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Abstract: The yield criterion in rate-independent single crystal plasticity is most often defined by the
classical Schmid law. However, various experimental studies have shown that the plastic flow of
several single crystals (especially with Body Centered Cubic crystallographic structure) often exhibits
some non-Schmid effects. The main objective of the current contribution is to study the impact of
these non-Schmid effects on the ductility limit of polycrystalline sheet metals. To this end, the Taylor
multiscale scheme is used to determine the mechanical behavior of a volume element that is assumed
to be representative of the sheet metal. The mechanical behavior of the single crystals is described by
a finite strain rate-independent constitutive theory, where some non-Schmid effects are accounted
for in the modeling of the plastic flow. The bifurcation theory is coupled with the Taylor multiscale
scheme to predict the onset of localized necking in the polycrystalline aggregate. The impact of the
considered non-Schmid effects on both the single crystal behavior and the polycrystal behavior is
carefully analyzed. It is shown, in particular, that non-Schmid effects tend to precipitate the occurrence
of localized necking in polycrystalline aggregates and they slightly influence the orientation of the
localization band.

Keywords: crystal plasticity; non-Schmid effects; Taylor multiscale scheme; localized necking;
bifurcation theory

1. Introduction

Despite the significant progress accomplished in the modeling of the mechanical behavior of
metallic materials, the study of localized necking in thin metal sheets remains an active research
topic for both academic and industrial communities. This research area has been initiated in the
pioneering contributions of Keeler and Backofen [1], and Goodwin [2], who have introduced the
representation by a forming limit diagram (FLD) as a characterization of the initiation of localized
necking in thin metal sheets. For each strain path ranging from uniaxial tension to equibiaxial tension,
the in-plane principal strains, which are associated with the incipience of localized necking, are reported
on the forming limit diagram. Considering the practical complexity related to the experimental
determination of FLDs (precise identification of the moment of the onset of strain localization,
scatter in the experimental data...), as well as their high cost (a lot of experimental tests required
to build a complete FLD...), important efforts have been devoted to the development of several
alternative theoretical and/or numerical prediction models. These models are generally based on
the coupling between a localization criterion used to predict the onset of localized necking and
a constitutive model describing the evolution of the mechanical fields. Among the most known
localization criteria used in the literature, one can quote the initial imperfection approach, which
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was developed initially by Marciniak and Kuczynski [3], the bifurcation theory initiated by Rice
in [4,5], and the energy criterion of instability of a deformation process formulated by Petryk et
al. [6–8]. Despite its large popularity, the initial imperfection approach has a main drawback: the
over-sensitivity of its predictions (in terms of limit strain) to the amount of initial imperfection
(which may be viewed as a nonphysical parameter). By contrast, the use of the bifurcation theory
does not need any additional parameter (such as the initial imperfection factor). Furthermore, the
formulation of the bifurcation theory is based on sound mathematical considerations, and its numerical
implementation is relatively easy. For these reasons, the bifurcation theory is used in the current
paper to detect the incipience of strain localization. For elastic-plastic constitutive frameworks with
an associated plastic flow rule and a smooth yield surface, it has been demonstrated (see, e.g.,
Reference [5]) that the bifurcation approach is unable to predict material instability at a realistic
strain level in the range of positive strain paths. Consequently, the prediction of localized necking
at realistic strain levels requires the use of constitutive models exhibiting some destabilizing effects.
When phenomenological constitutive models are coupled with the bifurcation theory, destabilizing
phenomena may be introduced either by including damage-induced softening effects [9,10] or by
deviating the plastic flow rule from normality [11,12]. Despite their popularity, the phenomenological
models are not able to accurately capture the effects of some essential physical and microstructural
mechanisms (initial and induced crystallographic and morphologic textures, crystallographic structure,
dislocation density evolution...) on some important in-use properties (strength, formability...). These
limitations have motivated researchers to use multiscale models in the prediction of FLDs. In the
current contribution, a multiscale model has been coupled with the bifurcation theory to predict the
incipience of localized necking in polycrystalline aggregates. In this multiscale model, the Taylor
scheme is used to determine the macroscopic behavior of the polycrystalline aggregates from that
of their constituents (single crystals). The mechanical behavior at the single crystal scale follows a
finite strain rate-independent formulation. Compared to the rate-dependent formulation that has been
widely used to predict strain localization [13,14], the rate-independent one is more appropriate for the
simulation of cold forming processes, where viscous effects are limited. In the majority of the previous
rate-independent contributions [15–18], the plastic flow is modeled by the classical Schmid law [19].
In this case, the destabilizing mechanism required to predict bifurcation localization at realistic limit
strain levels is an obvious consequence of the crystal plasticity multi-slip and the associated yield
surface vertex effects, which is taken into account by using this classical Schmid law. The effect of a
regularization of this Schmid law (by substituting the vertices at the yield surface by rounded corners)
on the prediction of the ductility limit has been recently analyzed in [20]. It has been demonstrated
that the limit strains predicted in the range of positive strain paths are unrealistically high when the
regularized version of the Schmid law is used to model the plastic flow at the single crystal scale.
Although the classical Schmid law is widely accepted, various experimental observations made on BCC
(Body Centered Cubic) metallic materials, such as molybdenum [21], tungsten [22], or tantalum [23],
have revealed that this classical law is not always able to accurately describe the plastic flow. Indeed,
most BCC single crystals have 24 slip systems, but the slip planes are not ideally close-packed. The
1/2〈111〉 screw dislocations in BCC metals have a non-planar core structure that spreads on three{

110
}

planes. This causes non-Schmid effects (effects that are not considered by the classical law),
in which stresses developing on planes and directions other than those on the primary slip systems
will influence dislocation motion [24]. Note that the non-Schmid effects have been introduced in
the modeling of the mechanical behavior of steel materials in at least three recent studies [24–26].
In these contributions, two particular steel grades have been studied: the three-phase QP980 and
dual-phase DP980 steels. The reason for the choice of these steels is principally related to the fact
that the deformation of the ferrite phase in both grades shows non-negligible non-Schmid behavior.
These non-Schmid effects are incorporated in a generalized version of the Schmid law [27]. In such
a generalization, the single crystal yield function includes stress components other than the Schmid
stress, which results in non-associated plastic flow (i.e., non-normality). The main motivation behind
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the current investigation is to carefully analyze the implications of deviations from the classical Schmid
law (by the incorporation of the non-Schmid effects) on the constitutive modeling of both BCC single
crystals and polycrystalline aggregates. Then, the impact of these deviations on the onset of localized
necking in thin metal sheets and on the orientation of the associated localization band is investigated.
It will be especially demonstrated that the non-Schmid effects tend to precipitate the occurrence of
strain localization in polycrystalline aggregates.

The paper is organized as follows. Section 2 gives the theoretical framework on which the
prediction of localized necking in BCC polycrystalline aggregates is based. Particular attention is
paid in this section to the introduction of non-Schmid effects in the plastic flow. Section 3 outlines
the numerical aspects related to the implementation of the equations that govern the prediction
of the ductility limit of polycrystalline aggregates. In Section 4, various numerical results are
provided, which illustrate the influence of the non-Schmid effects on the mechanical behavior and
on the onset of localized necking. The conclusions drawn from this study are provided in Section 5.
Finally, Appendix A provides the list of crystallographic slip systems for BCC single crystals.

Standard notations and conventions are used throughout:

n First, second, or fourth-order tensors are represented by bold-face letters and symbols (the order
of which is indicated by the context).

n Scalar parameters and variables are designated by thin letters and symbols.
n Macroscopic (resp. microscopic) fields are designated by capital (resp. small) letters and symbols.

.• time derivative of •.
•∇ co-rotational derivative of •.
•T transpose of •.
•.• inner product.
• : • double contraction product (= •ij•ij for the product between two second-order tensors, and
•ijkl•kl for the product between a fourth-order tensor and a second-order tensor).
• × • vector product.
det(•) determinant of tensor •.
sgn(•) sign of •.

2. Theoretical Framework

In the following theoretical developments, an updated Lagrangian formulation will be used to
express the different equations (constitutive equations and localization analysis). Let us consider
a polycrystalline aggregate made of Ng single crystals, which are initially randomly oriented.
This aggregate is assumed to be representative of the studied thin metal sheet. To predict the
ductility limit of the latter, the aggregate is submitted to uniform biaxial straining, where the in-plane
components of the macroscopic velocity gradient G are known and defined as follows:

G11 = 1 ; G22 = ρ ; G12 = G21 = 0, (1)

where ρ denotes the strain-path ratio, and it ranges between −1/2 (uniaxial tensile state) and 1
(equibiaxial tensile state). The out-of-plane components of G are unknown and should be deduced
from the plane-stress condition in the direction normal to the plane of the sheet:

.
N13 =

.
N23 =

.
N31 =

.
N32 =

.
N33 = 0, (2)

where
.

N is the macroscopic nominal stress rate, which is related to the macroscopic velocity gradient
G through the macroscopic tangent modulus L:

.
N = L : G. (3)
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The bifurcation criterion is used to numerically determine the onset of localized necking in the
polycrystalline aggregate for the whole range of strain-path ratios (comprised between −1/2 to 1).
This criterion asserts that strain localization occurs when the acoustic tensor becomes singular [5].
Hence, this criterion is defined by the following expression:

det(
→
NNN .LPS.

→
NNN ) = 0, (4)

where
→
NNN is the unit vector (lying in the plane of the sheet) normal to the localization band. Here,

→
NNN is

taken equal to (cos θ, sin θ), where the orientation θ of the localization band is comprised between
0◦ and 90◦. As to tensor LPS, it represents the 2D macroscopic tangent modulus relating the in-plane
components of the nominal stress rate tensor to the in-plane components of the velocity gradient.
The analytical expression for the 2D tangent modulus LPS is derived from the general expression of the
3D tangent modulus by the classical relation [20]:

∀ i, j, k, l = 1, 2 : LPS
ijkl = Lijkl −

Lij33L33kl

L3333
(5)

Then, to check the occurrence of strain localization, the 3D macroscopic tangent modulus L
should be determined by integrating the constitutive equations associated with the polycrystalline
aggregate. In the current contribution, the Taylor multiscale scheme was used to determine the
macroscopic mechanical behavior from the behavior of the microscopic constituents (the single
crystals). This scheme was based on the assumption of the homogeneity of the strain field over the
aggregate. Consequently, the microscopic velocity gradient g is equal to its macroscopic counterpart
G. The macroscopic nominal stress rate

.
N is obtained from its microscopic counterpart

.
n by the

averaging relation:
.

N =
1
V

∫
V

.
n(x)dx, (6)

where V denotes the volume of the polycrystalline aggregate and x is a material point within
this aggregate.

By combining the assumption of homogeneity of the strain field and Equation (6), one can deduce
that the macroscopic tangent modulus L is related to its microscopic counterpart l (which relates

.
n to

g) by a relationship that is similar to Equation (6):

L =
1
V

∫
V

l(x)dx (7)

Therefore, to compute the macroscopic tangent modulus L via Equation (7), the microscopic
tangent modulus l for all individual grains should be first determined. To this end, the subsequent
developments are dedicated to the derivation of the analytical expression of the microscopic
tangent modulus.

The microscopic velocity gradient g is additively split into its symmetric and skew-symmetric
parts, denoted d and w, respectively:

g = d + w (8)

The strain rate tensor d and the spin tensor w are decomposed into their elastic and plastic parts:

d = de + dp ; w = we + wp (9)

The evolution of the rotation r of the lattice frame of the single crystal is expressed as a function
of the elastic spin tensor we:

.
r.rT = we (10)
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The elastic part of the behavior law is defined by the relation between the co-rotational derivative
k∇ of the Kirchhoff stress tensor and the elastic strain rate de:

k∇ = Ce : de (11)

where Ce is the fourth-order elasticity tensor. Here, isotropic and linear elasticity is assumed. We recall
that the Kirchhoff stress tensor k is defined by the following relation:

k = jσ (12)

where j is the Jacobian of the deformation gradient and σ is the Cauchy stress tensor.
The combination of Equations (11) and (12) gives:

σ∇ +σTr(d) = Ce : de (13)

The use of the co-rotational derivative k∇ instead of the simple time derivative
.
k of the Kirchhoff

stress aims to satisfy the objectivity principle. These two derivatives are related by the following
relation: .

k = k∇ − k.we + we.k (14)

The plastic deformation of the single crystal is assumed to be only due to the slip on the
crystallographic planes. Thus, the plastic strain rate dp and the plastic spin wp can be expressed
as follows:

dp =
Ns

∑
α=1

.
γ

α sgn(τα)Rα ; wp =
Ns

∑
α=1

.
γ

α sgn(τα)Sα (15)

where:

n Ns is the total number of slip systems.
n

.
γ

α is the absolute value of the slip rate of the αth slip system.
n Rα and Sα are respectively the symmetric and skew-symmetric part of the Schmid orientation

tensor, which is defined as the tensor product
→
m

α
⊗→n

α
. Vectors

→
m

α
and

→
n

α
, corresponding to

BCC single crystals that we have used in the current work are listed in Appendix A.
n τα is the resolved shear stress of the αth slip system, which is equal to Rα : σ.

The plastic flow of the single crystal is modeled by a generalized version of the Schmid law [21]:

∀α = 1, . . . , Ns :


∣∣∣∣τα +

Nns
∑

i=1
aα

i τ
α
i

∣∣∣∣ < τα
c ⇒

.
γ

α
= 0∣∣∣∣τα +

Nns
∑

i=1
aα

i τ
α
i

∣∣∣∣ = τα
c ⇒

.
γ

α ≥ 0
. (16)

where:

n τα
c is the critical shear stress of the αth slip system.

n

Nns
∑

i=1
aα

i τ
α
i is an additional term (compared to the classical Schmid law) used to capture the

non-Schmid effects. Here, τα
i and Nns denote the non-Schmid shear stresses and their number,

respectively. As to aα
i , they represent material parameters, which can be determined by

experimental tests or atomistic simulations [28]. For simplicity, we assume in the current
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contribution that aα
i are the same for all of the slip systems, and we choose the following expansion

for the term
Nns
∑

i=1
aα

i τ
α
i [28]:

Nns

∑
i=1

aα
i τ

α
i = a1σ : (

→
m

α
⊗→n

α

1) + a2σ : [(
→
n

α
× →m

α
)⊗→n

α
] + a3σ : [(

→
n

α

1 ×
→
m

α
)⊗→n

α

1 ] (17)

where vectors
→
n

α

1 are enumerated in Appendix A (for the case of BCC single crystals).

Compared to other approaches given in the literature (see, for instance, References [28–30])
devoted to the study of the impact of the non-Schmid effects on the plastic flow of single crystals,
Equation (17) seems to be the simplest expansion that we can consider.

By using the expression of the resolved shear stress τα (= Rα : σ) and Equation (17),
the generalized Schmid law can be rewritten as follows:

∀α = 1, . . . , Ns :

{
|τ∗ α| < τα

c ⇒
.
γ

α
= 0

|τ∗ α| = τα
c ⇒

.
γ

α ≥ 0
(18)

where τ∗ α is equal to R∗ α : σ, and R∗ α is defined as follows:

∀α = 1, . . . , Ns : R∗ α = Rα + Rnsα (19)

with Rnsα being the symmetric part of the non-Schmid orientation tensor Mnsα, which can be easily
deduced from Equation (17):

∀α = 1, . . . , Ns : Mnsα = a1(
→
m

α
⊗→n

α

1) + a2[(
→
n

α
× →m

α
)⊗→n

α
] + a3[(

→
n

α

1 ×
→
m

α
)⊗→n

α

1 ] (20)

The rate of the critical shear stresses is expressed by the following generic form:

∀α = 1, . . . , Ns :
.
τ

α
c =

Ns

∑
β=1

hαβ .
γ
β (21)

where h is a symmetric hardening matrix.
The time derivative of τ∗ α can be obtained after some straightforward calculations:

∀α = 1, . . . , Ns :
.
τ
∗ α

= R∗ α : σ∇ (22)

The expression of the co-rotational stress rate σ∇ can be obtained by combining Equations (13)
and (15)(1):

σ∇ = [Ce : d−σTr(d)]−
Ns

∑
α=1

.
γ

αsgn(τα)Ce : Rα (23)

Consequently,
.
τ
∗ α can be expressed as follows:

∀α = 1, . . . , Ns :
.
τ
∗ α

= R∗ α : [Ce : d−σTr(d)]−
Ns

∑
β=1

.
γ
β sgn(τβ)R∗ α : Ce : Rβ (24)

Let us now introduce the set A of active slip systems, which are defined as:

∀α ∈ A :
.
γ

α
> 0 ;

.
τ
∗ α sgn(τ∗ α)− .

τ
α
c = 0 (25)
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By using Equations (21) and (24), Equation (25) can be transformed as follows:

∀α ∈ A : ∑
β∈A

(sgn(τ∗ α) sgn(τβ)R∗ α : Ce : Rβ + hαβ)
.
γ
β
= sgn(τ∗ α)R∗ α : [Ce : d−σTr(d)] (26)

The absolute values for the slip rates of the active slip systems can then be obtained from
Equation (26):

∀α ∈ A :
.
γ

α
= ∑

β∈A
Mαβ sgn(τ∗β)R∗β : [Ce : d− σTr(d)] (27)

where M is the inverse of matrix P defined by the following index form:

∀α,β ∈ A : Pαβ = sgn(τ∗ α) sgn(τβ)R∗ α : Ce : Rβ + hαβ (28)

The nominal stress tensor n and the Cauchy stress tensor σ are related by the following relation:

n = j f−1σ (29)

where j is the Jacobian of the microscopic deformation gradient f. The rate
.
n of the microscopic nominal

stress is determined by computing the time derivative of Equation (29):

.
n = j f−1(

.
σ+σTr(d)− g.σ) (30)

As an updated Lagrangian approach is used in the current investigation, Equation (30) can be
reduced to the following form:

.
n =

.
σ+σTr(d)− g.σ (31)

The latter can be related to
.
γ

α by combining Equations (9), (14) and (15):

.
n = Ce : d−σ.w− d.σ− ∑

α∈A
(Ce : Rα + Sα.σ−σ.Sα)

.
γ

αsgn(τ α). (32)

The microscopic tangent modulus l can be obtained from Equations (27) and (32) after some
lengthy but straightforward algebraic manipulations [16]:

l = Ce − 1
σl − 2

σl − ∑
α∈A

(
sgn(τ α) (Ce : Rα + Sα.σ−σ.Sα)⊗ ∑

β∈A
Mαβ sgn(τ∗β)R∗β : (Ce −σ⊗ Id)

)
(33)

where Id stands for the second-order identity tensor, while 1
σl and 2

σl are fourth-order tensors, which are
defined by convective terms of Cauchy stress components:

1
σlijkl =

1
2
(δljσik − δkjσil) ; 2

σlijkl =
1
2
(δikσlj + δilσkj) (34)

By analyzing Equations (18) and (25), one can easily deduce that
.
γ

α is not determined by τα and
.
τ

α alone. In this case, the plastic flow is non-associated with the yield criterion. Indeed, stresses other
than the Schmid stress (which is parallel to the slip) on that slip system enter the flow rule. Thereby,
the normality rule is not respected. This phenomenon can be easily checked by analyzing Equation
(15)(1) and the definition of τ∗ α. Indeed, we have:

dp 6=
Ns

∑
α=1

.
γ

α sgn(τ∗ α)
∂ τ∗ α

∂σ
=

Ns

∑
α=1

.
γ

α sgn(τ∗ α)R∗ α (35)

Equation (35) implies that the plastic strain rate deviates from the direction of the outward normal
to the yield surface (represented in stress space).
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The effect of the non-associativity of the plastic flow on the decrease of the ductility limit has
been largely studied in the literature with phenomenological models [11,31]. The aim of the current
contribution is to numerically explore the effect of this non-associativity, considered at the single
crystal scale, on the ductility limit of polycrystalline aggregates.

3. Algorithmic Aspects

The algorithm for the prediction of forming limit diagrams by the bifurcation approach is based
on the two following nested loops:

• For each strain-path ratio ρ comprised between −1/2 and 1 (with typical intervals of 0.1).

n For each time increment I∆ = [t0, t0 + ∆t]:

3 Compute the plane-stress tangent modulus LPS from the 3D tangent modulus L
by using an iterative procedure similar to the one developed in [16]. On the other
hand, L is determined from the microscopic tangent moduli l of the different single
crystals by Equation (7). Some indications on the method used to compute l are
given after this algorithm.

3 For θ = 0◦ to 90◦, at user-defined intervals (with typical increments of 1◦):

- compute the determinant of the acoustic tensor det(
→
NNN .LPS.

→
NNN ) = 0. We

recall that the components of
→
NNN are equal to (cos θ, sin θ).

3 Search for the orientation that minimizes det(
→
NNN .LPS.

→
NNN ) = 0, over the different

values of θ. If det(
→
NNNmin.LPS.

→
NNNNNNNNNmin) ≤ 0,, then localized necking is reached.

The corresponding angle θ is the orientation of the localization band, while the
corresponding limit strain E11 is equal to

∫ t0+∆t
0 G11dt = t0 + ∆t (as G11 is equal

to 1). The computation is then stopped. Otherwise, the integration is continued for
the next time increment.

The microscopic tangent modulus l should be computed at t0 + ∆t by using Equation (33).
As clearly demonstrated in Equations (33) and (34), the different microscopic variables should be
updated to compute l. The update of these variables is based on an implicit integration scheme over I∆.
This integration scheme belongs to the family of ultimate algorithms and is similar to the one developed
in [32] for the classical Schmid law. The novelty in the algorithm used here, compared to the algorithm
of [32], consists in the addition of the non-Schmid effects. By carefully analyzing the constitutive
equations at the single crystal scale, one can deduce easily that the determination of the set of active
slip systems, from the set of potentially active slip systems P (= {α = 1, . . . , Ns : |τ∗ α(t0)| = τα

c (t0)}),
as well as the corresponding slip rates

.
γ

α allows the determination of all other mechanical variables.
In this objective, a combinatorial search strategy, analogous to the one proposed in [32], is adopted
to determine the set of active slip systems from the set of potentially active slip systems. This search
strategy is performed iteratively and, at each iteration, a subset of the set of potentially active slip
systems is chosen to be the set of active slip systems. The slip rates corresponding to the assumed
set of active slip systems are calculated by using Equation (27). If matrix P (Equation (28)) is singular
(which corresponds to the widely-known indetermination problem), the pseudo-inversion technique
is adopted to invert it and then to compute the slip rates of the active slip systems. For the other
slip systems, their slip rates are assumed to be equal to zero. After this step, the generalized Schmid
law defined by Equation (18) is assessed for all of the potentially active slip systems. If at least one
constraint of this generalized Schmid law is not satisfied, then the assumed set is not an effective
set of active slip systems and another set is chosen. It must be noted that, due to the introduction
of the non-Schmid effects, matrix P is not symmetric. The asymmetry of matrix P leads to a slight
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increase in the computational effort spent by the solver. Once the slip rates of the active slip systems
are computed, the other mechanical variables (the Cauchy stress tensor σ, the rotation of the lattice
frame r) should be updated, and the microscopic tangent modulus l is computed.

4. Numerical Results

4.1. Material Data

In this section, we examine the impact of the non-Schmid effects on the constitutive response
at the single crystal scale (Section 4.2) and on the prediction of the onset of strain localization
at the polycrystal scale (Section 4.3). A polycrystalline aggregate made of 1000 single crystals is
considered. The initial crystallographic texture corresponding to this polycrystalline aggregate is
randomly generated, as shown in Figure 1.Materials 2018, 11, x FOR PEER REVIEW  9 of 16 
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The initial state for each single crystal, in terms of stress and crystallographic slip, is defined as:

σ(t = 0) = 0 ; ∀α = 1, . . . , 12 : γα(t = 0) = 0 (36)

The hardening law used in this work has been initially introduced in [33]. In this law, the hardening
matrix h involved in Equation (21) is given by the following index expression:

∀α,β = 1, . . . , 24 : hαβ = ĥ(A) [q + (1− q) δαβ] ; ĥ(A) = h0

(
1 +

h0 A
n τ0

)n−1
(37)

where δαβ is the Kronecker symbol and A is the sum of the accumulated plastic slip on all slip systems.
However, n, τ0, q and h0 are material parameters. The values of the parameters relating to elasticity
and hardening are reported in Table 1.

Table 1. Material parameters.

Elasticity Hardening

E ν n τ0 q h0
65 GPa 0.3 0.15 40 MPa 1.4 390 MPa

To extensively analyze the influence of the non-Schmid effects on the material response and
formability limit prediction, it is desirable to set up a sensitivity study where the non-Schmid
parameters a1, a2, and a3 (see Equation (17)) would be varied simultaneously or separately in the
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range of their admissible values. Here, and for the sake of brevity, attention is restricted to the effect of
parameter a1 on the numerical predictions.

4.2. Significance of the Non-Schmid Effects on the Microscale Constitutive Response

To analyze the significance of the non-Schmid effects on the microscopic mechanical behavior,
let us apply a plane-stress loading to a single crystal. This loading is defined by the following
microscopic velocity gradient:

g =

 1 0 ?
0 −0.5 ?
? ? ?

 (38)

where the unknown components of g (g13, g23, g31, g32, and g33) are deduced by the following
plane-stress condition:

.
n13 =

.
n23 =

.
n31 =

.
n32 =

.
n33 = 0 (39)

The initial orientation matrix of the studied single crystal is assumed to be equal to the
identity tensor.

The impact of the non-Schmid effects on the evolution of the accumulated plastic slip of the
activate slip systems γα(=

∫ t
0

∣∣∣ .
γ

α
∣∣∣dt), as a function of ε11(=

∫ t
0 g11 dt), is depicted in Figure 2. For the

case of classical Schmid law, the parameters a1, a2, and a3 are obviously set to 0. This figure shows that
the activity of the slip systems and the evolution of the corresponding accumulated plastic slips are
strongly influenced by the value of parameters a1, a2, and a3. Indeed, when the non-Schmid effects
are not considered, systems 2, 5, 6, 8, 9, 10 are activated during loading. By contrast, systems 3, 5,
6, 7, 11, 12 are activated when the non-Schmid effects are considered in the constitutive modeling.
This result is expected, considering the influence of parameters a1, a2 and a3 on the values of the
components of matrix P (see Equation (28)). This matrix clearly affects the activity of the slip systems
and the evolution of the corresponding accumulated plastic slips (see Equation (27)).
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Figure 2. Significance of the non-Schmid effects on the slip system activity: (a) Results without
non-Schmid effects (a1 = a2 = a3 = 0); (b) Results with non-Schmid effects (a1 = 0.2; a2 = a3 = 0).

The above-observed difference in the activity of the slip systems induces a difference in the
evolution of the in-plane components of the Cauchy stress tensor, as shown in Figure 3. The abrupt
changes observed on the evolution of the components of the stress tensor are explained by the change
in the activity of the slip systems.
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stress tensor: (a) Results without non-Schmid effects (a1 = a2 = a3 = 0); (b) Results with non-Schmid
effects (a1 = 0.2; a2 = a3 = 0).

4.3. Influence of the Non-Schmid Effects on Localized Necking

As previously mentioned, the occurrence of plastic strain localization is predicted by the
bifurcation theory. This theory states that bifurcation takes place when the determinant of the acoustic
tensor becomes equal to zero (Equation (4)). Hence, to analyze the impact of the non-Schmid effects on
plastic strain localization, let us first analyze their impact on the evolution of some components of the
2D macroscopic tangent modulus LPS. To this aim, the evolution of the components LPS

1111, LPS
1122, LPS

2211
and LPS

1212, as function of E11(=
∫ t

0 G11 dt) for the plane-strain state, is plotted in Figure 4. This figure
clearly shows that the value of the non-Schmid coefficient a1 has a significant effect on the evolution of
the components of LPS. Furthermore, the consideration of the non-Schmid effects leads to an important
fluctuation of the evolution of the components of LPS. This observation is attributed to the fact that
the normality of the plastic flow to the yield function is not respected when the non-Schmid effects
are accounted for. As clearly shown in Figure 4, all of the components of LPS decrease during loading
including also, in particular, the shearing component LPS

1212. This feature is an obvious consequence of
the multi-slip nature of crystal plasticity, which results in the formation of vertices at the current points
of the single crystal yield surfaces. Note that the decrease of the shearing components of the tangent
modulus is the most important destabilizing factor responsible for bifurcation, thus leading to early
plastic strain localization. It is also important to notice that the difference between LPS

1122 and LPS
2211 does

not exceed 1%, which explains why the curves representing these tangent modulus components are
indistinguishable, as clearly observed in Figure 4.

The influence of the non-Schmid effects on the initiation of plastic strain localization for two strain
paths (uniaxial tension and plane-strain tension) is investigated in Figure 5, where the minimum of the
determinant of the acoustic tensor is plotted as a function of E11. The results of this figure clearly show
that the non-Schmid effects tend to precipitate the occurrence of localized necking. Indeed, the limit
strains predicted when the non-Schmid effects are considered are lower than those determined by the
classical Schmid law, by about 3% of deformation.
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Figure 4. Significance of the non-Schmid effects on the evolution of some representative components
of the macroscopic tangent modulus for the plane-strain state: (a) Results without non-Schmid effects
(a1 = a2 = a3 = 0); (b) Results with non-Schmid effects (a1 = 0.2; a2 = a3 = 0).
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Figure 5. Impact of the non-Schmid effects on the evolution of the minimum of the determinant of the
acoustic tensor as a function of E11: (a) Uniaxial tensile state (ρ = −0.5); (b) Plane-strain state (ρ = 0).

The results obtained in Figure 5 are generalized to the whole range of strain paths in Figure 6a.
This latter figure shows that the forming limit diagram predicted by the classical Schmid law is higher
than its counterpart, which is predicted when the non-Schmid effects are accounted for. The impact of
the non-Schmid effects on the necking band orientation is analyzed in Figure 6b. This latter figure shows
that the non-Schmid effects have a slight influence on the necking band orientation. Also, the band
inclination angle is found to be equal to 0 for strain-path ratios larger than 0.1, for both plastic flow
rules (i.e., the classical Schmid law and the one which accounts for non-Schmid effects).
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Figure 6. Impact of the non-Schmid effects on: (a) the shape and the level of the forming limit diagrams;
(b) the evolution of the necking band orientation as a function of the strain-path ratio.

The effect of the crystallographic texture on the ductility of polycrystalline sheet metals has been
analyzed in several contributions (see for instance, references [16,34]). It has been demonstrated in
earlier contributions that the predicted limit strains remain almost insensitive to the initial texture in
the range of negative strain paths. By contrast, in the range of positive strain paths, the opposite trend
is observed. In fact, both the shape and the overall level of the predicted FLDs are highly sensitive to
the initial crystallographic texture. To further investigate the influence of the non-Schmid effects on
the ductility limit, we enlarge the analysis by adopting a new crystallographic texture (see Figure 7a),
in order to compare the corresponding FLDs, predicted with and without considering the non-Schmid
effects. The FLDs predicted using this new texture are reported in Figure 7b. The material parameters
used to obtain the predictions of Figure 7b are the same as those used for Figure 6a (except for the
initial crystallographic texture). The conclusion of these new comparisons, associated with the new
crystallographic texture, is the same as that revealed by Figure 6: the non-Schmid effects tend to reduce
the ductility limit for the whole range of strain paths. A more detailed study will be conducted in
future works to further investigate and to analyze the combined influence of the crystallographic
texture and the non-Schmid effects.Materials 2018, 11, x FOR PEER REVIEW  14 of 16 
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5. Concluding Remarks

In the current contribution, we have analyzed the impact of the consideration of the non-Schmid
effects on the mechanical behavior and on the onset of plastic strain localization in BCC polycrystalline
materials. In the proposed model, the non-Schmid effects are accounted for at the single crystal scale
by introducing additional terms in the expression of the resolved shear stress. Three scalar parameters
(a1, a2 and a3) have been used to account for these non-Schmid effects. The ductility limit is predicted by
coupling the full-constraint Taylor scale-transition scheme to the bifurcation theory. The influence of the
non-Schmid effects, through the variation of parameter a1 on the prediction of plastic strain localization
is particularly analyzed. The numerical simulations reveal that the consideration of non-Schmid effects
(a1 6= 0) tends to precipitate the onset of localized necking. The present investigation will be extended
in future works to other multiscale schemes, which are more relevant than the Taylor multiscale scheme,
such as the self-consistent approach and the periodic homogenization technique. An extensive study
will be carried out in future works, which will adopt more elaborate non-Schmid models, to better
analyze the impact of the non-Schmid effects on the prediction of plastic strain localization.
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Appendix A

Slip Systems for the BCC Single Crystals Used in the Non-Schmid Crystal Plasticity Model

For BCC single crystals, the number of crystallographic slip systems is equal to 24:12 slip systems
of the family {110}〈111〉 and 12 slip systems of the family {112}〈111〉. However, attention is focused
here on the {110}〈111〉 slip systems with non-Schmid effects, since the geometry of 1/2〈111〉 screw
dislocations on the {110} planes has been better understood in experiments and atomistic simulations
at low temperatures, which is of particular interest in this work. Each slip system is characterized
by three orthonormal vectors (

→
m

α
,
→
n

α
,
→
n

α

1) in the deformed configuration.
→
m

α
is the vector parallel

to the slip line,
→
n

α
is the vector normal to the slip plane and

→
n

α

1 is the normal to the plane
{

110
}

in

the slip direction zone, which also forms an angle of −60◦ with
→
n

α
. In the intermediate configuration,

these vectors are defined by the following relations:

∀ α = 1, . . . , 24 : ‖→m
α
0 ‖ = ‖→n

α
0 ‖ = ‖→n

α
10‖ = 1 ;

→
m

α
0 .
→
n

α
0 = 0 (A1)

Vectors
→
m

α
0 ,
→
n

α
0 , and

→
n

α
10 are given in Table A1.

Table A1. List of slip systems for a BCC crystallographic structure [28].

α 1 2 3 4 5 6
√

3
→
m

α
0 [111] [111] [111] [111] [111] [111]

√
2
→
n

α
0 [011] [011] [011] [011] [101] [101]

√
2
→
n

α
10 [110] [011] [101] [110] [101] [011]

α 7 8 9 10 11 12
√

3
→
m

α
0 [111] [111] [111] [111] [111] [111]

√
2
→
n

α
0 [101] [101] [110] [110] [110] [110]

√
2
→
n

α
10 [110] [011] [101] [110] [101] [011]
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