addressed before their potential can be fully realised. Characterising Ga and Ga-based
alloys, and their reactions with materials commonly used in the microelectronic industry, are thus
a priority for the electronics industry. This review provides a summary of research related to the
applications and characterisation of Ga-based alloys. If the potential of Ga-based alloys for low
temperature bonding in microelectronics manufacturing is to be realised, more work needs to be done
on their interactions with the wide range of substrate materials now being used in electronic circuitry.
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1. Introduction

A noteworthy trend is being observed with microelectronic products becoming smaller and
more energy efficient [1,2], and performing well while having minimal impact on human health and
the environment [3]. Also, both academic and industrial interest has been expressed in flexible or
deformable electronics. To meet these challenges, new technologies for manufacturing advanced
microelectronic components and packaging of electronic devices are required.

Alloys that are liquid at room temperature or that have a low melting point have the potential to
create unique combinations of electrical and thermal conductivity. They offer the additional benefit
of enabling the production of flexible electronic circuitry. Much research has been completed on
the microelectronic components and circuit innovations that use liquid metals, and the efforts are
continuing. These alloys also have the potential of enabling electronic assembly at lower process
temperatures than those required by conventional alloys. As well as saving energy, low process
temperatures allow the assembly of components and materials that can be damaged by the process
temperatures required for assembly with conventional solder alloys, such as the traditional Sn-37Pb
solder with a melting point of 183 ◦C and the lead-free solders required by the European Union’s
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Restriction for Hazardous Substances (RoHS) regulations, such as Sn-3.8Ag-0.7Cu with a melting point
of 217 ◦C [4].

Several metals and alloys have melting points near room temperature. However, issues such as
radioactivity (Cs and Fr), short half-life (Fr), and violent chemical properties (Cs and Rb) limit their
applications in microelectronics. Though widely used in microelectronics, Hg, Pb, and their alloys are
toxic and their use in electronics is limited by regulations such as RoHS [4].

With a melting point of 29.76 ◦C and a boiling point of 2403 ◦C [5,6], Ga has a large temperature
range for liquid state applications. Some Ga-based alloys have even lower melting points. The eutectic
Ga-In alloy (EGaIn, 75.5 wt % Ga and 24.5 wt % In) has a melting point 15.5 ◦C [7]) and Galinstan
(a commercial eutectic Ga-In-Sn alloy from Geratherm Medical AG in Germany and distributed by RG
Medical Diagnostics in the U.S., 68.5 wt % Ga, 21.5 wt % In, and 10.0 wt % Sn) has a melting point of
−19 ◦C [8]. Since Ga is considered to be non-toxic and environmentally friendly [6,9], Ga and Ga-based
alloys appear to be a promising substitute for toxic metals in a range of liquid metal applications.

This review provides a summary of research related to the characterisation of Ga-based alloys
and their applications in microelectronics.

2. Properties of Ga and Ga-Based Alloys

Physical properties of Ga, EGaIn, and Galinstan are shown in Table 1. Ga-based alloys have
similar properties to Ga. Data for Hg are listed as a comparison.

Table 1. Physical properties of gallium (Ga), Ga-based alloys, and mercury (Hg) [5–8,10–12].

Parameter Ga EGaIn Galinstan Hg

Melting point (◦C) 29.76 15.5 −19.0 −38.8
Boiling point Tb (◦C) 2403 2000 >1300 356

Density at 20 ◦C (g/cm3) 5.90 6.280 6.440 13.533
Vapour pressure (Pa) 1 at 1037 ◦C <1.33 × 10−10 at 300 ◦C <1.33 × 10−6 at 500 ◦C 1 at 42 ◦C

Specific heat (J/kg/K) 410 404 295 140
Electrical conductivity (W/m/K) 6.73 × 106 3.40 × 106 3.46 × 106 1.04 × 106

Thermal conductivity (W/m/K) 29.3 26.6 16.5 8.5
Viscosity µ (kg/m/s) 1.37 × 10−3 1.99 × 10−3 2.4 × 10−3 1.526 × 10−3

Ga has a low vapour pressure at high temperatures, especially when compared to mercury,
which is currently the most commonly used room temperature liquid metal. As well as its low toxicity,
its low vapour pressure also makes it a safe alternative to Hg and Pb. Liquid Ga can wet many kinds
of materials, including most metals and glasses. It has low viscosity and good conductivity (Table 1).
Ga exhibits significant undercooling on solidification [13]. It expands by 3.1% on solidification, which is
different from most other metals. The thermal expansion coefficient of Ga (18.3 × 10−6 K−1) is closer
to that of Cu (16.7 × 10−6 K−1) than Sn (20.5 × 10−6 K−1) or Pb (29.0 × 10−6 K−1) at 20 ◦C [9].
When contained in flexible tubing at room temperature, liquid Ga-based alloys have been shown to
flow and maintain metallic conductivity while being stretched [14].

Although semiconductor applications such as GaAs and GaN dominate the commercial demand
for Ga [6,15–17], Ga and Ga-based alloys have attracted significant attention as possible replacements
for liquid metals in various applications because of their remarkable fluidity and metallic properties at
low temperatures, as well as their lack of toxicity. Ga and its alloys have been proposed as replacements
for Hg in dental filling materials [18–20] and high-temperature thermometers [21–24]. Ga and Ga-based
alloys have also been studied as potential coolants in nuclear power plants as an alternative to
Na [10,25–29], and in microelectronic devices, such as computers and smart phones [30–35]. Eutectic
Ga-In (EGaIn) alloys and Ga-In-Sn alloys (such as Galinstan) have received the most attention in the
literature in terms of microelectronic applications. The inherent properties of Ga and Ga-based alloys
enable their use in microelectronics where deformability, miniaturisation, low process temperature
during fabrication, and low toxicity are required. The growing demand for wearable devices and
artificial body parts, including prosthetics and implantable device, has inspired research and the
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production of deformable electronics [36,37]. Many exciting and promising circuits [14,38–42] and
electronic components [43–51] that can be bent (flexible) or elongated (stretchable) have been developed
in recent years, although these applications are mainly at the laboratory stage. Figures 1 and 2
are examples of flexible or stretchable applications based on Ga alloys. In order to realise these
potential applications, basic processing techniques with liquid Ga based alloys have been studied [52].
These efforts include injecting [7] and printing [53–56] the liquid alloy into or onto various microfluidic
channels or substrates. The substrates tested are mainly polymers, such as polydimethylsiloxane
(PDMS) and polyvinyl chloride (PVC). Liquid metal patterning is emerging as a major area in room
temperature liquid metal research.
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Figure 2. Direct-printed functional electronic patterns composed of liquid metal wires on a polyvinyl
chloride (PVC) substrate for integrated circuit (IC) application: (a) the printed circuit board (PCB)
that can be folded; (b) the “Great Wall” pattern with illuminated light-emitting diodes (LEDs).
Reproduced from Zheng et al. [57] under Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported license.

3. Ga and Ga-Based Alloys Applications in Microelectronic Interconnects

3.1. Soldering

Soldering has been a fundamental interconnection technology in microelectronic packaging since
the commencement of the electronic age. During the soldering process, the gap between the surfaces
to be joined (usually metals) is filled with a molten alloy that has the ability to wet the substrates,
usually with the assistance of a flux that removes oxides from the substrates and the molten alloy.
Traditional Sn-37Pb solder has a melting point of 183 ◦C. Pb-free solders that are now widely used
in electronic assembly have even higher melting points. Sn-3Cu-0.5Cu (“SAC305”), has a melting
range of 217–220 ◦C and Sn-0.7Cu-0.05Ni (SN100C®), has a melting point of 227 ◦C. The temperature
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required in processes based on those solders has the potential to damage the heat-sensitive materials
used in electronic devices, including modern microchip components and flexible substrates such as
polyester film. There have been ongoing efforts to study various alloying elements including Ag, Bi,
Cd, Cu, In, Sb, Zn, and Al to create alloys that make possible low temperature soldering processes [58],
to reduce energy consumption, and to reduce the risk of damaging components. Their low melting
points, together with the possibility of forming intermetallic compounds (IMCs) with other metals
meant that Ga and Ga-based alloys are potential joining materials in microelectronics.

The feasibility of using pure Ga paste to realise transient liquid phase bonding with a Cu substrate
(with and without Pt coating) at processing temperatures ranging from 160 to 300 ◦C has been
examined [59,60]. In the studies, Cu/Ga/Cu and Cu/Pt/Ga/Pt/Ga sandwich couples have been
fabricated at 160 and 300 ◦C, respectively, to gain knowledge for developing practical industrial
Ga-based solder materials (Figure 3).
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Figure 3. The backscattered images of (a) a Cu/Ga/Cu sandwich couple produced after 96 h at
160 ◦C [60]; (b) a Cu/Pt/Ga/Pt/Cu couple produced at 300 ◦C for 24 h [59], where γ1 and γ3 are
γ1-Cu9Ga4 and γ3-Cu9Ga4, respectively.

The bonding between a magnetron sputtered Cu layer and an electroplated Ga layer on a 50 nm
Au seed layer has been investigated [61]. A schematic cross section of the interface to be joined is
illustrated in Figure 4a. The bonding of these samples was performed at 25 ◦C in commercial wafer
bonding equipment with a pressure of 2.5 MPa and holding time of 10 min. Subsequently, the wafers
were annealed at different temperatures up to 200 ◦C for 80 h. After annealing at 90 ◦C, a shear strength
of up to 90 MPa was achieved. The scanning electron microscopy (SEM) image of the bond cross
section is shown in Figure 4b.
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(a) Schematic cross section of the interface prepared for the Ga/Cu bonding; (b) scanning electron
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In addition to the cases in which pure Ga was used as a joint material, some Ga-based alloys have
also been studied.

A ternary Sn-32 wt % Bi-6 wt % Ga alloy with a melting point of 128 ◦C was developed as a solder
alloy [62]. The Ga content in this alloy is the maximum amount possible without forming a liquid
phase or creating the possibility of Ga segregation. This new solder was reflowed on Cu substrates
at 158 ◦C and then annealed at 70, 90, and 110 ◦C for 24–720 h to determine the IMCs that formed
and the evolution of the interfacial morphology as a function of time. The only IMC phase observed
at the interface area was CuGa2. The shear strength of the joints formed by reflowing this solder
alloy on Cu substrate with an organic solderability preservative (OSP) coating was measured and the
authors concluded that although the CuGa2 IMC is brittle, this solder is still a potential candidate for
low-temperature microelectronics packaging.

As well as the Sn-Bi-Ga alloy, a eutectic Ga-Zn (Ga-10 wt % Zn, melting point 24.7 ◦C) solder
paste has been proposed, and the interactions with single-phase brasses at 150 and 200 ◦C have been
investigated during the soldering process [63]. This Zn-containing Ga alloy has advantages in both the
manufacturing process and joint quality, and is regarded as a promising material for low-temperature
diffusion soldering of materials used in microelectronics.

The solderability of the eutectic Ga-Sn (EGaSn, Ga-13.5 wt % Sn, melting point 20.5 ◦C) liquid
alloy on Au-coated Cu substrates was observed by forming sandwich joints and holding them at room
temperature or 100 ◦C for seven days [64]. Pressure (10 kPa) was required during the process in order
to form the bond. This study showed the possibility of using EGaSn in low temperature bonding of
Cu substrates.

The bonding of Ga and Ga-based alloys with substrates other than Cu has also been investigated.
A composite soldering paste for cermet sections has been developed using Ga as the low-melting base
and a two-part powder mixture (Cu-20 wt % Sn alloy, and eutectic Ag-28.1 wt % Cu alloy) as the high
temperature filler [65]. Several materials, including titanium wrought alloy (OT4-VK94-1), aluminum
alloy (M1-SK-1) and bronze (BrB2-SK-1), were soldered using this paste. This solder needs a process
temperature of 200 ◦C, a holding time of two hours and a pressure of 3-4 MPa to make a joint with
adequate strength.

A metallic paste created by mixing Ga, Al, and Ni powders (45 wt % Ga, 15 wt % Al, and 40 wt %
Ni) has been reported [66]. The diffusion soldering process was conducted at a temperature of 700 ◦C
for 20 min. Pb-free joints were produced between Cu and Ni substrates by forming a solid solution
and IMCs that are stable even at temperatures of about 1200 ◦C. As shown in Figure 5, the phases
detected in the joint interface area were: α’-Ni3Ga (labelled ‘A’ in the image), β-Cu3Ga (‘B’) and a Cu
solid solution (‘C’) of the Ga-Cu system.
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are α’-Ni3Ga, β-Cu3Ga, and Cu solid solution phase, respectively.

The flip-chip interconnect applications of Ga-based alloys have also been studied [67]. Ga-Cu-Ni
ternary alloys (Ga-30 wt % Cu-5 wt % Ni and Ga-21.4 wt % Cu-3.6 wt % Ni) have been used as
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a micro-miniature interconnect to join bare silicon chips and printed circuit boards. The bonding
process began with pressure being applied for one hour, after which the test vehicles were placed in a
convection oven at 150 ◦C for one hour to complete the Ga alloy and underfill cure.

The processability of Ga, 30 wt % Cu, 5 wt % Ni alloy for room temperature via filling applications
has also been demonstrated using stencil printing onto stainless steel substrates [68]. After filling,
a 16 h cure at 130 ◦C was required to achieve interconnections. The research results suggest that this
alloy has potential as a low temperature interconnect material.

3.2. Heat-Free Bonding

Stable undercooled liquid nano- and/or micro-particles have been considered for use as a low
temperature solder [69]. Since Ga and some of its alloys are liquid near or at room temperature and
exhibit significant undercooling on solidification, a few attempts have been made to eliminate the heat
required in conventional soldering.

A new kind of metallic glue termed “MesoGlue Eutectic” has been developed [70]. The bond
is achieved by first planting Ga and In coated rods alternately along a substrate. The teeth-on-comb
rods on each substrate are interlaced. When they contact the In and Ga form a liquid. The eutectic
liquid eventually turns into a solid and forms a metal bond. The gluing can be performed at room
temperature and in air, although it requires some pressure (<100 psi). Figure 6 is a schematic diagram
of this metallic gluing bond. The bond is about as strong as a metallurgical bond between two
parent materials. This metallic glue is proposed for use as a joining method in the microelectronic
packaging industry, and may replace thermal greases as it transfers heat more efficiently. At this point,
this metallic glue has only been applied in a laboratory.

Materials 2018, 11, x FOR PEER REVIEW  6 of 19 

 

3.2. Heat-Free Bonding 

Stable undercooled liquid nano- and/or micro-particles have been considered for use as a low 
temperature solder [69]. Since Ga and some of its alloys are liquid near or at room temperature and 
exhibit significant undercooling on solidification, a few attempts have been made to eliminate the 
heat required in conventional soldering. 

A new kind of metallic glue termed “MesoGlue Eutectic” has been developed [70]. The bond is 
achieved by first planting Ga and In coated rods alternately along a substrate. The teeth-on-comb 
rods on each substrate are interlaced. When they contact the In and Ga form a liquid. The eutectic 
liquid eventually turns into a solid and forms a metal bond. The gluing can be performed at room 
temperature and in air, although it requires some pressure (<100 psi). Figure 6 is a schematic diagram 
of this metallic gluing bond. The bond is about as strong as a metallurgical bond between two parent 
materials. This metallic glue is proposed for use as a joining method in the microelectronic packaging 
industry, and may replace thermal greases as it transfers heat more efficiently. At this point, this 
metallic glue has only been applied in a laboratory. 

 
Figure 6. Low-temperature metallic gluing enabled by Ga- and In-coated nanorods [70]. 

Another type of metallic cement (or metallic glue) is obtained by the chemical interaction of 
liquid metals with metallic alloy powders. This type of cement has high adhesion to materials of 
different types and presents good heat and electric conductivity. This type of bond can be widely 
applied to joining ceramics, metals, quartz, graphite, and other thermostable materials in aviation 
and electronics industries and in instrument engineering. Grigor’eva et al. [71] investigated the 
structure of metallic cements formed by the interaction of Cu/Bi mechanocomposites with liquid Ga 
at room temperature. The Cu/Bi mechanocomposites are mechanically activated powders obtained 
by mixing Cu and Bi powders in planetary ball mill in an argon atmosphere. The application of the 
Cu-Bi mechanocomposite, instead of Cu, as a filler for obtaining Ga-based glues not only reduces the 
curing time of the cement from two days to 14 h, but also increases the compressive strength of joints 
from 30 to 70 MPa. 

Ye et al. [72] took advantage of the low melting temperature of Ga and found that Ga layers can 
act as reversible and switchable adhesives. The adhesion status can be controlled by slight 
temperature changes. The switch is sensitive and the joint has a similar strength to a conventional 
glue. The temporary adhesion is electrically conductive, repeatable, and leaves the surface clean after 
lifting. Applications of this adhesion can be found in areas such as industrial pick-and-place processes 
and temporary wafer bonding. Adhesive switchability is proposed as an enabling technology for the 
feet of climbing robots. 

4. Characterisation of Reactions between Liquid Ga-Based Alloys and Solid Metals 

Various characteristics of pure liquid Ga and liquid Ga-based alloys (mainly EGaIn and 
Galinstan) have been observed. These includes basic thermophysical [11,21,34,44,45,73,74], 
electrochemical [46,75–77], electromagnetic [78,79], fluidity and wettability properties [80–82], and 
self-fueled actuation, in which chemical energy spontaneously converts into mechanical activity to 
induce autonomous locomotion [77,83,84]. These research achievements lay the foundation for some 
techniques for liquid alloy control and utilisation, such as patterning the deposit liquid metal [7,85,86] 
and fabricating small liquid metal particles [87–89]. These techniques further enable a variety of 
promising applications as described in the previous chapter. 

Figure 6. Low-temperature metallic gluing enabled by Ga- and In-coated nanorods [70].

Another type of metallic cement (or metallic glue) is obtained by the chemical interaction of
liquid metals with metallic alloy powders. This type of cement has high adhesion to materials of
different types and presents good heat and electric conductivity. This type of bond can be widely
applied to joining ceramics, metals, quartz, graphite, and other thermostable materials in aviation and
electronics industries and in instrument engineering. Grigor’eva et al. [71] investigated the structure
of metallic cements formed by the interaction of Cu/Bi mechanocomposites with liquid Ga at room
temperature. The Cu/Bi mechanocomposites are mechanically activated powders obtained by mixing
Cu and Bi powders in planetary ball mill in an argon atmosphere. The application of the Cu-Bi
mechanocomposite, instead of Cu, as a filler for obtaining Ga-based glues not only reduces the curing
time of the cement from two days to 14 h, but also increases the compressive strength of joints from 30
to 70 MPa.

Ye et al. [72] took advantage of the low melting temperature of Ga and found that Ga layers
can act as reversible and switchable adhesives. The adhesion status can be controlled by slight
temperature changes. The switch is sensitive and the joint has a similar strength to a conventional glue.
The temporary adhesion is electrically conductive, repeatable, and leaves the surface clean after lifting.
Applications of this adhesion can be found in areas such as industrial pick-and-place processes and
temporary wafer bonding. Adhesive switchability is proposed as an enabling technology for the feet
of climbing robots.
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4. Characterisation of Reactions between Liquid Ga-Based Alloys and Solid Metals

Various characteristics of pure liquid Ga and liquid Ga-based alloys (mainly EGaIn and
Galinstan) have been observed. These includes basic thermophysical [11,21,34,44,45,73,74],
electrochemical [46,75–77], electromagnetic [78,79], fluidity and wettability properties [80–82],
and self-fueled actuation, in which chemical energy spontaneously converts into mechanical activity to
induce autonomous locomotion [77,83,84]. These research achievements lay the foundation for some
techniques for liquid alloy control and utilisation, such as patterning the deposit liquid metal [7,85,86]
and fabricating small liquid metal particles [87–89]. These techniques further enable a variety of
promising applications as described in the previous chapter.

Notably, the interfacial reactions between the liquid Ga-based alloy and solid materials are
important for making better use of these materials, since liquid alloy/solid state contact is common
in all the applications mentioned in this study. More specifically, the interfacial reactions could be
divided into microstructure development in the interfacial layer and wettability. In some situations,
these two processes can influence one another, so understanding the mechanisms in these two aspects
can be complex. These fundamental but important research achievements help in the selection of
reliable materials for these applications and thus enable the further use of Ga and Ga-based alloys.

4.1. Microstructure Development between Liquid Ga-Based Alloy and Solid Materials

To understand microstructure development, the reaction products between the liquid and solid
layers need to be identified and their morphologies observed. These affect the contact quality and
stability as measured by thermal and electrical conductivity and/or joint strength.

During the interaction between the liquid Ga alloy and metal substrate or powder, interfacial
IMCs usually form. Thus, dissolution of the materials, IMCs composition, epitaxial growth of the IMC
grains, formation of solid/liquid or even new solid/solid interfaces, and their evolution with time or
surrounding environment (temperature, atmosphere, etc.) may all require consideration.

4.1.1. Liquid Ga-Based Alloy Reactions with Metal Powder

The interaction between liquid Ga (or Ga-based alloys) and Cu or single phase Cu alloy powder
has been the focus of several research papers [90–96]. The researchers mainly used Cu, Cu-based
solid solution, or IMC powders and studied their reaction with liquid Ga or liquid Ga-based alloy,
and investigated the formation of IMCs. This group of researchers used the mechanochemical method
(planetary ball-milling in an argon atmosphere) to obtain the solid solution or IMC powder, which was
then mixed with the liquid Ga (or Ga-based alloys). The in-situ X-ray diffraction (XRD) observations
were recorded at the Siberian Center of Synchrotron Radiation, Russia. Their results showed that,
when pure Cu powder, Cu + 20 wt % Ga solid solution, or Cu9Ga4, are mixed with liquid Ga in
proportions approximately corresponding to the stoichiometry of the main reaction of Cu with Ga at a
small Cu excess, CuGa2 is the single product of the interaction at room temperature. In the Cu solid
solution (with Sn, In, or Bi) Ga liquid eutectic systems, the first phase to form is a microcrystalline
IMC. Then, after an induction period, the IMC resulting from the reaction between Cu and Ga appears.
The metallic phase consists of much coarser grains in comparison with the starting powder and
primary (IMC) phase. All the reactions are summarized in Table 2.

The increasing Sn concentration in the Cu-Sn solid with liquid Ga or EGaSn system shortens
the induction period for the crystallisation of the Sn phase. For Cu(Sn) powders reacting with liquid
Ga, Sn segregation into an autonomous phase occurred 30 h after the components were mixed.
When using EGaSn as the liquid phase, Sn was segregated into an autonomous phase four hours after
the components were mixed. When using mechanochemical synthesized Cu3Sn or Cu6Sn5, CuGa2

and Sn appeared almost immediately after mixing, and all Ga from the eutectic melt was consumed by
CuGa2 formation in 10 and 2 h, respectively. The IMC phase decreased in size as the Sn concentration
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increased. For the Cu3Sn + EGaSn, the IMC CuGa2 had particle sizes of at most 1 µm; Sn had far
coarser particles. For the Cu6Sn5 + EGaSn, the CuGa2 crystal sizes were less than 0.1 µm.

Table 2. Summary of reactions between liquid Ga-based alloys and metal powders.

Liquid Phase Powder Phase Products Reference

Ga 1 Cu CuGa2 + Cu [93]
Ga 1 Ni NiGa4 + Ni [93]
Ga 1 Cu-20% Ga Solid solution CuGa2 [90]
Ga 1 Cu9Ga4 CuGa2 [90]

Ga-12% Sn Cu CuGa2 + Sn [92]
Ga 1 Cu-20% Sn solid solution CuGa2 + Sn (Ga) 2 [95]

Ga-12% Sn Cu-20% Sn solid solution CuGa2 + Sn [91]
Ga-12% Sn Cu-39% Sn (Cu3Sn) CuGa2 + Sn (Ga) 2 [95]
Ga-12% Sn Cu-61% Sn (Cu6Sn5) CuGa2 + Sn (Ga) 2 [95]

Ga-24.5% In Cu-20% In solid solution CuGa2 + In [91]
Ga-12% Sn Cu-20% In solid solution CuGa2 + In3Sn + Sn [91]

Ga-24.5% In Cu-20% Sn solid solution CuGa2 + InSn4 + In [91]
Ga 1 Cu-10% Bi solid solution CuGa2 + Bi + Cu [94]

Ga-24.5% In Cu-10% Bi solid solution CuGa2 + BiIn2 [91]
Ga-12% Sn Cu-10% Bi solid solution CuGa2 + Bi + In [91]

Ga-19% In-16% Sn Ag-25.7% Sn-15% Cu-9%
Pd-0.3% Zn powder

Cu9Ga4 + Ag9In4 + Ag2Ga + Cu
(Pd)Ga2 + Ga28Ag72 + Sn + Ag3Sn [97–99]

All the reactions were analysed at room temperature (~20 ◦C). Compositions are in weight percent; 1 Pure Ga was
brought to a liquid state at ~37 ◦C before the mixture; 2 Sn(Ga) stands for Ga solid solution in Sn.

Besides the characterisation of the solid solution powder/ liquid Ga system for metallic bonding
material fabrication, research on another series of Ag-Sn-Cu-based alloy powders mixed with Ga-In-Sn
liquid has been completed for dental use [20,97,98]. Several techniques were employed to investigate
the reaction mechanisms during the setting process and the microstructural morphology evolution
of these dental alloys, including SEM, XRD [97], transmission electron microscopy (TEM) [98],
and differential scanning calorimetry (DSC) [20]. When these Ag-Sn-Cu-based alloy powders are
mixed with the Ga-In-Sn liquid at room temperature, the materials transform to a solid. θ-CuGa2,
Ga28Ag72, β-Sn, Ag3Sn, γ-Cu9Ga4, Ag9In4, and hexagonal Ag2Ga were reported to be observed in
the system, as listed in Table 2 [99]. The reaction phase composition and the setting reaction kinetics
influenced the clinically relevant properties, including the mechanical strength, corrosion resistance,
and biocompatibility of these dental amalgams [99].

4.1.2. Reactions between Liquid Ga-Based Alloys and Cu Substrates

When using these alloys in microelectronics, liquid Ga-based alloys and solid substrates interact.
Since Ga has a high solubility in the face centered cubic (FCC) Cu-rich phase, and there are several

IMCs that could form over a large temperature range [100]. Ga-based solders attract attention when
the materials for connecting Cu substrates in microelectronic packaging have to be chosen.

Microstructure Evolution

Bulk Cu/Ga couples and Cu/Ga/Cu sandwich couples with reactions at moderate processing
temperatures ranging from 160 to 300 ◦C have been studied [59,60]. Room-temperature IMC formation
and the relevant interdiffusion behaviour in thin-film Cu/Ga [101] couples have been analysed.
Reaction conditions and products are summarised in Table 3.
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Table 3. Summary of reactions between liquid Ga-based alloys and Cu substrates.

Liquid Phase Solid Phase
Reaction Condition

Products Reference
Temperature Time

Ga Cu foil 200 ◦C 3–24 h CuGa2 [59]

Ga Cu 160–240 ◦C 3–48 h CuGa2
Cu9Ga4

[60]

Ga Cu 280–300 ◦C 3–48 h Cu9Ga4 [60]

Ga on a 50 nm
Au seed layer Cu

25 ◦C 10 min CuGa2
Cu9Ga4
AuGa2

[61]
50 or 90 ◦C 80 h

Ga on a 50 nm
Au seed layer Cu

25 ◦C 10 min Cu9Ga4
AuGa2

[61]200 ◦C 80 h

Sn-32% Bi-6%
Ga

Cu
158 ◦C 1–8 min CuGa2 [62]70–110 ◦C 0–720 h

Ga-10% Zn Cu 150 or 200 ◦C Not mentioned Cu9Ga4
Zn [63]

Ga Two Cu foil 160 ◦C 96 h CuGa2
Cu9Ga4

[60]

Ga
Two Cu foil coated with
40 nm thick Pt, Ga/Pt

thickness ≤ 1
300 ◦C 7 h Ga7Pt3 [59]

Ga
Two Cu foil coated with
40 nm thick Pt, Ga/Pt

thickness ≥ 4
300 ◦C 7 h

Cu9Ga4
Cu (Ga)
Ga7Pt3

[59]

Ga-13.5% Sn Two Au coated Cu foil 25 or 100 ◦C 7 days CuGa2 [64]

Compositions are in weight percent.

Figure 7 shows the interfacial microstructure of Ga/Cu couples reacted at 200 ◦C from 3 to 48 h.
Diagrammatic sketches in Figure 8 interpret the microstructure evolution when liquid Ga is exposed to
Cu substrates (Figure 8a), Cu dissolves into the liquid at certain localised sites and forms a “basin-type”
depression (Figure 8b). Then, the θ-CuGa2 phase nucleates at sites within the basins (Figure 8c). As the
reaction progresses, the θ-CuGa2 phase is also found in the remaining uncorroded areas (Figure 8d).
During this stage, a very thin layer of γ3-Cu9Ga4 phase can be detected in the basins/depressions,
between the θ-CuGa2 crystals and the Cu substrate. As the reaction time increases, a planar IMC
layer is formed and thickens, and extends to cover the substrate (Figure 8e). Finally, the γ3-Cu9Ga4

phase thickens and forms a continuous layer that covers all the interface between the Cu and the
CuGa2 (Figure 8f). As a result of substrate dissolution in liquid Ga and consumption in IMC growth
(also referred to as a type of erosion), the Cu interface retreats.
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Figure 8. Schematic representation of the microstructural evolution of Ga/Cu [60]. (a)–(f) show the
evolution in chronological sequence.

The basin-type morphology in the interface is caused by non-uniform reactions and is referred to
as liquid metal embrittlement. This kind of interface has a negative effect on the joint strength and
efforts have been made to inhibit this process. Methods that have been tried include changing the
substrate from polycrystalline to a single-crystal to eliminate grain boundary effects [59], improving
the wettability of liquid Ga on substrates by the addition of interlayers [59], and controlling the amount
of liquid Ga [60]. The results in Figure 9 show that the non-uniform morphology forms at both the
Ga/polycrystalline Cu and the Ga/single-crystal Cu interface, though the degree of “basin” formation
in the Ga/polycrystalline Cu interface is greater. This suggests that grain boundaries are not the
only reason for the basin-type interface formation. By sputtering Pt under bump metallization on
polycrystalline Cu substrates, the wettability of the Cu substrate improved and the IMC layer grew
uniformly along the interface.
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Figure 9. The optical microscope images of (a) Ga/polycrystalline-Cu couple reacted at 200 ◦C for
3 h, (b) Ga/single-crystalline-Cu couple reacted at 200 ◦C for 24 h, and (c) Ga/Pt/polycrystalline-Cu
couple reacted at 200 ◦C for 6 h [59].

There are drawbacks to these low temperature bonding methods using Ga and Ga-based alloys.
A lack of hermeticity is one of the common problems that occurs during the bonding process as a
consequence of the microstructure evolution, shown in Figure 3. Notably, cracks occur in the θ-CuGa2

phase regions of the Cu/Ga/Cu joints [59,60]. Similar cracks were found within the γ1-Cu9Ga4 phase in
the Cu/Pt/Ga/Pt/Ga joints [59] and the Cu/Au/EGaSn/Au/Cu joints [64], as shown in Figure 10a,b.
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Figure 10. Microstructure evolution of joints formed between EGaSn and Au-coated Cu substrates [64].
(a) SEM image of a Cu/Au/EGaSn/Au/Cu substrate sandwich couple formed at room temperature;
(b) SEM image of a Cu/Au/EGaSn/Au/Cu substrate sandwich couple formed at 100 ◦C; (c) schematic
diagram of sandwich joint interface formation showing the relative difference in the intermetallic
compound (IMC) thickness at the time of Sn precipitation at room temperature (c- 2©) and at 100 ◦C
(c- 3©). At the starting point ( 1©), liquid GaSn alloy contained 91.6 at% Ga and 8.4 at% Sn. The continuous
planar IMC layer grows, which causes the Ga concentration in the liquid to drop. For the room
temperature joint, the Ga concentration quickly reaches the limit where solid Sn (Ga) starts to form
( 2©). At this point, the independent growth of Sn (Ga) disrupts the growth of planar IMCs. For the
sandwich couple at 100 ◦C, solid Sn (Ga) will not form until the concentration of Ga in the liquid GaSn
alloy decreases to 68.2 at% ( 3©). Compared with the reactions at room temperature, the solid Sn (Ga)
precipitation occurs much later at 100 ◦C.

One explanation for the cracks and voids in the Cu/Ga/Cu sandwich couples is the brittle nature
of the θ-CuGa2 phase formed at the joint interface. Based on this possibility, several methods have
been proposed to improve the joint reliability. One such method involves using a higher bonding
temperature to mitigate the formation of the θ-CuGa2 phase. Froemel et al. [61] found that by
increasing the annealing temperature (from 90 to 200 ◦C), the amount of CuGa2 decreased, favouring
the formation of Cu9Ga4, and the shear strength increased correspondingly. Another hypothesis
considered that the cracks were formed during the liquid-solid reaction instead of the physical
vibration [64]. The different morphologies of the Cu/Au/EGaSn/Au/Cu joint interface are likely
to arise from different temperatures of Sn precipitation, as demonstrated in Figure 10c. The two
layers of Sn shown in Figure 10b demarcate the liquid/solid interface location when the Sn(Ga)
precipitation occurred.

Another kind of defect formed in the interface are Kirkendall voids, which are caused by the
fast diffusion of the substrate materials into the molten Ga alloy [61,102]. Thus, the interdiffusion
coefficient of the liquid/solid couple is an important consideration when selecting the joining alloy.
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IMC Properties

As can be seen from the Cu-Ga phase diagram and microstructure analysis, the main IMCs
formed in the Cu-Ga system at low temperature are CuGa2 and Cu9Ga4. A study showed that
effective packaging of EGaIn with CuGa2 would remarkably enhance the electrical conductivity
(6 × 106 S m−1, ∼80% increase) and thermal conductivity (50 W m−1 K−1, ∼100% increase) compared
to EGaIn [103]. The result further indicated the possibility of utilizing Ga-based alloys in
microelectronic interconnections to provide good thermal and electrical conductivity as well as
mechanical support.

The thermal stability of the CuGa2 phase was studied in an inert atmosphere [104]. In this study,
the authors found that the CuGa2 transforms to Cu9Ga4 and liquid Ga at 258 ◦C, rather than the 225 ◦C
predicted from modelling. Thermal diffusivity and thermal conductivity of CuGa2 at temperatures
between 25 and 227 ◦C were measured.

Of the commonly used joining materials listed in Table 4, the Cu/Ga system shows the smallest
volume change. This means that the strain introduced by the reaction that occurs during the bonding
process is the smallest, which could have implications for subsequent reliability of the joint.

Table 4. Volume changes associated with interfacial reactions in soldering process [60].

Reaction Volume Shrinkage

3Ag + Sn = Ag3Sn 6.01%
9Ag + 4In = Ag9In4 −12.4% (expansion)
3Cu + Sn = Cu3Sn 8.69%

6Cu + 5Sn = Cu6Sn5 6.83%
Cu + 2Ga = CuGa2 0.46%

9Cu + 4Ga = Cu9Ga4 6.26%

θ-CuGa2 phase has been shown to be brittle when compared to the γ1-Cu9Ga4 phase [61].
The CuGa2 phase exists at low temperatures and is converted to Cu9Ga4 as the temperature increases.
The mechanical strength of the bond increases and the electrical resistance decreases as the proportion
of CuGa2 decreases, whereas that of Cu9Ga4 increases [61].

4.1.3. Reactions between Liquid Ga-Based Alloys and Other Substrates

Reactions between Ga-based alloys and substrates other than Cu are less well characterized
than those with Cu substrates. The dissolution and diffusion-reaction processes between Ga pastes
(Ga-40 wt % Ni-15 wt % Al, or Ga-45 wt % Al) and two substrates (Cu and Ni) at 700 ◦C were
analysed [66]. The IMCs and solid solution layers formed at the interface are shown in Figure 4.
Room-temperature IMC formation and the relevant interdiffusion behavior in thin film Au/Ga [105]
and Pd/Ga [101] couples has been analysed, and Au has been identified as a rapidly diffusing species.
The suitability of Ga-In-Sn alloy solder as a detachable contact material with thermoelectric materials
CoSb3, Mg2Si, and FeSi2 has been studied [106]. W, Ni, Cr, and Ti were tested as protective coatings
between the thermoelectric material and liquid metal solder. W was recognized as a long-term stable
coating material to protect materials from Ga-In-Sn solder. Although Cr and Ni react with Galinstan,
they showed promising results as effective protective coatings for short-term applications. Reaction
conditions and products are summarized in Table 5.
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Table 5. Summary of reactions between liquid Ga-based alloys and substrates other than Cu.

Liquid Phase Solid Phase
Reaction Condition

Products Reference
Temperature Time

Ga Ni 300 ◦C 24–3000 h Ni2Ga3, NiGa4 [107]

Ga Fe 300 ◦C 24–3000 h FeGa3 [107]

Ga Cr 300 ◦C 24–3000 h CrGa4 [107]

Ga Pd ~25 ◦C 8 days PdGa5 [101]

Ga Au ≤ 50 ◦C 10 min AuGa2 [102]

Ga Stainless steel 316
(Fe-17% Cr-13% Ni-2.5% Mo) 400 ◦C 24–3000 h FeGa3, CrGa4,

Ni2Ga3
[107]

Ga Inconel 625
(Ni-21.5% Cr-9% Mo-2.5Fe) 400 ◦C 24–3000 h CrGa4 [107]

Galinstan Ni 500 ◦C 24 h
Ga65Ni35,

In 50Ga25Sn20Ni5,
In55Sn41Ga4

[106]

Galinstan Ti 500 ◦C 24 h Ga75Ti25,
Ga72In12Ti9Sn7

[106]

Galinstan Cr 500 ◦C 24 h Ga70In13Cr9Sn8,
Cr84Ga13In3Sn1

[106]

Galinstan W 500 ◦C 24 h No reaction layer
was found [106]

Ga-10% Zn Cu-37% Zn
or Cu-32% Zn 150 or 200 ◦C Not mentioned Cu9Ga4,

Cu solid solution [63]

Ga-45% Al a Cu foil
and a Ni foil 700 ◦C 20 min

Ni3Ga, Cu3Ga,
Cu solid solution

Cu9Ga4

[66]

Ga-40% Ni-15% Al a Cu foil
and a Ni foil 700 ◦C 20 min Ni3Ga, Cu3Ga,

Cu solid solution [66]

Compositions are in weight percent.

One of the problems for Ga in coolant applications is the serious corrosion that occurs when
Ga comes into contact with Al alloys, which are the construction materials most commonly used in
nuclear power plant cooling systems. Several studies have focused on the reaction mechanisms of Ga
and Ga-based alloys with the candidate structural materials in nuclear power plant cooling systems.
Therefore, we could gain some knowledge about the reactions between liquid Ga-based alloys and
other substrates from these corrosion observations, as summarized in Table 5.

For atomic reactor cooling purposes, Fe, Ni, and Cr react with Ga quickly, whereas Nb5Mo1Zr
alloy and 316 L stainless steel have better resistance to corrosion by Ga [107,108]. Further mathematical
analysis of liquid Ga and liquid Ga-Sn-Zn alloy corrosion of austenitic stainless steels has been carried
out [109]. The compatibility of Ga with four typical substrates, including two Al alloys, a Cu alloy,
and a stainless steel, was observed in the temperature range relevant to the cooling of computer
chips [110].

4.2. Wettability

Wettability properties are vital for liquid alloys in nearly all applications, including interconnection
fabrication. Taking soldering as an example, the success of the joining process depends on the
development of a liquid interlayer that has the ability to wet the substrate materials. Factors identified
as influencing wetting include liquid metal oxidation behavior, liquid-solid alloying, or corrosion
reactions with substrates, and the substrate surface conditions including roughness, contamination,
segregation, and oxides [111].

The wetting behavior of room temperature liquid Ga-based alloys on metal substrates, based on
microelectronic interconnect applications, have not been well observed. In other applications,
such as three-dimensional (3D) structure patterning, microfluidic and nano-particle fabrication,
extensive research has been completed to study the wettability of liquid Ga-based alloys in order to



Materials 2018, 11, 1384 14 of 20

maintain the required geometries. The studies include surface tension of alloy droplets in different
atmosphere [112] and the substrate conditions [113,114]. Here, we briefly discuss the progress of
wettability characterisation of Ga-based alloys on substrates.

4.2.1. Wetting Characteristics of Liquid Ga and Ga-Based Alloys

The surface tension of pure Ga and its temperature dependence have been measured by the sessile
drop technique [80,115] and the pendant-drop method [116].

For Galinstan and eutectic Ga-In, several measurements have been recorded at room temperature
in different atmospheres. Liu et al. [82] obtained the contact angle of Galinstan on several materials
commonly used in micro-electromechanical systems devices (including tungsten, silicon nitride, glass,
parylene, Teflon, phlogopite, and muscovite) using the sessile drop method. The surface tension
of Galinstan on these substrates was measured using the pendant-drop method under a nitrogen
atmosphere. There were no chemical reactions between any of the substrates tested and Galinstan,
and the surface tension of Galinstan was measured to be around 534.6 mN/m. The authors found
that the oxidation state had an obvious effect on the Galinstan drop morphology and fluidity. During
the wettability tests, only when the oxygen level was precisely controlled to be below 1 ppm, would
Galinstan droplets behave like a normal liquid. The results confirmed the effect of the oxide skin
on the Galinstan wettability on solid substrates. Xu et al. [117] measured the wettability including
viscosity, surface tension, and contact angles of pure Ga and eutectic Ga-In alloy, while controlling the
oxidation level by immersing the liquid metal drops in a hydrochloric acid bath with different HCl
concentrations. The dynamic and static contact angles of eutectic Ga-In alloy on cellulose paper and
double-sided adhesive were also obtained by Han et al. [85]. All these measurements were taken on
substrates that do not chemically react with or are penetrated by these liquid Ga-based alloys.

As well as these wettability measurements at room temperature, the surface tension of liquid
Ga-Bi, Ga-In, Ga-Bi-Sn, and Ga-Bi-In alloys at 600 ◦C were also measured using the sessile drop method
on graphite substrates in a hydrogen atmosphere [118].

4.2.2. Effect of Liquid-Solid Interaction on Wettability

For the Ga/solid thin film couples, interdiffusion was found to occur heterogeneously over the
film surface, and blisters formed due to the diffusion-induced stresses [105].

The spreading and penetration phenomenon between Ga and thin film Ag was investigated
at temperatures ranging from −78 to 60 ◦C [119]. The activation energies of solid and liquid Ga
in linear spreading on silver films were obtained. The effects of IMCs or solid solution formation,
grain boundary diffusion, and grooving were examined, and models were produced for the spreading
rates. This kind of investigation and associated mathematical models may be helpful in many liquid
metal applications, including, for example, low temperature soldering.

5. Summary

The application of Ga and Ga-based alloys in microelectronics has already received significant
attention. The most attractive properties of Ga and Ga-based alloys arise from their combination of
thermal and electrical conductivity, with fluidity at low temperatures or even at room temperature.
In addition, they exhibit other desirable properties, such as low toxicity, an ability to wet almost all
materials used in electronics, high boiling points, low vapour pressure, and the possibility of forming
stable high temperature solid solutions and IMCs with other metals (Al, Cu, Ni, etc.).

The properties of Ga and Ga-based alloys make them very suitable for use in microelectronics.
Their deformability creates opportunities for further applications, providing a potential pathway to
meet the demands for deformability and miniaturisation of products, low fabrication temperatures,
and minimising the impact on both human health and the environment. Demonstrations of Ga and
liquid Ga-based alloy applications in microelectronics have been reported in the literature, including
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deformable electronics fabrication, thermal management or heat transfer in integrated circuit systems,
and low temperature bonding in electronic packaging.

Various characteristics of Ga and Ga-based alloys (mainly eutectic Ga-In and Galinstan) have
been observed. This research has laid the foundation for some techniques for liquid alloy control
and utilisation. For example, methods for “printing” or “writing” liquid Ga metals is emerging as a
popular research area. However, there are relatively few studies relating to the interfacial reactions
between liquid Ga-based alloys and common substrates in microelectronics.

Though Ga and Ga-based alloys hold some appeal for the electronics industry, a fundamental
understanding about the interfacial reactions between liquid Ga-based alloys and other components
and substrates at low temperatures needs to be developed to fully utilise these interesting materials
and expedite their use in industry. Their long-term reliability in real devices where they have been
used for low temperature bonding or their stretchability remains to be verified.
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