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Abstract: A novel metrics termed the ‘wave electromechanical coupling factor’ (WEMCF) is proposed
in this paper, to quantify the coupling strength between the mechanical and electric fields during the
passage of a wave in piezoelectric composites. Two definitions of WEMCF are proposed, leading to
a frequency formula and two energy formulas for the calculation of such a factor. The frequency
formula is naturally consistent with the conventional modal electromechanical coupling factor
(MEMCF) but the implementation is difficult. The energy formulas do not need the complicated wave
matching required in the frequency formula, therefore are suitable for computing. We demonstrated
that the WEMCF based on the energy formula is consistent with the MEMCF, provided that an
appropriate indicator is chosen for the electric energy. In this way, both the theoretical closure and
the computational feasibility are achieved. A numerical tool based on the wave and finite element
method (WFEM) is developed to implement the energy formulas, and it allows the calculation of
WEMCF for complex one-dimensional piezoelectric composites. A reduced model is proposed to
accelerate the computing of the wave modes and the energies. The analytical findings and the reduced
model are numerically validated against two piezoelectric composites with different complexity.
Eventually an application is given, concerning the use of the shunted piezoelectric composite for
vibration isolation. A strong correlation among the WEMCF, the geometric parameters and the energy
transmission loss are observed. These results confirm that the proposed WEMCF captures the physics
of the electromechanical coupling phenomenon associated with the guided waves, and can be used
to understand, evaluate and design the piezoelectric composites for a variety of applications.

Keywords: guided waves; wave electromechanical coupling factor (WEMCF); piezoelectricity
composites; wave and finite element method; reduced model

1. Introduction

The concept of smart structures provides another promising possibility of solving a variety
of engineering issues, such as vibration control, noise reduction, fault diagnose, wireless sensing,
self powering and so on. Smart structures could be defined as ‘the structures that can sense external
disturbance and respond to that in a desired fashion’ [1]. Generally a smart structure can be implemented
by integrating some ‘smart materials’ that couple at least another field to the mechanical field.
This introduces new design variables to modify or measure the mechanical characteristics. An additional
subsystem can then be designed regarding the new variables so as to have the coupled structural
system work in a desired manner. These smart materials involve electrorheological (ER) materials,
magnetorheological (MR) materials, magnetostrictive materials, electrostrictive materials, shape
memory alloys (SMA), piezoelectric materials and so on. Among them all, the piezoelectric materials
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have the advantages of light-weight, large working frequency range and high power density, therefore
they are undoubtedly the most mature and those with the most applications [2].

Piezoelectric effect that couples the electric and mechanical fields is the corner stone of all the
piezoelectric-based smart structures. It naturally comes into a question that how to quantitatively
describe the ’strength’ of the electromechanical coupling induced by the piezoelectric materials.
The criteria that can measure the converting capability or the coupling strength are termed the
‘electromechanical coupling factors’ (EMCF). In general, there are two scales regarding EMCF. The first
one is the material scale [3]. EMCF in this scale is used to describe the coupling strength or converting
capability of a piezoelectric material under certain uniaxial stress situations. EMCF in this scale is
therefore directly related to the material parameters. For instance for the thickness stretch deformation
(referred to as the ‘13’ mode), the coupling factor k2

31 = d2
13/(εT

33cD
11), where d13, εT

33 and cD
11 are all

material parameters [4]. Likewise, terms k2
33, k2

51 can also be obtained for the longitudinal (the ‘33’ mode)
and torsional (the ‘51’ mode) deformation respectively. These terms are also called static coupling
factors. They allow one to choose an appropriate piezoelectric material before it is manufactured into
certain components. They are especially useful in actuating and sensing [5,6] where a uniaxial tress
field is assumed.

If we consider the host structure and the piezoelectric materials/transducers as a whole,
and concern the dynamic behaviour, the EMCF should be defined in the structural scale. A widely
recognized approach is to define the EMCF k2

d based on natural modes [4,7], by

k2
d =

ω2
r −ω2

a
ω2

r
(1)

where ωr and ωa are the resonance and anti-resonance frequencies in the frequency response fuction
(FRF) of V/Q respectively; V and Q are the voltage and charge of the piezoelectric materials
respectively. Moreover, ωr is also the open-circuit frequency of a mode and ωr is also the short-circuit
modal frequency [8]. Term k2

d is therefore called modal electromechanical coupling factor (MEMCF) [9]
as well. Theoretically speaking, arbitrary deformation of a finite structure can be expressed as the
superposition of the modal deformations, and the modes whose natural frequencies are close to
the considered excitation frequency range will have dominant contribution. In this regard, it is
reasonable to define the EMCF in terms of modes. Please obtaining the MEMCF is very convenient
both experimentally and numerically because only two set of modal analysis results are required.
MEMCF as a metrics in the structural scale has many important applications. A direct application is
the design of modal transducers [8,10], where the MEMCF is used to examine whether the piezoelectric
subsystem is coupled only with the target mode (modal sensor) or it is uncoupled with the target
mode(modal filter). Another application is the passive vibration control. Thomas et al. [9] found,
via closed-form expressions, that the best modal damping induced by the resistor and resistor-inductor
shunts depend only on the MEMCF once the structural parameters remain constant. This indicates
that MEMCF can be used as a criterion to optimize the geometrics of the piezoelectric materials [11,12].

Alternatively, the structural deformation can also be described by the superposition of wave
motions, while natural modes are understood as standing waves induced by the reflection of waves
on the boundaries [13–15]. The wave perception is especially suitable in dealing with high-frequency
or transient vibration problems, where many modes are involved and the resonance behaviour is
less apparent. Many piezoelectric strategies have been proposed based on the wave perception.
For example, the periodically distributed piezoelectric materials with identical shunting circuits are
used to modify the wave properties in the interested frequency band so as to dissipate or localize the
injected energy [16–19]. Moreover, piezoelectric materials are designed as actuators and sensors for
the waves in cylinders [20,21] and plates [22–24] for structural health monitoring (SHM) purpose.

In the wave perception, the EMCF should quantify the coupling strength between the mechanical
and electric fields during the passage of a wave in piezoelectric composites, and in this paper
it is termed the ‘wave electromechanical coupling factor’ (WEMCF) to distinguish itself from
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the aforementioned coupling factors. Only a few works have been devoted to this subject, and
WEMCF is defined by different means. Chen et al. [25] calculated WEMCF by k = (Voc − Vsc)/Vsc

for Rayleigh-type surface acoustic waves in a semi-infinite with alternating piezoelectric and
non-piezoelectric super-lattices, where Voc and Vsc are the group velocity in open-circuit and
short-circuit situation respectively. Fan et al. [26] used the Green’s function method to calculate
the WEMCF for a Lamb wave in a multi-layered plate. The authors [27] defined the WEMCF as the
proportion of the electric energy associated with the block capacitance in elastic energy. We showed
that the WEMCF can be used to decouple the geometric design from the electric design for the
one-dimensional piezoelectric waveguide, and it allows to achieve the desired band gaps by using a
minimum amount of piezoelectric materials.

The existing studies of WEMCF raise two questions: (1) Is the proposed WEMCF consistent with
the MEMCF? and (2) How to build a general numerical tool for the calculation of WEMCF for complex
piezoelectric composites? Since a structural dynamics problem is always possible, at least in principle,
to arrive at the same conclusions by either mode or wave approach (often referred to as ‘wave-mode
duality’ [14,15]), a positive answer should be given of the first question to achieve theoretical closure.
The second question should be addressed so that WEMCF can be used in real engineering applications.

In this paper, we further study the WEMCF for one-dimensional piezoelectric waveguide and
address both the aforementioned questions. In Section 2 we propose a frequency formula to define
the WEMCF. It is difficult to implement but it is naturally consistent with the MEMCF. Then we
propose two energy formulas to approximate the frequency formula. Since the energy formulas
are easier to implement, both the theoretical closure and the computational feasibility are achieved.
To do that, we first outline the wave and finite element method (WFEM) in Section 3, including
the basic procedures and a reduced model applicable for piezoelectric composites. In Section 4 the
energy formulas are discussed in detail, including the definition, demonstration and implementations.
In Section 5 the analytical findings and implementations are validated. It is also shown that the use of
the reduced unit cell model can rapidly and accurately capture the WEMCF. Eventually, an application
concerning the control of energy flow using shunted piezoelectric composite is presented in Section 6,
in order to illustrate the usage of WEMCF.

2. Definitions of WEMCF

It is widely known that the equivalent stiffness of the piezoelectric materials will be changed when
the electrodes are set to the short circuit (SC) or open circuit (OC) statuses. Consequently, a piezoelectric
composite will exhibit different dispersion curves in SC and OC statuses [18], as illustrated in Figure 1.
This inspires us to use the relative difference of the propagating frequencies of OC and SC statues to
define the WEMCF K2

W, as:

K2
W =

ω2
OC −ω2

SC
ω2

SC
(2)

where ωOC and ωSC are the propagating frequencies of the wave in the OC and SC statuses respectively.
This equation is similar to Equation (1) which defines the MEMCF [4,8,28], but the frequencies terms
have different physical means.

Please note that the wave shapes at the border frequencies of a band gap, namely A, B and
C in Figure 1, are also the modal shapes of the piezoelectric composite under certain boundaries
conditions [29]. This fact indicates that the coupling strength of these waves (A, B and C) can be
given either by WEMCF or MEMCF. The WEMCF and MEMCF should give the same value at these
frequencies, because a same deformation should be given a same value of its electromechanical feature,
no matter the deformation is understood as a wave or a mode. In this case the travelling frequencies
of the waves (ωOC and ωSC) are exactly the natural frequencies (ωr and ωa) of the modes. Hence
Equations (1) and (2) yield the same value. This means that WEMCF defined by Equation (2) is
consistence with MEMCF.
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Figure 1. Illustration of dispersion curves for OC and SC status of a piezoelectric waveguide.

Definition of WEMCF by Equation (2) may be reasonable and intuitive. However, there are two
main challenges. The first one is that Equation (2) works only for propagating waves, because band
gaps may have different depth in OC and SC statuses, shown in Figure 1. Consequently it is difficult to
link the evanescent waves between OC and SC, for example in Figure 1 the wave with wavenumber kb
does not have its corresponding wave in the SC case. The second challenge is related to computational
issues. For complex waveguide whose dispersion relations has veering and intersection (examples can
be found in reference [30,31]), it will be difficult to correlate same type of propagating waves from the
dispersion relations at OC and SC statues.

Alternatively, WEMCF can be defined by the fraction of energies at one electrode status:

K2
1 =

We

V
(3)

where We is the electric energy and V is the mechanical energy. This definition is applicable for both
evanescent and propagating waves. It only requires the dispersion curves at one situation so no efforts
are needed to correlate the waves between OC and SC. Wave shapes have to be known to calculate the
energies We and V. In the following sections we will present different ways for the calculation of the
energy terms in Equation (3) based on wave and finite element method (WFEM). The consistency with
MEMCF will be demonstrated and validated.

3. Wave and Finite Element Method (WFEM)

Wave and finite element method (WFEM) [30,32–34] is a general numerical tool widely used to
analyse the free and forced wave propagation in uniform and periodic structures. It requires only
the modelling of the smallest repetitive substructure (termed the unit cell) of the whole structure,
therefore is much faster than the conventional finite element method. WFEM yields the dispersion
curves of the waves by solving the eigenvalue problem which can be formulated in many different
ways [35]. In this paper, WFEM is developed to compute the required energy terms, and also as a
general representation of the dynamics of the piezoelectric composite. The properties of the wave
shapes derived from WFEM will be used later to demonstrate the consistency between the WEMCF
and MEMCF. For these reasons we briefly outline the basic procedure of WFEM. A reduce model for
the piezoelectric composite proposed earlier by the authors [31,36] is also outlined, and it will be used
to accelerate the computing the energy terms.
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3.1. Basic Procedure

The first step of WFEM is to model one unit cell by finite element method. Any existing FEM
package can be used, and in this paper ANSYS 17 is applied to generate the mesh and the required
matrices of the unit cell modelling. All the following-up procedures of WFEM, including the solving
of the eigenvalue problem, the reduced model, the post-processing are implemented by an in-house
Python code developed by the authors. The Python code is validated against the analytical and full
finite element method in many applications [30,31,36]. In absence of any external loads, the dynamic
equations of a unit cell in the periodic piezoelectric structure write

M


q̈L

q̈R

q̈I

q̈E

+ K


qL

qR

qI

qE

 =


fL

fR

0
0

 (4)

where q is the displacement vector and f the force vector; K and M denote the generalized stiffness and
mass matrices respectively; Subscripts L, R, I and E respectively refer to the left-side, right-side and
internal mechanical Degree-of-freedoms (DOFs) and the electric voltage DOFs; A dot means derivation
with respect to time t. The terms are also illustrated in Figure 2.

Figure 2. Illustration of the unit cells in a piezoelectric waveguide.

Specifically, the generalized mass matrix has the form of

M =


MLL MLR MLI 0
MT

LR MRR MRI 0
MT

LI MT
RI MII 0

0 0 0 0

 (5)

and the generalized stiffness matrix K writes

K =

[
G P
PT −Cp − Y

]
=


GLL GLR GLI PLE

GT
LR GRR GRI PRE

GT
LI GT

RI GII PIE

PT
LE PT

RE PT
IE −Cp − Y

 (6)
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where G and P are the mechanical stiffness and piezoelectric matrices respectively, Cp the intrinsic
capacitance matrix and Y external electric impedance. More details about the finite element model of a
piezoelectric structure can be found in Benjeddou’s review [37].

The second step of WFEM is taking into account the periodicity. According to the Bloch theory,
the wave of the form ejωt−kx that travels in the periodic structure should satisfy the condition

qR = λqL (7)

where λ = e−jk∆ describes the amplitude and phase change when the wave propagates from the left
side to the right side of a unit cell. k is the wavenumber and ∆ is the length of the unit cell along the
propagation (periodicity) direction. Additionally, the equilibrium between the adjacent cells implies

fR = −λfL (8)

Then the aim of the wave modal analysis is to find q =
(

qT
L qT

R qT
I qT

E

)T
associated with

ω and k to satisfy Equations (4), (7) and (8) at the same time.
To solve these equations, we can fix ω, and search for k and q. At angular frequency ω,

the dynamic equation of a unit cell writes

(−ω2M + K)q = Hq = f (9)

After condensing all the internal DOFs at frequency ω, it gives[
DLL DLR

DRL DRR

](
qL

qR

)
=

(
fL

fR

)
(10)

where [
DLL DLR

DRL DRR

]
=

[
HLL HLR

KH
LR HRR

]
−
[

HLI HLE

HRI HRE

] [
HII HIE

HT
EI HEE

]−1 [
HLI HLE

HRI HRE

]T

(11)

Introducing condition (7) and (8) into Equation (10), and eliminating fL and fR, it comes to the
following eigenvalue problem([

0 I
−DRL −DRR

]
− λ

[
I 0

DLL DLR

])(
qL

qR

)
= 0 (12)

Eigenvalue problem (12) yields all the wavenumbers and associated deformations (termed wave
shape) that can occur in the waveguide at the given frequency. Repeating the calculation in different
frequencies the dispersion curves can be obtained. The required energy terms in (3) can be calculated
from the wave shapes, and this will be further discussed in Section 4.1.

3.2. Reduced Model for the Piezoelectric Composites

Though WFEM is more efficient that the conventional finite element method in terms of
wave-dispersion and forced response analysis at high frequencies, it also requires long computational
time if the internal DOFs are enormous. The main reason is that in Equation (11), a matrix inverse is
required at each frequency. The computational efficiency significantly decreases with the increase of
matrix dimension. This corresponds to the situation where the waveguide has complicate configuration
on each unit cell. In this paper, the computing of energies are required as shown in (3), this amplifies
the computational cost. To accelerate the computing, we employ the reduce model proposed by the
authors [31,36] because it is proved applicable for piezoelectric structures.
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First, we define the transformation relation

q =


qL

qR

qI

qE

 =


I 0 0 0
0 I 0 0

−K−1
II KIL −K−1

II KIR Ψ −K−1
II KIE

0 0 0 I




qL

qR

y
qE

 = Tcqc (13)

where Ψ =
[

ψ1 ψ2 · · · ψl

]
, and ψk is the kth natural mode of the unit cell with qL = qR = qE = 0

and the corresponding natural frequencies is ωk. Namely, ψk and ωk with k = 1, 2, · · · , l are obtained as
the eigenvectors and eigenvalues of (

KII −ω2MII

)
ψ = 0 (14)

Only l modes are kept in Ψ, and the number is less than that of qI. The criterion for the selection
of the retained modes is ωk < 5ωm where ωm is the maximum excitation frequency to be considered.
After introducing Equation (13) into Equation (4), the dynamic equations of a unit cell become:

M̃


q̈L

q̈R

ÿ
q̈E

+ K̃


qL

qR

y
qE

 =


fL

fR

0
0

 (15)

where
M̃ = TT

c MTc (16)

K̃ = TT
c KTc (17)

After these operations, the internal mechanical DOFs are transformed from qI to y, and the
dimension of y is much smaller than qI. In this way, the computing of Equation (11) is accelerated.
Moreover, the technique also reduces the size the of wave shape, this is especially useful for the
computing of the energies as it will be shown in Section 5.

4. Energy Formulas of WEMCF

4.1. Two Energy Formulas

Suppose a propagating wave exists in the OC status with wave shape φOC =
(

φT
L φT

R φT
I φT

E

)T
,

wavenumber k and frequency ωOC. Two specific energy formulas of Equation (3) are proposed, as

K2
1 f =

Wfree
V

(18)

and
K2

1b =
Wblock

V
(19)

where V is the mechanical potential energy, Wfree is the electric potential energy stored in the free
intrinsic capacitance (the capacitance when imposing fL = fR = fI = 0) and Wblock is the electric
potential energy stored in the block capacitance Cp. These energy terms can be obtained by the
waveshapes and matrices of the unit cell:

V = (φ∗OC)
HKφ∗OC (20)

Wfree = φH
E

(
Cp + PTG−1P

)
φE (21)

Wblock = φH
E CpφE (22)
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where φ∗OC =
(

φT
L φT

R φT
I 0

)T
for the simplification of equations. Both K2

1 f and K2
1b are the

approximations of K2
W based on different assumptions. The demonstrations are given as follows.

4.2. Demonstrations

4.2.1. Relationship between the Wavenumber and Wave Shape

Periodic conditions in Equations (7) and (8) can be rewritten into matrix forms, as

q =


qL

qR

qI

qE

 =


I 0 0

λI 0 0
0 I 0
0 0 I


 qL

qI

qE

 = Tbq̂ (23)

and

I λ−1I 0 0
0 0 I 0
0 0 0 I




fL

fR

fI

fE

 = Tef =

 0
0
0

 (24)

Introducing these two transformations to Equation (4), by per-multiplying Te and multiplying Tb
at both sides of the equation, we have

−ω2M̂q̂ + K̂q̂ = 0 (25)

where
M̂ = TeMTb (26)

K̂ = TeKTb (27)

This shows that the wave shape in the form of q̂ =
(

qT
L qT

I qT
E

)T
is also the eigenvector

of Equation (25), and its associated eigenvalue is ω2 where ω is the propagating frequency of the
wave at wavenumber k. In practice Equation (25) provides another mean to calculate the dispersion
curves of the waves [35], sometimes termed the ‘direct form’ [38]. Here we use these equations in the
demonstration as useful properties between wave modal shape and the corresponding wavenumber.

For a propagating wave, the wavenumber k is a real number therefore λ is a complex value with
amplitude 1. Consequently Tb in Equation (23) is the conjugate transpose of Te in Equation (24), namely

Tb = TH
e (28)

Introducing the OC eigenvector q̂ = φ̂OC =
(

φT
L φT

I φT
E

)T
into Equation (25) and multiplying

both sides of the equation by φ̂H
OC, it gives

ω2
OC =

φ̂H
OCK̂φ̂OC

φ̂H
OCM̂φ̂OC

(29)

and according to Equations (26)–(28), we know

φ̂H
OCK̂φ̂OC = φH

OCKφOC

φ̂H
OCM̂φ̂OC = φH

OCMφOC

leading to

ω2
OC =

φ̂H
OCK̂φ̂OC

φ̂H
OCM̂φ̂OC

=
φH

OCKφOC

φH
OCMφOC

(30)



Materials 2018, 11, 1406 9 of 21

This means that once the wave shape is known, we will also know the associated wavenumber.
Equation (30) shows such a relation in OC status, later we will also do this in SC status. However, we
will not use the ‘real’ SC wave shape to calculate SC propagating frequency but use the information
in OC status to have a good guess of the SC wave shape and use it to estimate the SC propagating
frequency.

4.2.2. Demonstration of Energy Formula K2
1b

For SC situation, if we assume that mechanical deformation under a same wavenumber k remains
the same, namely

φSC,1 =
(

φT
L φT

R φT
I 0

)T
(31)

and introduce φ̂SC,1 =
(

φT
L φT

I 0
)T

into Equation (25) and multiplying both sides of the equation

by φ̂H
SC,1, it gives

ω2
SC,1 =

φ̂H
SC,1K̂φ̂SC,1

φ̂H
SC,1M̂φ̂SC,1

=
φH

SC,1KφSC,1

φH
SC,1MφSC,1

(32)

where ωSC,1 is an approximated frequency for the SC case. Please note that M matrix has zero terms in
the lines correspond to the electric DOFs, shown in Equation (5), it makes

φH
OCMφOC = φH

SC,1MφSC,1 (33)

According to Equations (6) and (31), there is

φH
OCKφOC = φH

SC,1KφSC,1 + φH
E CpφE (34)

Introducing Equations (30) and (32) into (2) and using (33) and (34), we obtain

ω2
OC −ω2

SC,1

ω2
SC,1

=
φH

E CpφE

(φ∗OC)
HGφ∗OC

(35)

The right-hand-side of Equation (35) is exactly the same as Equation (19). The left side of
Equation (35) is an approximation of Equation (2). In this regard, we show that

K2
W ≈ K2

1b (36)

which means that K2
1b is an approximation of K2

W with the assumption (31).

4.2.3. Demonstration of Energy Formula K2
1f

The core of the demonstration in the previous section is to guess the SC wave shape based on the
OC wave shape, and it was assumed that the mechanical deformation under a same wavenumber k
remains the same in the SC and OC situations. More accurately, we can remove the static contribution
of the OC voltage from the mechanical field so as to approximate the SC wave shape φSC,2. Namely,

φSC,2 = φOC −
(

G−1PφE

φE

)

= φSC,1 −
(

G−1PφE

0

) (37)

(38)

Similarly, the following statement holds
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ω2
SC,2 =

φ̂H
SC,2K̂φ̂SC,2

φ̂H
SC,2M̂φ̂SC,2

=
φH

SC,2KφSC,2

φH
SC,2MφSC,2

(39)

and with the fact that

φH
OCKφOC = φH

SC,2KφSC,2 + φH
E

(
Cp + PTG−1P

)
φE (40)

we can give another approximation of K2
1, as

ω2
OC −ω2

SC,2

ω2
SC,2

=
φH

E
(
Cp + PTG−1P

)
φE

(φ∗OC)
HGφ∗OC

(41)

Comparing this Equation with Equations (2) and (18), it leads to

K2
W ≈ K2

1 f (42)

which means that K2
1 f is also an approximation of K2

W with the assumption (38).

4.3. Implementations

We proposed three different ways to calculate WEMCF: one frequency formula (2) and two energy
formulas (18) and (19). Since the WFEM can be implemented by the full or reduced models, there are
even more paths to implement WEMCF, as shown in Figure 3. For the calculation of K2

W, there are two
ways to calculate the required SC and OC frequencies. For the K2

1f and K2
1b that are based on energy

terms, the wave shapes are required. To do that three paths are possible: the full shapes obtained by
full WFEM which is the slowest, the full shapes obtained by reduced WFEM and the reduced shapes
obtained by reduced WFEM. In combine there are 8 different ways to implement WFEM: 3 for K2

1f,
3 for K2

1b and another 2 for K2
W. In the next section we will examine the efficiency and accuracy of the

implementations, and finally give the best path.

Figure 3. Illustration of different paths for the calculation of WEMCF in the framework of WFEM.
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5. Validations

5.1. Validation of the Implementations

As mentioned, the consistency of WEMCF with MEMCF is strongly desired, and K2
W is consistent

with MEMCF. Therefore theK2
W calculated by full WFEM is regarded as the reference. The piezoelectric

waveguide with unit cell A shown in Figure 4a is considered. The mesh quality of these models are
verified by the forced response analysis [31]. The host material is steel without damping, with a
Young’s modulus of E = 2.11× 1011 Pa, a Poisson’s ratio of 0.3 and a density of 7.8× 103 kg/m3.
The used piezoelectric material is PZT4 whose material parameters are listed in the Appendix A.
The WEMCF for the z-transverse wave from 2× 103 Hz to 1× 104 Hz is computed through all 8 paths
listed in Figure 3, and the highlighted results are compared in Figure 5. The main observation is that
all 3 paths for K2

1b have significant errors, even though the overall tendencies are the same as the
reference. The other 5 paths all return acceptable results with relative error less than 3%. This may due
to the fact that assumption (38) is more precise than (31).

(a) (b) (c)

Figure 4. Unit cells of the piezoelectric waveguides: (a) unit cell A; (b) unit cell B which is a
non-symmetric way of choosing the unit cell for the infinite periodic structure with unit cell A;
(c) unit cell C which has longer PZT patches. The Piezoelectric materials are polarized along the z
axis, and the electrodes fully cover the surfaces parallel to the x-y plane (orthogonal to the polarized
direction). The program code used to generate the Finite Element models in ANSYS can be found in the
Supplementary Files.

Figure 5. Comparison of WEMCF calculated by using: full WFEM with KW (labelled by ‘Reference’),
full WFEM with K1b (labelled by ‘using Cblock’), full WFEM with K1f (labelled by ‘using Cfree’) and
reduced waveshape with K1f (labelled by ‘using Cfree (reduced)’).
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A complete dispersion curves and WEMCF results for the piezoelectric periodic structure with
unit cell A is shown in Figure 6. It is shown that the z-axis flexural wave (marked by number 0) has the
most significant electromechanical coupling. Weaker WEMCF is observed for the longitudinal wave (3).
No coupling effects are reported for the torsional (2) and y-axis flexural waves (1). These conclusions
can be acknowledged by the geometric configuration of the unit cell and engineering common sense.
It is interesting to see that the largest and lowest values emerge at the border frequencies of the band
gaps. The wave shapes of these waves are presented in Figure 7. The symmetric wave shapes generates
different kind of charges on the electrode, cancelling each other, leading to a very low WEMCF. On the
contrary, anti-symmetric shapes always generate same kind of charges hence maximize the WEMCF.

Figure 6. Dispersion curves and WEMCF for the piezoelectric waveguide with unit cell A: only wave 0
(z transverse) and 3 (longitudinal) have significant values.

(a) (b) (c) (d)

Figure 7. Waveshape of wave 0 of unit cell A at the border frequencies of the band gaps: (a) 11.634 kHz,
low WEMCF; (b) 12.556 kHz, high WEMCF; (c) 46.475 kHz, low WEMCF; (d) 50.077 kHz, high WEMCF.

As discussed, among all the valid paths, the ones use K2
W are difficult to be programmed for

general cases. There remains 3 valid paths for K2
1f: (1) using full shapes obtained from the full WFEM;

(2) using full shapes obtained from the reduced WFEM; (3) using the reduced wave shapes. The CPU
time for obtaining the full dispersion characteristics with WFEM of unit cell A are compared in Figure 8.
It shows that the post-processing for WEMCF for the full WFEM is a heavy task, and the CPU time is
nearly 3 times of the free-wave analysis. While the reduced unit cell model is used, the computing time
for WEMCF is reduced even when using the full wave shapes. The CPU time has the same magnitude
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as the free-wave analysis in this case, because the reduced model can accelerate the mapping from the
cross-section DOFs to the internal DOFs by avoiding the matrix inverse. Only minor additional time
is required when reduced shapes are used to compute the energy terms for WEMCF, it reduces the
post-processing by 99% in comparison to the full WFEM.

Figure 8. CPU time for the full dispersion characteristics with WFEM of unit cell A by the energy
formula K2

1f where the energies are calculated by: (1) using full shapes obtained from full WFEM;
(2) using full shapes obtained from reduced WFEM; (3) using reduced shapes. The label ’Wave selection
and matching’ refers to the standard post-processing of the WFEM results in order to identify the same
type of wave among different frequencies [36], not the matching between the results between the OC
and SC status as required for computing the frequency formula of WEMCF.

The infinite periodic structure with unit cell A can also be represented by an unsymmetrical unit
cell B, shown in Figure 4b. As discussed in the literature [39], the dispersion curves should be the
same as unit cell A. We also found that the WEMCF results remain the same as well. The minimal and
maximal WEMCF still happen at the border frequencies of band gaps. While using the unsymmetrical
unit cell, the wave shape of a unit cell is no longer symmetric, but the deformation on the PZT patches
are still symmetric or anti-symmetric, leading to zero or maximum WEMCF. To make the paper more
concise, the results associated with unit cell B are not presented.

Finally, we analyze the WEMCF of PZT waveguide with unit cell C, shown in Figure 4c. The unit
cell has the same length as unit cell A and B but with longer PZT patches. The results are shown
in Figure 9, where we observe a better WEMCF in lower frequencies than higher ones. This can be
explained by checking the wave shapes shown in Figure 10. It can be seen that in higher frequencies
the charges generated by the deformation will start to cancel each other. The comparison between unit
cell A and C also acknowledges the engineering common sense that long PZT path works poorly in
high frequencies.
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Figure 9. Dispersion curves and WEMCF for the piezoelectric waveguide with unit cell C.

(a) (b)

Figure 10. Waveshape of wave 0 of unit cell C: (a) at the first propagating zone; (b) at the second
propagating zone.

5.2. Validation against a Thin-Wall Piezoelectric Structure

In the previous sections, we show that K2
1f is a proper way to define the WEMCF because

it is a good approximation of the K2
W which is consistent with MEMCF. Using the reduced wave

shape associated with the reduced model in WFEM to compute the required energies is a very
efficient implementation towards K2

1f, as marked in Figure 3. In this section, we use a more complex
piezoelectric structure to further examine such findings.

The considered thin-wall structure is shown in Figure 11a, with mesh quality verified by the
forced response analysis [36]. Piezoelectric patches are periodically bonded and for each unit cell there
are two PZT patches. The unit cell is then modeled by FEM, and for one single unit cell, the overall
number of DOFs is 1896, with 336 on the left and right side, 1558 on the internal mechanical part and 2
on the electric part. The geometric parameters are also labelled on the figure by international units.
The host and piezoelectric materials are the same as used in the previous section.

The dispersion curves in OC status are calculated from 0 to 2000 Hz by the full unit cell model,
and the positive-going propagating waves are recognized and shown in Figure 11b. To obtain K2

W
by definition, another calculation with SC status should be conducted, and the waves should be
matched between OC and SC results. This is very difficult to programme as a general numerical tool.
Here we select 3 waves for comparison, including both low-order (wave 0) and high-order waves
(waves 4 and 5), and their K2

W results are computed by manually matching the waves. The K2
1f results
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are computed by the reduced shapes associated with the reduced model as recommended in the
previous section by the in-house Python code. The comparison of the results are shown in Figure 12
where a very good agreement is observed. The results acknowledge the statement that K2

1f is a good
approximation of K2

W and therefore consistent with MEMCF. The selected wave shapes are illustrated
in Figure 13. The results verifies the use of WEMCF (K2

1f) for complex waveguides where complex
wave shapes exist.

(a) (b)

Figure 11. The unit cell of the thin-wall piezoelectric structure (a) and its dispersion curves (b).
The program code used to generate the Finite Element model in ANSYS can be found in the
Supplementary Files.

Figure 12. The comparison of WEMCF calculated by the frequency formulaK2
W and the energy formula

K2
1f. Waves 0, 4 and 5 are selected from the full dispersion curves in Figure 11b. The K2

1f is calculated
by the reduced wave shapes as recommended in the last section.
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(a) (b) (c)

Figure 13. Wave shapes of the at 1000 Hz: (a) wave 0; (b) wave 4; (c) wave 5.

6. Application: Designing the Resistive PZT Waveguide

To illustrate the usage of the WEMCF, let us consider a built-up structure constructed by bonding
2N groups of co-located piezoelectric patches onto a uniform host structure. N groups of piezoelectric
patches are periodically distributed at the right side of the excitation while N other groups are located
on the other side. The structure is infinite both to the left and right side. The FEM/WFEM hybrid
method [31] can be used to analyse the energy flow and forced response. To do that, this structure is
divided into five parts: one nearfield part, two piezoelectric waveguides and two uniform far-field
waveguides, as shown in Figure 14.

Figure 14. The considered built-up structure and the dividing of substructures.

Here we fix N = 21. the external forces are applied in uz DOF of all the nodes that are located
in the origin cross-section of the nearfield (x = 0) with an amplitude of 1 N. The energy flow can be
attenuated by shunting resistors to the PZT patches and this effects can be quantified by the power
Transmission Loss (TL):

TL = 10log10

(
Pin

Pout

)
(43)

We conduct the parametric studies of TL with respect to the frequency and resistance.
PZT waveguides with unit cell A and C are considered respectively, and the results are shown in
Figure 15. It can be seen that the best TL and the associated resistance vary with frequency. Results also
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indicate some correlation between the best TL and the WEMCF: unit cell A has a better WEMCF in the
second propagating zone; and the best TL is larger in the second propagating zone than in the first
one, shown in Figure 15a; unit cell C has better WEMCF in the first propagating zone than the second,
and a lower best TL can be observed in higher frequencies.

(a) (b)

Figure 15. Parametric study of power transmission loss with respect to frequency and resistance, when
the piezoelectric waveguides use: (a) unit cell A; (b) unit cell C.

To illustrate this correlation more clearly, we plot the best TL with respect to the frequency when
using unit cells A and C in Figure 16, in association with the WEMCF of wave 0 of unit cell A and C.
In the first propagating zone, we can see that unit cell A has stronger WEMCF than C, and the best TL
when using A is better than C. In the second propagating zone, we can see that unit cell A has weaker
WEMCF than C, and the best TL when using A is weaker than C.

Figure 16. The best TL and WEMCF with respect to the frequency for PZT waveguide with unit cell A
and unit cell C.

This correlation between WEMCF and best TL allows to compare configurations of unit cell
without performing the forced response and energy analysis of the built-up structure. It means the
design for the geometric and electric parameters can be done separately: first we determine the



Materials 2018, 11, 1406 18 of 21

geometric parameters so as to achieve the best WEMCF, only by free-wave analysis; then we only
consider the unit cell with optimized geometrics to determine the electric parameters so as to achieve
the best power attenuation.

7. Conclusions

In this paper, we study the factor that allows to quantify the coupling strength between the
mechanical and electric fields during the passage of a wave in piezoelectric composites, termed the
wave electromechanical coupling factor (WEMCF). We show that to maintain the consistency with
the classical modal electromechanical coupling factor (MEMCF), the WEMCF should also be defined
by the frequency difference of the OC and SC statues. However, this definition has difficulties in
calculation for general piezoelectric waveguide for the need of computing dispersion curves twice and
matching waves between SC and OC statuses.

To address this challenge, an effective energy formula for WEMCF is proposed, defining the
WEMCF as the percentage of electric energy stored in the free intrinsic capacitance over the mechanical
energy during the passage of the wave. This energy formula is a good approximation to the frequency
formula, and we only need to analyze the dispersion curves once and do not need to match waves
from different electrode statuses.

The proposed energy formula can be calculated as a post-processing of the wave and finite
element method. We recommend the use of reduced wave shapes for a fast calculation of WEMCF.
It reduces the CPU time for computing WEMCF of the example structure to less than 1%, and it works
for complex structures. Please note that the method can be used in any frequency ranges, provided
that an appropriate FE model for the unit cell is established.

An application is given, concerning the energy flow attenuation in a built-up structure by resistive
PZT shunts. We show that the WEMCF is strongly correlated with the best energy transmission loss.
This provides more insights to understand the waveguide performance and it also allows the design
of the geometric and electric parameters to be done separately.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/8/1406/
s1: File ‘APDL_UC_A.txt’—Code in ANSYS parametric design language (APDL) for unit cell A used in the
paper. File APDL_UC_B.txt—Code in APDL for unit cell B. File ‘APDL_UC_C.txt’—Code in APDL for unit cell C.
File ‘APDL_UC_Thin_wall.txt’—Code in APDL for the piezoelectric thin-wall structure.
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The following abbreviations are used in this manuscript:

EMCF electromechanical coupling factor
WEMCF wave electromechanical coupling factor
MEMCF modal electromechanical coupling factor
WFEM wave and finite element method
FRF frequency response function
TL transmission loss
OC open circuit
SC short circuit
DOF Degree-of-freedom
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Appendix A. Material Properties of the Piezoelectric Material (PZT4)

Mass density: ρ = 7500 kg/m3

Material stiffness matrix evaluated at constant electric field:

[cE] = 1010 ×



13.2 7.1 7.3
7.1 13.9 7.3
7.3 7.3 11.5

2.6
2.6

3.1


Pa

Permittivity matrix evaluated at constant strain:

[εS] =

804.6ε0

804.6ε0

659.7ε0


where ε0 = 8.85× 10−12 C/(V ·m).

Piezoelectric stress coupling matrix:

[e] =



4.1
4.1
−14.1

−10.5
−10.5


N/(V ·m)
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