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Abstract: This paper illustrates how the penetration of electromagnetic waves in lossy media
strongly depends on the waveform and not only on the media involved. In particular, the so-called
inhomogeneous plane waves are compared against homogeneous plane waves illustrating how the
first ones can generate deep penetration effects. Moreover, the paper provides examples showing how
such waves may be practically generated. The approach taken here is analytical and it concentrates
on the deep penetration conditions obtained by means of incident inhomogeneous plane waves
incoming from a lossless medium and impinging on a lossy medium. Both conditions and constraints
that the waveforms need to possess to achieve deep penetration are analysed. Some results are
finally validated through numerical computations. The theory presented here is of interest in view of
a practical implementation of the deep penetration effect.

Keywords: lossy media; deep penetration; electromagnetic propagation in absorbing media;
inhomogeneous waves; leaky waves

1. Introduction

The achievement of electromagnetic deep penetration is of extreme importance in many
applications, e.g., detection of buried or immersed objects, information transmission in lossy media,
material analysis and microscopy, and interaction with biological tissues. A variety of techniques are
commonly employed to improve the penetration, depending on the field of application, which, in turn,
is strongly dependent on both the frequencies and the media involved. Typical examples employed
in the literature span from antenna optimisation techniques [1,2] to the appropriate use of coupling
liquids [3]; sometimes, the two approaches are combined, e.g., the case reported in [4] where the bolus
medium is also chosen as dielectric for the antenna to improve the performances. Often, to improve
the penetration, it is necessary to reduce the frequency, and this comes with undesired effects such as
loss of resolution in imaging applications.

An alternative approach may consist of improving penetration by designing structures able
to generate inhomogeneous plane waves with specific properties that will be discussed here.
This approach could lead to an increase in penetration without reducing frequency, and, consequently,
resolution [5,6]. Based on the preliminary results presented in [7], the analysis performed in this paper
provides a complete description of the deep penetration phenomenon by means of inhomogeneous
plane waves at the planar boundary between a lossless medium and a lossy one. The paper starts
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with a theoretical review of the physical problem, and, then, in the results section, new findings are
illustrated: a unique identification of the inhomogeneous-wave solutions which can exhibit deep
penetration is provided in the first subsection, distinguishing them from the ones that can only
experience attenuation in lossy media. In the second subsection, a specific attention is given to the
determination of the requisites that media have to possess in order to allow deep penetration solutions,
combined with the properties that the incident wave has to exhibit in terms of the amplitudes of
the attenuation and phase vectors. Finally, conditions for deeper penetration, i.e., negative normal
component of the transmitted attenuation vector in the lossy medium, will be discussed in the final
subsection. A brief discussion on the results found follows. The objective of this study is to provide
the complete theoretical and analytical details needed to drive the experimental verification of this
important phenomenon and, possibly, to design practical antennas, for instance Leaky-Wave Antennas
(LWAs) [8], capable of generating the suitable field distributions.

2. Theoretical Background

2.1. Problem Definition

The problem analyzed in this paper is illustrated in Figure 1, where the incidence of an
inhomogeneous plane wave on a plane separation surface between two media is considered. (The xz
plane is heretaken, without loss of generality). The incident wave is incoming from medium 1 and
impinges on the separation surface producing, in general, a reflected wave in medium 1 (not shown in
Figure 1) and a transmitted wave in medium 2.

z

x

Figure 1. Geometry of the problem.

In Figure 1, we suppose both media non-magnetic, homogeneous and isotropic. The medium 1 is
considered lossless, with a real relative permittivity ε1, while the medium 2 dissipative, with a complex
relative permittivity ε2 = ε′2 − jε′′2 = ε′2 − jσ2/(ε0ω), where j is the imaginary unit, ε′2 and ε′′2 are the
real and imaginary part of the complex relative permittivity, respectively, ε0 is the vacuum (absolute)
permittivity and σ2 is the electric conductivity. The (absolute) magnetic permeability of both media is
indicated with µ0 and corresponds to the one of a vacuum.

All plane waves considered are of the form exp [−j (ki · ri −ωt)], where i = 1, 2, ri is the vector
position, and ki is the complex wave vector. The wave vector of the incident wave is expressed as
k1 = β

1
− jα1, where β

1
is the phase vector and α1 is the attenuation vector: in this case, it must be

β
1
⊥ α1, the medium 1 being lossless [9]. Analogously, the wave vector of the medium 2 is defined as

k2 = β
2
− jα2, with β

2
and α2 the relevant phase and attenuation vectors and β

2
6⊥ α2, the medium

2 being lossy. k1 = k0
√

ε1 and k2 = k0
√

ε2 are the wavenumbers of the incident and transmitted
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wave, respectively, with k0 the free-space wavenumber; ξ1 and ζ1 indicate the angles that β
1

and α1,
respectively, form with the normal to the separation surface, and ξ2 and ζ2 the equivalent relevant
angles for β

2
and α2 (see, again, Figure 1). The transmitted wave vector in the lossy medium is always

complex, while ζ2 and ξ2 are real, as follows from the Adler–Chu–Fano formalism [10].

2.2. The Deep Penetration Condition

In the lossy medium 2, defining η2 = |ζ2 − ξ2| < 90◦ as the angle formed by β
2

and α2, it is
possible to represent the amplitude β2 of the phase vector β

2
following Equation (8.14a) of [10], that,

when non-magnetic media are considered, becomes:

β2 =
k0

√
ε′2√

2

√√√√√1 +
(

ε′′2
ε′2 cos η2

)2

+ 1 (1)

The amplitude α2 of α2 is instead described by using Equation (8.14b) in [10] (The right-hand
side of Equation (2) follows from Equations (8) and (9) of [10]), which, in the case of non-magnetic
media, becomes:

α2 =
k0

√
ε′2√

2

√√√√√1 +
(

ε′′2
ε′2 cos η2

)2

− 1

=

σ2
2

√
µ0
ε0

√
1
ε′2√√

1 +
(

ε′′2
ε′2 cos η2

)2
+ 1

< β2

(2)

The penetration depth is commonly defined as the distance, inside a lossy medium, at which the
electric field, or the magnetic field, amplitude reduces of a factor 1/e with respect to its maximum
value at the separation interface. Typically, in the literature, this distance is assumed as δ = 1/α2,
but, clearly, in directions different from the one of the attenuation vector, the penetration assumes
different values. Here, we are interested in the attenuation in the direction orthogonal to the separation
surface between lossless and lossy media and we assume that the transmitted attenuation vector is not,
in general, orthogonal to the interface, i.e., ζ2 6= 0◦. As a consequence, the penetration can be defined
as δ = 1/(α2 cos ζ2). Therefore, the penetration is larger than the one obtained when the incident wave
is homogeneous, i.e., when ζ2 = 0◦.

It is well known that, if α1 = 0, then it must be ζ2 = 0◦, as a direct consequence of the conservation
of the tangential component of the fields [9] (independently from the incidence angle). A typical
example of a plane wave in a lossy medium attenuating normally to the separation surface is shown
in Figure 2a, where Equations (1) and (2) are described through Matlab [11] (MathWorks, Version
R2011b) for the case ξ2 = 45◦ and ζ2 = 0◦. If, instead, an inhomogeneous plane wave impinges on
the separation surface between lossless and lossy media, then there exists a component of α1 tangent
to the separation surface, and therefore ζ2 6= 0◦. A specific example is shown in Figure 2b, where
again Equations (1) and (2) are plotted using Matlab, but this time representing a wave in a lossy
medium propagating with ξ2 = 45◦ and η2 = 45◦, which implies ζ2 = 90◦. The latter result illustrates
the attracting scenario of an electromagnetic field which penetrates with no decay within the lossy
medium, since there is no component of the attenuation vector along the direction normal to the
separation surface and opposing to penetration, α2 being directed along the x-axis.

The incidence from a lossless medium has been treated analytically in [7], finding the condition
that allows for the attenuation vector of the transmitted wave inside the lossy medium to be parallel to
the separation surface. In particular, in [7], the specific condition ζ2 = 90◦ is treated; such a condition
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implies a solution for the transmitted wave equivalent to the one shown in Figure 2b. When the
medium 1 is lossless, ζ2 = 90◦ is met if the amplitude of the incident phase vector β

1
is:

β1 ≥ β1c =
k1√

2

√√√√√1 +

√√√√1 +

[
2 Im

(
k2

2
)

k2
1

]2

(3)

(a) (b)

Figure 2. Plane wave of 1 V amplitude and 1 GHz frequency, propagating in a lossy medium with
permittivity ε = 4ε0, permeability µ = µ0, and σ = 0.005 S/m. A propagation angle of 45◦ with respect
to the plane separation surface is considered here. In both figures, the vertical axis represents the field
amplitude, expressed in V/m, while the other two axes represent the separation surface [m], and the
direction orthogonal to the separation surface [m], respectively. The vertical gradient bar, on the
right-hand side of both figures, associates different colors to different amplitudes of the electric field.
(a) wave in a lossy medium: attenuation vector normal to the separation surface; (b) wave in a lossy
medium: attenuation vector parallel to the separation surface.

As a consequence, the amplitude α1 of the incident attenuation vector α1 is determined,

the medium 1 being known as α1 =
√

β2
1 − k2

1.
The critical incident angle ξ1 = ξc for which Equation (3) is verified is found to be the solution of

the following Equation

β1α1 sin(2ξc) = Im(k2
2) (4)

that, according to the authors in [7], is given by:

ξ1 = ξc =
1
2

γ, with 0 < ξc ≤
π

4
(5)

where γ = arcsin
[
Im(k2

2)/(β1α1)
]
. The larger the β1 is, the smaller is the critical angle ξc for which

ζ2 = 90◦.
In this paper, the deep penetration phenomenon envisioned in [7] will be fully described,

by suitably extending the theory and providing all the needed analytical details.

3. Results

3.1. The Direction of the Attenuation Vector in the Lossless Medium and Its Physical Consequences

In [7], it is simply assumed that the deep penetration phenomenon can be obtained when β
1

and α1
are orthogonal, but no hypothesis is provided around the direction of the vector α1, which theoretically
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can form with β
1

an angle equal to ±90◦, as shown in Figure 3. Here, the discussion on the impact of
the direction of the attenuation vector α1 and the relevant practical implications on how to obtain the
deep penetration will be studied in detail.

The ambiguity on the sign of the angle formed by β
1

and α1 corresponds to an ambiguity in the
direction of the attenuation vector, as shown in Figure 3. We are going to demonstrate that only one
direction of the attenuation vector of the incident wave allows for deep penetration, and specifically
the one corresponding to the angle +90◦ (see α

(1)
1 in Figure 3); the other solution, i.e., relevant to the

angle −90◦ (see α
(2)
1 in Figure 3), produces, instead, an attenuated transmitted wave.

z

x

Figure 3. Proper and improper inhomogeneous waves at the interface between a lossless medium and
a lossy one.

Since the incident inhomogeneous wave can admit α1 = α
(1)
1 and α1 = α

(2)
1 = −α

(1)
1 , the condition

for deep penetration ζ2 = ±90◦ translates either into α2 = α
(1)
2 or into α2 = α

(2)
2 , respectively, as is

shown in Figure 3. With reference to Figure 3, the phase vector β
1

is incoming from the III quadrant
and impinges on the origin of the axes: it follows that the vector β

2
can only be in the I quadrant

due to the conservation of the tangential component of β
1
. In the case illustrated, the angle formed

by α2 and β
2

must be always less than 90◦ (it is β
2
· α2 = ω2µε′′2 ε0/2 > 0), therefore α

(2)
2 can never

be a solution of our problem, the only valid solution is represented by α
(1)
2 . As a consequence, α

(2)
1

can never allow for deep penetration, but it can only admit an attenuated solution with α2 laying
in the second quadrant (again for the conservation of tangential component); on the opposite, the
solution represented by α

(1)
1 guarantees, as predicted, a deep penetration effect, allowing α

(1)
2 as a valid

solution.
We note that the inhomogeneous wave characterized by α

(1)
1 in the III quadrant of Figure 3

corresponds to a field that grows in the direction normal to the separation surface (entering medium
2), while the α

(2)
1 one to a decreasing field. Inhomogeneous waves of the former kind are also known

as improper leaky waves, while those of the latter kind as proper leaky waves [8]. Hence, we conclude
that the deep penetration phenomenon can only be obtained if the impinging inhomogenous wave in
the lossless medium is an improper leaky wave.

As is known, an improper leaky wave violates the Sommerfeld condition [9], but, even though
this condition is violated, such a wave can be produced by a finite source in a limited region of
space. In Figure 4, a simple ray picture of an improper leaky wave launched by a source at x = 0
along the positive x-direction of an open waveguide is shown. The field on the aperture (z = 0)
has the form of a leaky wave, e.g., the y-component of the electric field is Ey(x, 0) = A exp(−jkxx),
where the complex wavenumber of the leaky wave is given by kx = βx − jαx, with βx and αx the
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relevant phase and attenuation constant, respectively [8]. The wave decays exponentially for x → +∞;
however, the leaky-wave field may be dominant on the aperture out to a considerable distance from
the source. In addition, the exact field due to the leaky-wave aperture distribution may be calculated
by using a simple Fourier transform approach in terms of an appropriate plane-wave expansion [8].
This interpretation is coherent with [12], where it is demonstrated that the radiation generated can be
interpreted as the sum of two components: a leaky wave and a space wave, of which the first one is
more relevant close to the source while the other prevails at a large distance from the source. If the
leaky wave is excited strongly, its power is transferred to the space wave and carried to the far field,
and the radiation peak is obtained at an angle close to the propagation angle of that complex wave.

Figure 4. Ray pictures for the physical interpretation of an improper leaky-wave field.

Rays, in Figure 4, indicate the direction of the power flow in the air region, which for
an inhomogeneous plane-wave field is in the direction of the phase vector β

1
, i.e., at an angle

θ0 = tan−1(β1x/β1z) with respect to the z-axis. The separation between the rays indicates the
strength of the field. In particular, closer separation corresponds to a stronger field. A leakage
“shadow boundary” exists at the angle θ0 from the z-axis that separates a “wedge-shaped region”,
i.e., θ0 < θ < 90◦, where the field is similar to that of an inhomogeneous plane wave (improper leaky
wave), from the region defined by 0◦ < θ < θ0, where the field is very weak. In practice, as an observer
moves vertically away from the aperture, e.g., along the red dashed line in Figure 4, the field level
will increase exponentially up to the leakage shadow boundary, and will then decrease very quickly
above this boundary. Therefore, the field from this leaky wave will not increase indefinitely in the
vertical direction, and will not violate the radiation condition at infinity [12,13]. Hence, if the lossy
medium is placed in the wedge-shaped region highlighted in Figure 4, improved penetration can
suitably occur. Hence, the inhomogeneous wave is a model valid to represent physically achievable
waves, as the improper leaky waves in the near field of a LWA, only in a well-defined region of the
space that, in particular, can include the lossy medium, thus allowing for deep penetration.

In conclusion, a monodimensional planar LWA, operating in the improper leaky-wave regime [8]
and posed in medium 1 at a given distance from and on a plane parallel to the separation surface with
the dissipative medium 2, can be suitably used to obtain deep penetration of electromagnetic field in
lossy media, provided that the lossy volume is positioned in the near-field wedge-shaped region of
the LWA.

LWAs promise a deep penetration effect in the near field, therefore they are suitable in all scenarios
in which the penetration needs to be sustained for a limited number of wavelengths, as, for instance,
it was illustrated in [5,6], where LWAs were found to guarantee higher penetration in biomedical
applications such as hyperthermia.

3.2. Complete Set of Conditions for Deep Penetration

The complete set of solutions for Equation (4) in the interval ξ1 ∈ [0, 90◦] is given by:
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ξc1 =
1
2

γ (6)

ξc2 =
π

2
− 1

2
γ (7)

Equation (6) being the one reported in [7]. In this section, both the expressions of ξc in Equations (6)
and (7) will be physically interpreted and it will be shown that the two obtained solutions may not
always imply deep penetration. An accurate analysis of the two media involved will follow, in order
to determine when deep penetration is practically achievable.

The first medium is supposed lossless, therefore if we consider the incident inhomogeneous wave
suitable for obtaining deep penetration (i.e., see α

(1)
1 in Figure 3) and we apply the generalized Snell

laws and the separability condition in the second lossy medium, we obtain the following Equations:

β1 sin ξ1 = β2 sin ξ2 (8)

α1 sin ζ1 = α2 sin ζ2 (9)

β2
2 − α2

2 = Re(k2
2) (10)

2β2α2 cos(ζ2 − ξ2) = Im(k2
2) (11)

Equation (9) can be rewritten exploiting the orthogonality of the phase and attenuation vectors in
the first medium. Since the angle formed by β

1
and α1 is +90◦, from Figure 1, it follows that:

ζ1 =
π

2
+ ξ1 → α1 sin ζ1 = α1 sin

(π

2
+ ξ1

)
= α1 cos ξ1

(12)

Hence, by using (9) and (12), it is:

α1 cos ξ1 = α2 sin ζ2 (13)

and, introducing (8) and (13) into (11), we obtain:

2β2α2 cos ζ2 cos ξ2 + α1β1 sin (2ξ1) = Im(k2
2) (14)

If we look for the critical angle at which the transmitted attenuation vector α2 is parallel to the
interface, we must impose ζ2 = 90◦ in (14), obtaining (4). However, if we look for the critical angle at
which the transmitted phase vector β

2
is parallel to the interface, we must impose ξ2 = 90◦ obtaining,

again, (4). The conditions found classify two very different physical problems, the former represents
deep penetration, while the latter reminds one very closely of the so-called Zenneck wave at the
interface between two lossy media [14], but it differs from the Zenneck wave for the absence of the
total-transmission effect [15]. Here, we need to distinguish the two physical problems, i.e., we must
find a way to understand when a transmitted phase or attenuation vector parallel to the interface
can be obtained, respectively. To ascertain such a condition, we can consider the expressions of the
magnitudes of the transmitted phase and attenuation vectors in medium 2 given in [16]

β2 =

√
|k‖|2 + Re(k2

2) + |k2
‖ − k2

2|
2

(15)

α2 =

√
|k‖|2 − Re(k2

2) + |k2
‖ − k2

2|
2

(16)

where k‖ indicates the component of k1 parallel to the separation interface.
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Let us consider the absolute value under square root: hence, by using (4), i.e., under the hypothesis
that ζ2 = 90◦ or ξ2 = 90◦, we can find the following expression:

|k2
‖ − k2

2| = |β2
1 sin2 ξ1 − α2

1 cos2 ξ1 − Re(k2
2)|

= |Re(k2
‖)− Re(k2

2)|
(17)

Substituting (17) in (15) and (16), we found that the solution ξ2 = 90◦, corresponding to the
transmitted phase vector parallel to the interface, is consistent with Re(k2

‖) ≥ Re(k2
2), while ζ2 = 90◦,

corresponding to the transmitted attenuation vector parallel to the interface, requires Re(k2
‖) < Re(k2

2).
It is now important to understand when the two solutions (6) and (7) are relevant either to the

case ξ2 = 90◦ or ζ2 = 90◦. For the sake of brevity, we will call the solution of the “phase” type when it
is relevant to the case ξ2 = 90◦ and of the “attenuation” type when it is relevant to the case ζ2 = 90◦

(i.e., the deep penetration case).
Let us impose the phase type solution, Re(k2

‖) − Re(k2
2) ≥ 0 in (17), it follows β2

1 sin2 ξ1 −
α2

1 cos2 ξ1 − Re(k2
2) ≥ 0. Then, by applying bisection-trigonometrical formulas, it is:

cos (2ξ1) ≤ −
2Re(k2

2)− k2
1

β2
1 + α2

1
(18)

Furthermore, defining the quantity Ψ as follows:

Ψ =
k2

1
β2

1 + α2
1

(
2

ε′2
ε1
− 1
)

(19)

Equation (18) can be written as:

cos (2ξ1) ≤ −Ψ (20)

Using the two conditions of Equations (6) and (7), (20) can be written in terms of γ, so ξc1 is of
the phase type when cos γ ≤ −Ψ, otherwise it is of the attenuation type; ξc2 is of the phase type if
cos γ ≥ Ψ, otherwise it is of the attenuation type. From such conditions, it is possible to foresee the
type of the solutions in many cases, in fact (recalling that γ ∈ [0, 90◦]): if Ψ < −1, both ξc1 and ξc2

solutions are of the phase type; if −1 ≤ Ψ < 0, the ξc1 type is determined by the value of γ, while ξc2

is of the phase type; if Ψ = 0, ξc1 is of the attenuation type, while ξc2 is of the phase type; if 0 < Ψ ≤ 1,
ξc1 is of the attenuation type, while the ξc2 type is determined by the value of γ; finally, if Ψ > 1,
both the solutions are of the attenuation type.

Important physical constraints for the media involved in the deep penetration phenomenon
can be derived by the previous analysis. Looking at the expression (19), we see that the sign of Ψ is
determined by the ratio of the real parts of the permittivities (note that both medium 1 and medium 2
are assumed non-magnetic). The case in which both the solutions are of the phase type (i.e., Ψ < −1)
requires ε′2 < 0 : this case, which is not uncommon at the optic frequencies (e.g., gold and silver
exhibit ε′2 < 0 values at such frequencies), is not probable at microwave frequencies; therefore, we
can say that, in the case of microwave radiation, adopted in many applications, a deep penetration
solution always exists, while for different frequency ranges may not be guaranteed. Furthermore, we
observe that Ψ ≥ 0 when 2ε′2 ≥ ε1. In this scenario, that is typically met, e.g., the case of incidence
from a vacuum, the solution ξc1 is always of the attenuation type. The behavior of ξc2 depends on the
characteristics of the incident wave and in particular on the parameter β1/k1: in fact, the quantity in
brackets in (19) is multiplied by a function of such parameter that is a decreasing function bounded in
the interval (0, 1). As a consequence, the larger β1/k1 is, the smaller Ψ is, making the determination of
the type of ξc2 dependent on γ even for a high ε′2/ε1 ratio. Numerical results are shown in Figures
5 and 6 for the cases Ψ = 0 and Ψ > 1, respectively. The angles have been computed both with
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a numerical code in Matlab, implementing the analytical expressions of ξ2 and ζ2 as a function of
ξ1 obtained from Equations (8) and (9), and with full-wave simulations on Comsol Multiphysics [17]
(COMSOL Inc., Version 5.3 ), a commercial software based on the Finite-Element Method. In Figure
5, a medium 1, with ε1 = 2, and a medium 2, with ε′2 = 1 and ε′′2 = 0.1, are considered, the phase
vector of the incident wave is β1 = 1.01β1c. ξ2 as a function of ξ1 is illustrated in Figure 5a: the only
solution of phase type appears when ξ1 ≈ 80◦. In Figure 5b, ζ2 as a function of ξ1 is shown: the
only solution of attenuation type appears for ξ1 ≈ 15◦ and after this value ζ2 keeps incrementing
for higher ξ1 values. As a consequence, we observe a wave with ζ2 > 90◦ and a negative normal
component of the attenuation vector in medium 2. Finally, comparing Figure 5a with Figure 5b, it
can be seen that ξ2 grows when ζ2 also is increasing; this means that β2 vector tends to be parallel to
the separation surface when the penetration gets stronger: the combined effects of the two vectors
should therefore be considered in practical applications. Moreover, in Figure 5a, we can note that, for
an amplitude of ξ1 larger than 80◦, the transmitted phase vector angle, ξ2, assumes values larger than
90◦, i.e., the transmitted phase vector is directed backwards in the half-space of origin of the incident
wave; it is important to emphasize that this behaviour does not mean that the energy flow follows
such a direction: in fact, when an inhomogeneous wave in a dissipative medium is considered, the
direction of the energy flow is not the one of the phase vector, as well explained in [10,18].

In Figure 6, a typical scenario is shown instead in which both solutions are of attenuation type, i.e.,
Ψ > 1: in this case, it is ε1 = 2, ε′2 = 5, ε′′2 = 0.1, and β1 = 1.01βc. It can be noticed that the transmitted
phase vector is never parallel to the interface (see Figure 6a) while the transmitted attenuation vector
is parallel to the separation interface for two values of the incidence angle: namely, ξ1 ≈ 10◦ and
ξ1 ≈ 80◦ (see Figure 6b). Also in this second scenario, similarly to what occurs for Ψ = 0 (see Figure 5),
there is a region in which ζ2 assumes values larger than 90◦.

(a) (b)

Figure 5. Values of ζ2 and ξ2 angles in the case of ε1 = 2, ε′2 = 1, ε′′2 = 0.1 and β1 = 1.01β1c. The angles
have been computed by (solid line) a numerical code, implementing the analytical expressions, and by
(circles) full-wave simulations on a commercial software. (a) phase solution, the incidence angle needs
to be clearly larger than 45◦, the propagation vector of the transmitted wave is parallel to the separation
surface for an incidence angle of 80◦; (b) attenuation solution, the incidence angle needs to be clearly
smaller than 45◦, the attenuation vector of the transmitted wave is parallel to the separation surface for
an incidence angle ξ1 ≈ 15◦. (Note that increasing the value of the ξ1 angle, the value of ζ2 becomes
larger than 90◦.)
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(a) (b)

Figure 6. Values of ζ2 and ξ2 angles in the case of ε1 = 2, ε′2 = 5, ε′′2 = 0.1 and β1 = 1.01β1c. The angles
have been computed by (solid line) a numerical code, implementing the analytical expressions, and by
(circles) full-wave simulations on a commercial software. (a) ξ2 as a function of ξ1 is shown here.
A phase solution is never possible, the ξ2 angle is acute for each ξ1 value; (b) ζ2 as a function of ξ1

is shown here. There are two attenuation solutions, one for ξ1 ≈ 10◦ and the other for ξ1 ≈ 80◦;
in particular, one solution is found for ξ1 < 45◦ and the other for ξ1 > 45◦.

3.3. Electromagnetic Penetration around the Deep Penetration Condition

The minimal condition that allows for deep penetration is guaranteed by the angle ζ2 = 90◦.
A stronger penetration can be achieved if the condition:

ζ2 > 90◦ (21)

is satisfied: this condition, as said, was already found in the case of incidence from lossy medium
in [16], and it is also satisfied for some incident angles in Figures 5b and 6b, when the first medium
is lossless.

In the conventional scenario in which the propagating wave attenuates entering in the lossy
medium (ζ2 < 90◦), the components typical to the separation surface of both β

2
and α2 have the same

sign, while (21) shows a case in which those two components must present opposite signs: this means
that the field increases while propagating in the lossy medium. We are going to demonstrate that the
condition of (21) can be obtained by studying the case in which both the incident wave (and in particular
its operating frequency f0 and incident angle ξc) and medium 1 are maintained constant, while the
lossy medium 2 is varied in its ε′′2 value. This in turn is equivalent to consider an inhomogeneous plane
wave designed to impinge on a separation surface with a lossy medium 2 characterised by a relative
permittivity ε2c = ε′2− jε′′2c, so that ζ2 assumes the critical value ζ2c = 90◦; then, such a wave is applied,
with the same incidence angle, to an interface with a lossy medium for which ε′′2 6= ε′′2c. We note that
this scenario has practical applicability because it describes the common case in which an antenna
design is performed and then the antenna is exposed to a medium which does not fully match the one
for which the structure was optimised.

Let us now assume that we met the condition of (3) for ε′′2 = ε′′2c, so that ζ2 = ζ2c. Let us now
decrease the imaginary part ε′′2 of ε2 to a positive value smaller than ε′′2c. This new value of the
imaginary relative permittivity implies different amplitudes and directions for the transmitted phase
and attenuation vectors; let us call with β′2 and α′2 the magnitudes of such vectors and with ξ ′2 and
ζ ′2 the new angles formed by those vectors with the normal to the separation surface, respectively.
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Consequently, the new wave vector in medium 2 is indicated with k′2 and the wave number with k′2.
From (11), having imposed ε′′2 < ε′′2c (i.e., 0 < Im(k′2) < Im(k2)), it follows that:

β2α2 cos
(

ξ2 −
π

2

)
> β′2α′2 cos(ξ ′2 − ζ ′2) (22)

where (22) can be rewritten as follows:

β2α2 sin(ξ2) > β′2α′2 cos(ξ ′2 − ζ ′2) (23)

We considered the hypothesis in which the same wave incoming from a lossless material was
applied to two different media with the same incident angle; therefore, using (8) and (13), the following
system of Equations is obtained: 

β1 sin ξ1 = β2 sin ξ2

α1 sin ζ1 = α2

β1 sin ξ1 = β′2 sin ξ ′2
α1 sin ζ1 = α′2 sin ζ ′2

(24)

Removing β1 and α1 from (24), we have:{
β′2 sin ξ ′2 = β2 sin ξ2

α′2 sin ζ ′2 = α2
(25)

Now, β2 and α2 in (23) can be eliminated, finally having:

β′2 sin(ξ ′2)α
′
2 sin(ζ ′2) > β′2α′2·[
cos(ξ ′2) cos(ζ ′2) + sin(ξ ′2) sin(ζ ′2)

]
Simplifying the expression above, the following is obtained:

cos(ξ ′2) cos(ζ ′2) < 0 (26)

With reference to Figure 3, from (26), it follows that β′
2

and α′2 need to be positioned one on the I
quadrant and the other on the IV quadrant, and in particular they cannot both be in theI quadrant;
the latter would be the solution for an attenuated transmitted wave. Moreover, no assumption was
made on ξ2, apart from the deep penetration condition that forces β′

2
to be in the first quadrant, while it

was posed ζ2 = ζ2c. Hence, it follows that it must be ζ ′2 > ζ2c because the attenuation vector α′2 needs
to be positioned to the right of β′

2
, according to the previous discussion (see Figure 3), in order to allow

for deep penetration.
Considering ε′′2 > ε′′2c would have caused, on the contrary, α′2 and β′

2
both in theI or both in the

IV quadrant: in particular, the continuity of the solution would have requested ζ ′2 < ζ2c, so both α′2
and β′

2
lie in the first quadrant. This solution corresponds to pure attenuation of the transmitted wave

in medium 2. This theoretical expansion permits us to state that, finding a β1c value for which (3) is
satisfied (i.e., ζ2c = 90◦), the deep penetration effect stops occurring (i.e., ζ ′2 < ζ2c) for higher ε′′2 values,
while the wave penetrates in medium 2 with an increasing electric field module for lower ε′′2 values
(i.e., ζ ′2 > ζ2c), thus giving rise to a deeper penetration effect.

This could state e.g., that, in any case, a lossy medium will attenuate the exponential increase of
the field intensity of an improper leaky wave to a certain degree. In case the deep penetration condition
β1 = β1c is met precisely, the exponential increase is completely compensated and the resulting
behaviour is a constant intensity. If the losses in the medium are larger than expected, the exponential
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increase is overcompensated resulting in an exponential decay. If the losses are lower, there is still an
exponential increase but with a reduced rate.

Numerical results, produced by a code in Matlab implementing the analytical expressions of ξ2

and ζ2 as a function of ξ1 obtained from Equations (8) and (9), are shown in Figures 7–9 to prove the
theory just explained. Let us assume a 1.55 µm wavelength, the medium 1 is a vacuum, designing
β1 = β1c to meet the condition ζ2c = 90◦ when the second medium has ε′2 = 1 and ε′′2c = 0.9 with an
angle ξ1c = 45◦. In Figure 7, the transmitted attenuation angle in the case the second medium has
ε′′2 = 0.5 < ε′′2c is shown. We can see that, in this case of increasing the incident angle, the transmitted
attenuation angle reaches values greater than 90◦, i.e., with reference to Figure 3, the transmitted
attenuation vector lies in the IV quadrant. On the other hand, in Figure 8, the case ε′′2 = 0.9 = ε′′2c is
considered. Here, we can see that the transmitted attenuation angle reaches the value 90◦ at the critical
incident angle ξ1c, and it decreases after this maximum value. With reference to Figure 3, it means that
the transmitted attenuation vector can never lie in the IV quadrant, but it is parallel to the interface
when the incident angle is equal to its critical value. Finally, in Figure 9, the case ε′′2 = 1.4 > ε′′2c is
considered. In this case, the transmitted attenuation angle cannot reach the value 90◦, and it always
remains less than such a value. With reference to Figure 3, it means that the transmitted attenuation
vector always lies in the I quadrant.

Figure 7. Transmitted angle of the attenuation vector, ζ2 in degrees, as a function of the incident
angle of the phase vector, ξ1 in degrees. Medium 1 is a vacuum, medium 2 has ε′2 = 1 and ε′′2 = 0.5.
The magnitude of the incident phase vector is the critical one in Equation (3) when ε′2 = 1 and ε′′2c = 0.9.

Figure 8. Transmitted angle of the attenuation vector, ζ2 in degrees, as a function of the incident
angle of the phase vector, ξ1 in degrees. Medium 1 is a vacuum, medium 2 has ε′2 = 1 and ε′′2 = 0.9.
The magnitude of the incident phase vector is the critical one in Equation (3) when ε′2 = 1 and ε′′2c = 0.9.
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Figure 9. Transmitted angle of the attenuation vector, ζ2 in degrees, as a function of the incident
angle of the phase vector, ξ1 in degrees. Medium 1 is a vacuum, medium 2 has ε′2 = 1 and ε′′2 = 1.4.
The magnitude of the incident phase vector is the critical one in Equation (3) when ε′2 = 1 and ε′′2c = 0.9.

4. Discussion

This article presented theoretical results concerning the electromagnetic penetration in lossy
media by means of inhomogeneous plane waves. The physical properties of the wave responsible for
deep penetration have been carefully investigated and the important result that only leaky waves of
the improper type can be used allows for the possible design of suitable leaky-wave radiators.

A complete set of conditions for obtaining deep penetration has been analytically derived in terms
of the physical properties of the involved media, thus permitting for defining the characteristics of
the impinging inhomogeneous wave that optimize this promising phenomenon in different practical
scenarios. A parametric analysis of the electromagnetic propagation in the lossy medium around the
minimal condition that allows for deep penetration showed the limit of the phenomenon as well as the
possibility to obtain even deeper effects, i.e., ζ2 > 90◦. This result can be justified, in a limited region,
also in realistic scenarios in which a finite beam is considered. Let us consider a hypothetical LWA
designed to meet the deep penetration condition for a specific material at the microwave frequencies;
then, let us expose the LWA to a medium having same permittivity but lower conductivity: one would
expect ζ2 > 90◦ because the second medium would offer less resistance to the electromagnetic radiation
compared to the one for which the antenna was designed. Anyway, for certain media, an attempt
to reach a larger value of the angle ζ2 may represent an objective difficult to meet because this
could require a large value of the phase vector generated by the LWA, and, therefore, a challenging
antenna design.

The objective of the described research is to build a solid theoretical support to practical
applications. Results achieved in this paper will therefore be relevant to design practical radiating
structures that can be used to reproduce the deep penetration scenario demonstrated here. An attempt
to achieve the deep penetration condition (ζ2 ≥ 90◦) in a realistic application, i.e., in the case of a finite
beam, will have to employ oblique incidence, as demonstrated here. An intuitive explanation can
be pursued by analysing, again, Figure 4, and imagining a hypothetical observer who moves along
the direction of power flow. Such an observer would not notice the evident increase of field that he
would instead experience moving on different directions, such as the one marked with a red-dashed
line in the figure: it follows that a separation surface orthogonal to the power flow would not allow
deep penetration.

An exhaustive comparison in terms of penetration between leaky waves produced by finite
sources and homogeneous waves is beyond the scope of this paper: anyway, a direct consequence
of the results found here is that, when the deep penetration effect is obtained, a finite leaky wave
guarantees penetration in the near field larger than the one obtained through homogeneous waves
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if the peak of the field amplitude at the interface with the lossy medium for the two waveforms
coincides. This result has important implications in practical applications: employing an opportune
leaky-wave antenna design, a requested amplitude of the electric field may be obtained in the lossy
medium avoiding the boosting of the field at the interface, and reducing consequently the risks of
overheating or burning of the surface layers that are present when more traditional homogeneous
waves are employed. In other cases that may be of interest, e.g., when the peaks of the field amplitude
for the two waveforms coincide in the absence of the lossy medium, but the homogeneous wave
presents an amplitude of the field at the separation surface larger than the one of the leaky wave,
the analysis of various factors, such as the shape of the beams, and the media considered, may be
necessary for determining which waveform produces the larger penetration: in these cases, further
investigations involving realistic antenna structures will have to be performed.

5. Conclusions

The current article presented an analytical study of the deep-penetration effect achievable by
inhomogeneous plane waves. The impact of different materials on the deep-penetration condition
were studied, and suitable finite waveforms, said leaky waves, were also indicated as a way to reach
deep penetration in near field. Some of the limits and potentialities of those waveforms were also
indicated. Future studies will focus on numerical simulations to determine the extent of this effect
reachable by employing realistic and finite structures.
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