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Abstract: A broadband microwave absorbing composite with a multi-scale layered structure is
proposed, in which a reduced graphene oxide (RGO) film sandwiched between two layers of epoxy
glass fiber laminates serves as the frequency selective surface (FSS). RGO films with the desired
electrical properties were synthesized directly by hydrothermal reaction, vacuum filtration, and heat
treatment without subsequent processing. With the novel layer-by-layer structure ranging from micro
to macro scale, the optimized composite exhibits excellent microwave absorption performance with a
total thickness of 3.2 mm. Its reflection coefficient (RC) is less than −10 dB in the entire X and Ku
band, reaching a minimum value of −32 dB at 10.2 GHz and an average RC of −22.8 dB from 8 to
18 GHz. Enhanced microwave absorption of the composites is achieved through the optimization of
layer thickness in the sandwich structure to promote destructive interference. Improved impedance
matching by the introduction of FSS along with the polarization and conduction loss of layered
graphene films also contribute to the increased absorption.

Keywords: microwave absorption; reduced graphene oxide; frequency selective surface;
multilayer structure

1. Introduction

Extensive use of portable electronic instruments and wireless communication has resulted
in a serious electromagnetic (EM) interference pollution. Hence, the design and exploration of
high-absorption, broadband and lightweight microwave materials, are highly desired [1–5]. Microwave
absorbers with multilayer structures that can be easily tuned by tailoring the individual property of
materials, have been extensively studied [6–10]. However, broadening the absorption bandwidth of
reflection coefficient (RC) to under −10 dB always comes with the unavoidable increase in thickness
of the composites [11,12]. It is still a challenging issue in the design of broadband absorbers with
low thickness.

Recently, frequency selective surface (FSS) has been proposed as broadband and thin absorbers
through the equivalent circuit mode [13,14]. Loaded with lumped components like resistors
and capacitors, FSS is usually fabricated with highly conductive materials such as metals with
periodic patterns and specific sheet resistances. However, these materials are usually thick and
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heavy [15]. Reduced graphene oxide (RGO) is a new and promising electromagnetic microwave
absorption material, owing to its unique two-dimensional (2D) structure and remarkable properties,
such as low density, high specific surface area, tunable electrical conductivity and abundant
functional groups [16–19]. The tunability and frequency-independent surface impedance of
graphene at microwave band have been theoretically investigated and proven feasible as a FSS [20].
Huang et al. designed and fabricated graphene FSS patterns on flexible substrates with an effective
absorption bandwidth spanning from 10.4 GHz to 19.7 GHz, which is suitable for radar absorption
applications [21]. However, the fabrication process of graphene FSS based composites is complex,
time-consuming and expensive. Additionally, FSS is usually on the surface of the composite and
directly exposed to the air, which increases the possibility of oxidation and degradation of the
microwave absorption.

In this work, a thin and broadband microwave absorber is designed and fabricated by using
RGO films with layered structures as FSS patterns in a sandwich structure. This design can not only
protect RGO films, but also enhances the microwave absorption by optimizing the effective dielectric
constant and enhancing the microwave loss mechanism. RGO films with tunable properties, as the
unit cell of FSS, have been fabricated by a simple and cost-effective process involving hydrothermal
reaction, vacuum filtration, and heat treatment. Subsequently, they are composited with epoxy glass
fiber dielectric laminates to develop sandwich microwave absorbing structure. Based on the finite
integration simulations, the electrical property of RGO film and the thicknesses of upper and lower
dielectric laminates have been optimized. As a result, these RGO films serving as FSS not only
optimize the effective dielectric constant but also increase the polarization and conduction loss of the
electromagnetic wave. The layer-by-layer structure improves impedance matching, increases macro
heterogeneous interfaces and leads to increased absorption by facilitating destructive interference.
The synergistic effect of these factors results in excellent microwave absorption with a thickness of
3.2 mm over a wide absorption bandwidth ranging from 8–18 GHz. The proposed structure is superior
to most of the reported composites in terms of performance.

2. Simulation and Experiments

2.1. Materials

All chemicals were of analytical grade and used without further purification. Graphene oxide
(GO) was procured from (XF Nano Materials Tech Co., Nanjing, China). The epoxy glass fiber laminate
(FR4) was procured from (Tongwen Rubber and Plastic Co., Shanghai, China).

2.2. Design and Simulation

The design and optimization of the broadband microwave absorber was performed using
the finite integration technique on the CST Microware Studio 2014 package (CST-2015, CST Ltd.,
Darmstadt, Germany), in which unit cell boundary conditions were applied in the x and y directions.
A wave-guide port was used to generate transverse electromagnetic plane waves perpendicularly to
the sample plane, which propagates along the −z direction. The absorption could be calculated as
A(ω) = 1 − T(ω) − R(ω), where R(ω) = |S11|2 and T(ω) = |S21|2 are the reflectance and transmittance
obtained from the frequency dependent complex S-parameters, respectively. Since the backside is
grounded by metallic plane, the transmittance T(ω) is zero. Thus, the absorption can be reduced to
A(ω) = 1 − R(ω). In the simulation, circular RGO films with a diameter of 39 mm (Φ) were selected
as the unit absorber cell. They were arranged in a periodic pattern and sandwiched between two
FR4 dielectric laminates, as illustrated in Figure 1a. The unit cell was set with periodic boundary
conditions in the x–y plane and it was modeled as a resistive sheet with a desired sheet resistance (Rs).
FR4 laminates were selected as the materials for both the upper and lower substrate, taking impedance
match into consideration. The thicknesses of the upper and lower dielectric layers are denoted as
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d1 and d2, respectively. The dielectric constant of FR4 laminate was 4.3 and loss tangent was 0.05 as
shown in Figure 1b,c, which can act as a proper electromagnetic impedance matching material.Materials 2018, 11, x FOR PEER REVIEW  3 of 12 
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Figure 1. (a) Schematic of the fabrication of sandwich-structured microwave absorbing composites;
(b) the dielectric constant of epoxy glass fiber (FR4) laminate; (c) the dielectric loss of FR4 laminate;
(d) the electromagnetic measurement system used in this study; (e) the schematic diagram of the
dielectric property test equipment; (f) the schematic diagram of the electromagnetic reflection coefficient
(RC) test equipment.

2.3. Preparation of RGO Film (Unit Cell of FSS)

In a typical procedure, 0.2 g of graphene oxide (GO) was well-dispersed in 200 mL of ethylene
glycol (EG) (Baishi co. LTD, Tianjing, China) with ultrasonic treatment. The solution was then
transferred into a 250 mL Teflon-lined stainless-steel autoclave and heated at 180 ◦C for 12 h. The RGO
colloidal suspension was obtained after the solution was naturally cooled to room temperature. 10 mL
RGO suspension was prepared and vacuum filtered with polyvinylidene difluoride (PVDF) membranes
(Lesheng filter equipment manufacturing plant, Haining, China) that had a pore size of 0.45 µm and a
diameter of 47 mm. Subsequently, the RGO film was fabricated with a diameter of 39 mm and washed
with ethanol to remove the remaining solvent. To obtain the highly conductive graphene sheets, RGO
films were heat-treated at 600 ◦C, 800 ◦C and 1000 ◦C for 1 h in Ar, marked as RGO-600, RGO-800 and
RGO-1000, respectively. RGO films without heat treatment are denoted as RGO-RT.

2.4. Preparation of the Composite with Sandwich Structure

Sixteen of the as-obtained RGO films were arranged periodically and parallel to the surface of
the upper and lower FR4 laminates, according to the simulation model in Figure 2a. Four kinds of
commercial FR4 laminates with the thicknesses of 1.0 mm, 1.4 mm, 1.8 mm, 2.2 mm and 2.6 mm
were used. The dimensions of the composites were 180 mm × 180 mm × d (the total thickness of the
composite). In case of the RGO composites with full coverage between two dielectric layers, 36 pieces
of RGO square films with dimensions of 30 mm× 30 mm formed the composite, as shown in Figure 2b.

Materials 2018, 11, x FOR PEER REVIEW  3 of 12 

 

Figure. 1 (a) Schematic of the fabrication of sandwich-structured microwave absorbing composites; 
(b) the dielectric constant of epoxy glass fiber (FR4) laminate; (c) the dielectric loss of FR4 laminate; 
(d) the electromagnetic measurement system used in this study; (e) the schematic diagram of the 
dielectric property test equipment; (f) the schematic diagram of the electromagnetic reflection 
coefficient (RC) test equipment. 

2.3. Preparation of RGO Film (Unit Cell of FSS) 

In a typical procedure, 0.2 g of graphene oxide (GO) was well-dispersed in 200 mL of ethylene 
glycol (EG) (Baishi co. LTD, Tianjing, China) with ultrasonic treatment. The solution was then 
transferred into a 250 mL Teflon-lined stainless-steel autoclave and heated at 180 °C for 12 h. The 
RGO colloidal suspension was obtained after the solution was naturally cooled to room temperature. 
10 mL RGO suspension was prepared and vacuum filtered with polyvinylidene difluoride (PVDF) 
membranes (Lesheng filter equipment manufacturing plant, Haining, China) that had a pore size of 
0.45 μm and a diameter of 47 mm. Subsequently, the RGO film was fabricated with a diameter of 39 
mm and washed with ethanol to remove the remaining solvent. To obtain the highly conductive 
graphene sheets, RGO films were heat-treated at 600 °C, 800 °C and 1000 °C for 1 h in Ar, marked as 
RGO-600, RGO-800 and RGO-1000, respectively. RGO films without heat treatment are denoted as 
RGO-RT. 

2.4. Preparation of the Composite with Sandwich Structure 
Sixteen of the as-obtained RGO films were arranged periodically and parallel to the surface of 

the upper and lower FR4 laminates, according to the simulation model in Figure 2a. Four kinds of 
commercial FR4 laminates with the thicknesses of 1.0 mm, 1.4 mm, 1.8 mm, 2.2 mm and 2.6 mm were 
used. The dimensions of the composites were 180 mm × 180 mm × d (the total thickness of the 
composite). In case of the RGO composites with full coverage between two dielectric layers, 36 pieces 
of RGO square films with dimensions of 30 mm × 30 mm formed the composite, as shown in Figure 
2b. 

 
Figure 2. Composites with RGO films in (a) periodic array, (b) full coverage. 

2.5. Characterization and Measurement  

The morphology of the samples were characterized using field emission scanning electron 
microscopy (SEM; S-4700, Hitachi, 15 kV, Tokyo, Japan). The crystal phase was identified by X-ray 

Figure 2. Composites with RGO films in (a) periodic array, (b) full coverage.



Materials 2018, 11, 1771 4 of 12

2.5. Characterization and Measurement

The morphology of the samples were characterized using field emission scanning electron
microscopy (SEM; S-4700, Hitachi, 15 kV, Tokyo, Japan). The crystal phase was identified by X-ray
diffraction (XRD, D8 Avance, Bruker, Karlsruhe, Germany) using Cu Kα (λ = 1.54 Å) radiation (40 kV,
40 mA) in the range of 5–90◦ with a step scan of 0.01◦ per step. Raman spectra were acquired using a
He-Ne laser (RMS; Renishaw, London, UK) as excitation source (λ = 532 nm). Rs of the RGO film was
measured using a four-probe equipment (Voganruit technology co. LTD, Company, Beijing, China).
The electromagnetic measurement system used in this study was shown in Figure 1d, which was
mainly composed of vector network analyzer (VNA, MS4644A, Anritsu, Kanagawa, Japan), waveguide
chamber and segmental support. The dielectric property including the real and imaginary part of
permittivity of specimens with a plane size of 22.86 mm ×10.16 mm for 8.2–12.4 GHz (X-band) and
15.79 mm × 7.9 mm for 12.4–18 GHz (Ku-band) was measured when VNA was equipped with the
waveguide chamber as shown in Figure 1e. The electromagnetic RC of specimens for X and Ku
band was measured when VNA was equipped with the segmental support as shown in Figure 1f.
Reflection from a pure metal plate with the same size as that of the fabricated composite was used
for normalization.

3. Results and Discussion

3.1. Structural Characterization of RGO Films

A stacked layer-by-layer structure of the RGO film with thickness under 10 µm is evident from the
cross-sectional and in-plane SEM images shown in Figure 3a,b, respectively. The thickness of the RGO
film can be tuned by changing the volume of RGO suspension during filtration. This lamellar structure
contributes to the absorption of electromagnetic waves that are emit in the vertical direction [22–24].
The ultrathin films are flexible as evident from Figure 3c, where they are shown to be bent and rolled
around a pen.
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Figure 4a reveals the XRD spectra of RGO-600, RGO-800, RGO-1000 and RGO-RT samples. In the
case of RGO-600, RGO-800 and RGO-1000, only the graphite crystalline peak is observed in the XRD
spectra. The peak at 2θ = 26.5◦ corresponds to the (002) plane of graphite layers with an inter-layer
spacing of 0.334 nm [25,26]. For the as-filtrated RGO-RT, a peak around 23.1◦ indicates a layer-to-layer
distance (d-spacing) of about 0.385 nm, which is due to the existence of several oxygen functional
groups [27]. Structural characterizations of RGO films are further explored using Raman spectroscopy
where two peaks at 1355 cm−1 and 1587 cm−1 are obtained (Figure 4b), corresponding to the D and
G bands, respectively. The peak at 1587 cm−1 shows the Raman-active E2g mode or the G band,
characterizing the sp2 hybridized C–C bonds in RGO. The D band at 1355 cm−1 originates from the
in-plane vibration of sp2 carbon atoms, which reflects the disorder degree of the crystal structure [28,29].
Increased annealing temperature can result in the recovery of the sp2 configuration. According to
three-stage model from amorphous carbon state to nanocrystalline graphite state, the increase of ID/IG
from 0.95389 to 1.7097 indicates the increased sp2 content [30,31].
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For RGO films treated at different temperatures, Rs was measured by a four-probe method and the
results are listen in Table 1. It is evident that Rs decreases dramatically with the increase of annealing
temperature. During the heating process from room temperature to 600 ◦C, the deoxygenation
reduction reaction is accompanied by the removal of most of the oxygen functional groups such as
–OH, –COOH, from the surface of graphene. Further increasing the temperature from 600 ◦C to 1000 ◦C
results in a slight decrease in Rs due to the slow release of C–H groups and oxygen-containing groups
between layers [32].

Table 1. Sheet Resistance of RGO Film at Different Temperature.

Temperature/◦C Room Temperature 600 800 1000

Sheet resistance/(
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/sq) 3100 ± 10 70 ± 3 40 ± 3 27 ± 3

Based on the simulation results of CST, the composite is optimized to have as wide absorption
band when Rs of RGO FSS films is 40 Ω/sq. In other words, when RGO-800 films are applied as
the interlayer and arranged in a periodic pattern, the composites should exhibit excellent broadband
microwave absorption. In this case, RGO-800 films are chosen as the FSS sandwiched by FR4 layers.

3.2. Absorption Properties of the Composite with Sandwich Structure

The RC of the composites can be obtained according to transmission line theory:

RC = 20 log10|
Zin−Z0

Zin+Z0
| (1)

Zin= Z0

√
µr

εr
tan h[j

2π

c
√

µrεr f d] (2)

where, Z0 = (µ0/ε0)1/2 is the characteristic impedance of free space, Zin is the normalized input
impedance of absorbing material, εr and µr are the relative complex permittivity and permeability,
respectively. f is the frequency, d is the thickness of absorbing material, and c represents the speed
of light in free space. For non-magnetic dielectric substrates, the relative permeability µr = 1. When
the RC is below −10 dB, more than 90% electromagnetic energy is absorbed and the corresponding
frequency range is defined as the effective absorption bandwidth (EAB).

The RC of the composites containing RGO-800 FSS films for different FR4 laminate thicknesses,
is shown in Figure 5. It is evident that RC is affected by the thickness of the upper and lower FR4
layer. RCmin gradually shifts towards the lower frequencies with increasing laminate thickness.
For d1 = 1.0 mm and d2 = 2.2 mm, the composite exhibits excellent microwave absorption performance,
with EAB spanning the entire band from 8 to 18 GHz with an average RC of −22.8 dB, as shown in
Figure 5c. When d1 = 1.4 mm and d2 = 2.2 mm, the composite achieves RCmin of −46 dB with EAB of
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10 GHz. Additionally, the composite with d1 = 1.4 mm and d2 = 1.8 mm in Figure 5c also has a wide
EAB with 10 GHz.
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(d) d2 = 2.6 mm.

To verify that RGO-800 FSS films play a very important role in absorbing microwave energy,
composites with full coverage between the FR4 laminates were analyzed, as shown in Figure 6.
For d1 = 2.2 mm, d2 = 1.8 mm, the composite has the widest EAB of 5.9 GHz ranging from 10.9 GHz to
16.8 GHz and RCmin = −20.1 dB, as shown in Figure 6b.

The composites with d1 = 1.0 mm and d2 = 2.2 mm in Figures 5c and 6c along with the composite
without RGO-800 are chosen for further analysis, as shown in Figure 7a. It can be observed that the
composite with RGO-800 FSS films covers the entire X and Ku band, whereas the composite with
RGO-800 film in full coverage has a much narrower EAB. In contrast, the composite without RGO-800
film has almost no microwave absorption ability establishing that the introduction of periodic RGO
films into a sandwich structure could effectively enhance their microwave absorption properties.
Figure 7b shows the simulation result of the composite with RGO-800 FSS films comparing with the
optimal experimental result (d1 = 1.0 mm, d2 = 2.2 mm). There is a similar tendency between the
simulated and experimental results. Although it is difficult to eliminate the difference between the
two results, it can be reduced by optimizing algorithm and refining database as the cases in other
studies [21–23].
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3.3. Absorption Mechanism of the Composites

On a macroscopic scale, the upper FR4 layer of the composite has a relatively smaller permittivity,
which improves the impedance matching and reduces the microwave reflection. Combining RGO FSS
with the sandwich structure can bring about impedance matching and lead to enhanced microwave
absorbance and bandwidth. Based on equivalent circuit model and transmission line theory, when
the thickness d of the structure is set, the ideal Rs of the RGO FSS for perfect absorption is frequency
dependent. For the composite (d1 = 1.0 mm, d2 = 2.2 mm) with RGO-800 FSS films, two resonant
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peaks at 10.0 GHz and 14.7 GHz are excited. The electric field, magnetic field and power loss density
distributions for the composite at different frequencies have been performed by commercial CST,
as shown in Figure 8. As an electrically lossy material, the power loss distribution is similar to that of
the electric field at the two resonant peaks of 9.0 GHz and 14.8 GHz. Due to electromagnetic coupling
effects, there is strong microwave absorption between the adjacent unit cells at two resonant peaks as
proved in Figure 8, which is different from the case in full coverage situation.
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Figure 8. The electric, magnetic field and power loss density distributions on the composite at
different frequencies.

On a microscopic scale, RGO films are composed of layered graphene sheets that are parallel to the
substrate, as is evident from the SEM image in Figure 3a. When the electromagnetic waves are incident
in the vertical direction, the layered structure creates more barriers leading to a higher absorption of
the microwave energy [24]. Unlike traditional FSS materials such as carbon black and metal, RGO
inherently has superior properties. One the one hand (Figure 9), there are abundant micro-defects
in RGO (higher D band in Raman spectrum) as compared to traditional carbon materials, which act
as polarized centers by accumulating dipoles in the alternating EM field and inducing polarization
loss [33–35]. On the other hand, due to the multilayer structure and the increase of conductivity after
annealing, RGO can facilitate the hopping of charge carriers through conductive paths, which leads to
considerable improvement of conduction loss [36,37].
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Figure 10 summarizes the microwave absorption performance of the composites with multilayer
structure in recent years. The sandwich structure combined with the FSS makes the proposed composite
highly competitive with respect to other composites with pure multilayer structure, which cannot
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satisfy low thickness and wide bandwidth conditions simultaneously [6,9,38–41]. Introducing FSS
into the sandwich structure can be an effective way to solve the above issue [10,42,43]. Li’s approach
involved stencil printing of carbon black nanoparticle ink mixed with multiwalled carbon nanotubes,
which is complex and suffers from the problem involving the dispersion of carbon nanotubes [10].
A similar drawback has been observed with Lee’s approach where composites with RCmin of −17 dB
were demonstrated [43]. Overall, the procedure proposed here is simple to implement and achieves a
wide absorption band of 10 GHz using a lower composite thickness of 3.2 mm and a high absorption
with RCmin of −32 dB.Materials 2018, 11, x FOR PEER REVIEW  10 of 12 
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4. Conclusions

In summary, the composite with RGO FSS films sandwiched between two dielectric FR4 layers
was fabricated using a facile approach and the effect of RGO FSS films on the microwave absorption
properties of the composite was investigated. Through finite integration simulations, the composite
with RGO-800 FSS films was found to exhibit excellent EM wave absorption performance with the
thickness of 3.2 mm, a strong absorption with RCmin of −32 dB and wide EAB from 8 to 18 GHz,
spanning the entire X and Ku band. Highest absorption was observed with RCmin of −46 dB for a total
dielectric layer thickness of 3.6 mm. Thus, it was established that the composite with the multi-scale
layered structure based on RGO films as FSS, possessed strong absorption and broad bandwidth
while maintain a low thickness. This work provides guidelines for the fabrication of ceramic matrix
composites with microwave absorbing function.
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