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Abstract: Strontium titanate thin films were deposited on a silicon substrate by radio-frequency
magnetron sputtering. The structural and optical properties of these films were characterized by
X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy,
and spectroscopic ellipsometry, respectively. After annealing at 600–800 ◦C, the as-deposited films
changed from amorphous to polycrystalline. It was found that an amorphous interfacial layer
appeared between the SrTiO3 layer and Si substrate in each as-deposited film, which grew thicker
after annealing. The optical parameters of the SrTiO3 film samples were acquired from ellipsometry
spectra by fitting with a Lorentz oscillator model. Moreover, we found that the band gap energy of
the samples diminished after thermal treatment.
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1. Introduction

Strontium titanate (SrTiO3) has attracted much interest in many fields for its excellent properties,
such as high dielectric constant, low leakage current, good dielectric tenability, and high Seebeck
coefficient. As one of the perovskite oxides, SrTiO3 has a face-centered cubic structure at room
temperature. In the bulk of SrTiO3, its lattice constant is 3.90 Å, and the indirect band gap is 3.2 eV,
which is expected to originate from the separation between the 2p-level of oxygen ions and the 3d-level
of titanium ions [1]. As an excellent dielectric film for Dynamic Random Access Memories (DRAMs),
SrTiO3 thin film has a high dielectric constant, even when very thin (~10 nm) [2]. A Resistive Random
Access Memory (RRAM) cell fabricated using SrTiO3 thin film has a large resistance ratio, up to
103–104 between high and low resistance states, and shows good retention properties in a long test
time [3]. Regarding dielectric tunable devices, SrTiO3 thin film has a 65% variation of the permittivity
in the terahertz range [4]. Because of its large Seebeck coefficient, SrTiO3 thin film is also an attractive
thermoelectric material [5,6].

SrTiO3 thin films can be fabricated by many depositional techniques. Chemical techniques
include atomic layer deposition (ALD) [7], metal organic vapor deposition (MOCVD) [8], and the
sol-gel process [9], among others. Physical techniques include pulsed laser deposition (PLD) [10] and
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magnetron sputtering [11–13], among others. Compared to other techniques, magnetron sputtering
shows many advantages, i.e., wide compositional versatility, very high purity, extremely high adhesion
of films, controllable deposition rate, etc. Although previous studies have reported on the optical and
electrical properties of different SrTiO3 thin films, few investigations have mentioned the influence
of thermal treatment on the microstructural and optical properties. In this study, SrTiO3 thin films
deposited by radio-frequency (RF) magnetron sputtering were annealed at different temperatures
(500–800 ◦C), and the influence of thermal treatment on the crystallization, surface morphology,
cross-section structure, film chemistry, and optical properties were investigated in detail.

2. Materials and Methods

The SrTiO3 thin films were deposited on silicon substrates with <100> single crystalline orientation
at room temperature using a LAB600sp typed RF magnetron sputtering system (Leybold Optics GmbH,
Dresden, Germany). The size of SrTiO3 target with 99.99% purity was 4 inches in diameter and 6 mm in
thickness. The background pressure in the vacuum chamber was 5.0 × 10−6 mbar. The RF power was
set to 75 W. The working pressure of Ar gas was 9.6× 10−3 mbar controlled by a mass flowmeter (MFC,
Bronkhorst High-Tech B.V., Ruurlo, The Netherlands). After deposition, four samples were annealed
at different temperatures of 500 ◦C, 600 ◦C, 700 ◦C and 800 ◦C in nitrogen for one hour, respectively.

The crystallinity of the as-deposited SrTiO3 thin films annealed at 500–800 ◦C was characterized by
X-ray diffraction (XRD, Rigaku, Neu-Isenburg, Germany) with a Rigaku D/MAX 2550 VB/PC typed
X-ray diffractometer using Cu Kα radiation (λ = 1.5406 Å). The surface roughness of the films was
measured using a PSIA XE-100 atomic force microscope (AFM, PSIA, Suwon, Korea). High-resolution
transmission microscopy (HRTEM, FEI, Hillsboro, OR, USA) is capable of imaging at a significantly
higher resolution to capture fine detail, even as small as a single column of atoms, owing to the
smaller de Broglie wavelength of electrons. The specimen is most often an ultrathin section less
than 100 nm thick or a suspension on a grid. HRTEM was employed to examine the cross-sectional
microstructure of the film samples. The depth profiles and the chemical binding structures of the
sample films were studied using X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific,
Waltham, MA, USA) with Al Kα X-rays and Ephoton = 1500 eV. XPS can be used to analyze the surface
chemistry of a material in its as-received state or after some treatment, such as thermal treatment.
The optical constants, including refractive index and extinction coefficient, of the films were determined
by spectroscopic ellipsometry (SE, Self-development, Shanghai, China) in the spectral range from
280 nm to 800 nm. Moreover, the band gap energy was calculated from the SE spectra.

3. Results and Discussions

Figure 1 shows the XRD patterns of as-deposited and annealed SrTiO3 thin films at different
temperatures. No characteristic peaks of the SrTiO3 layer can be found in both the as-deposited
and 500 ◦C annealed samples. It indicates both of the films are amorphous. When the annealing
temperature reaches 600 ◦C, the thin film became polycrystalline, which is proved by the emergence
of the three characteristic peaks at (100), (110), and (200). It shows that the onset crystallization
temperature is around 600 ◦C. As the annealing temperature increases to 700 ◦C and 800 ◦C, the
diffraction peaks became more intense and sharper, showing enhanced crystallinity of the SrTiO3

samples. Meanwhile, the lattice constant can be calculated from the diffraction peaks, which is a = b
= c = 3.91 Å, showing cubic structure. Moreover, the average grain size can be determined from the
major peak (200) by Scherrer’s formula [14],

D = κλ/Bcosθ (1)

where D is the average grain size, λ is the X-ray wavelength, B is the full width at half maximum
of the peak, θ is the diffraction angle, and κ is the Scherrer’s constant of the order of unity for usual
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crystals. The average grain sizes of the thin films were 16.9 nm, 21.2 nm and 26.7 nm, corresponding to
annealing temperatures of 600 ◦C, 700 ◦C and 800 ◦C, respectively.
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Figure 1. X-ray diffraction (XRD) patterns of SrTiO3 thin film annealed at different temperatures.

Figure 2 shows the cross-section HRTEM micrographs of SrTiO3 samples which are, respectively,
as-deposited and annealed at temperature from 500 to 800 ◦C. As shown in Figure 2a, the as-deposited
SrTiO3 thin film is amorphous. The thickness of the SrTiO3 layer is 75.54 nm, as shown in Table 1.
Meanwhile, an interfacial layer between the SrTiO3 layer and Si substrate is also observed, and the
thickness of this layer measured in Figure 2b is 3.76 nm. After annealing at 500 ◦C, SrTiO3 thin film is
still amorphous, and the thicknesses of SrTiO3 layer and interfacial layer are 74.69 nm and 2.53 nm,
respectively. After annealing at 600 ◦C, crystallization took place in the SrTiO3 layer, as can be seen in
Figure 2f. The inhomogeneity of SrTiO3 thin film decreases and the surface roughness increases, which
is in good agreement with the XRD results. The thickness of the interfacial layer increases to 3.08 nm.
One reason for this increase is the penetration of the particles from SrTiO3 layer and Si substrate into
the interfacial layer as an effect of annealing, as confirmed below. When the annealing temperature is
increased to 700 ◦C and 800 ◦C, the inhomogeneity of SrTiO3 thin films decreases sequentially, and the
thicknesses of the interfacial layers increase to 5.58 nm and 12.22 nm, respectively.

Table 1. Thickness data of the SrTiO3 films annealed at different temperatures.

Sample SrTiO3 Layer
(nm)

Interfacial Layer
(nm)

Roughness Layer
(nm)

Root-Mean-Square Error
(RMSE) Roughness (nm)

As-deposited 75.54 3.76 1.41 0.23
500 ◦C 72.96 2.53 1.73 0.33
600 ◦C 67.09 3.08 6.91 1.58
700 ◦C 68.21 5.58 7.77 1.76
800 ◦C 67.60 12.22 8.31 1.94
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Figure 2. High-resolution transmission microscopy (HRTEM) photographs of SrTiO3 films
(a) as-deposited, (c) 500 ◦C annealed, (e) 600 ◦C annealed, (g) 700 ◦C annealed, (i) 800 ◦C annealed,
and the zoom in interfacial layers (b) as-deposited, (d) 500 ◦C annealed, (f) 600 ◦C annealed, (h) 700 ◦C
annealed, (j) 800 ◦C annealed.

To further investigate the elemental composition and chemical states of the SrTiO3 and interfacial
layers in all the samples, XPS analysis was carried out. Figure 3 is the concentration depth profiles
of the as-deposited and 800 ◦C annealed samples. The thickness of the SrTiO3 layer in as-deposited
sample is thicker than that in 800 ◦C annealed sample. Besides, after annealing, more Si and SrTiO3

diffused to interfacial layer, causing the thickness of interfacial layer to increase. These results are
in good agreement with the HRTEM results. For the as-deposited sample, the ratio of Sr/Ti/O in
the etching time range of 0–840 s is about 1:1:3, indicating that the SrTiO3 thin film deposited by RF
magnetron sputtering is reliable.
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Figure 3. Depth profiles of the SrTiO3 films (a) as-deposited and (b) annealed at 800 ◦C.

Figure 4a,b show Sr 3d core levels and Ti 2p core levels XPS spectra, respectively, of the
as-deposited and 800 ◦C annealed SrTiO3 thin films at the etching time of 360 s. In Figure 4a, the peaks
at 133.9 and 135.5 eV correspond to the binding energies of Sr2+ 3d5/2 and 3d3/2 [12]. In Figure 4b, the
peaks at 458.8 and 464.3 eV correspond to the binding energies of Ti4+ 2p3/2 and 2p1/2 [12,15]. Another
two weak peaks at 457.3 and 463.1 eV correspond to the binding energies of Ti3+ 2p3/2 and 2p1/2 [15],
which come from defects in SrTiO3 thin films. These defects were reduced after annealing at 800 ◦C.
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Figure 4. The X-ray photoelectron spectroscopy (XPS) spectra of (a) Sr 3d and (b) Ti 2p in the SrTiO3

films as-deposited and annealed at 800 ◦C.
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Figure 5 shows Si 2p core levels XPS spectra of the as-deposited and 800 ◦C annealed SrTiO3

thin films at the etching time of 960 s. The Si 2p peak is centered at around 99.2 eV, and the SiO2

peak is located at about 103.0 eV, which are consistent with previous results [16,17]. After annealing
at 800 ◦C, the intensity of Si 2p peak is found to decrease greatly, while the intensity of SiO2 peak
increases. This change in intensities is caused by the diffusion and reaction of silicon and oxygen in
the SrTiO3/Si interface.
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Figure 5. The Si 2p core levels XPS spectra of the as-deposited and 800 ◦C annealed SrTiO3 thin films at
the etching time of 960 s.

To investigate the optical constants and band-gap structure of SrTiO3 thin films prepared at
different temperatures, the spectroscopic ellipsometry (SE) technique is applied in the range of
290–800 nm with different angles of incidence at 65◦, 70◦, and 75◦ [18]. The ellipsometric parameters Ψ

and ∆ are defined as,
ρ = rs/rp = tanΨexp(i∆) (2)

where rp and rs represent the complex reflection coefficients of polarized light parallel and
perpendicular to the incidence plane, respectively. Since the roughness layer of the as-deposited
and 500 ◦C annealed samples are very thin (<1.8 nm), a four-phase model of Si substrate/interfacial
layer/SrTiO3 layer/Air is designed for these two samples, and a five-phase model of Si
substrate/interfacial layer/SrTiO3 layer/roughness layer/Air is designed for the samples annealed at
600 ◦C, 700 ◦C, and 800 ◦C. The effective complex dielectric function ε of the roughness layer can be
parameterized using the Maxwell-Garnett effective medium approximation (EMA) presented as,

ε− εAir
ε + 2εAir

=
εSTO − εAir

εSTO + 2εAir
f (3)

where εAir (~1) and εSTO are dielectric functions of atmosphere and SrTiO3 thin film, respectively, and
f is the volume fraction of SrTiO3 in the roughness layer. Two Lorentz oscillators model and single
Lorentz oscillator model are used to characterize εSTO and ε IL (dielectric function of the interfacial
layer) [19], respectively, described as follows,

ε(E) = ε1 + iε2 = ε(∞)

(
1 + ∑

i

A2
i

E2
i − E2 − jΓiE

)
(4)

where ε(∞) is the dielectric constant when photon energy E→∞, Ai, Γi, and Ei are, respectively, the
amplitude, the damping factor, and center energy of the ith oscillator in units of eV. The refractive
index and extinction coefficient can be calculated from the dielectric function as follows,
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n =

[
1
2

√
ε2

1 + ε2
2 + ε1

] 1
2

(5)

k =

[
1
2

√
ε2

1 + ε2
2 − ε1

] 1
2

(6)

In the fitting process, the thickness of each layer is fixed on the value in Table 1.
Figure 6 shows the calculated refractive indices and extinction coefficients of SrTiO3 thin films,

both as-deposited and at different annealing temperatures. The parameters of the Lorentz oscillator
model for SrTiO3 thin film are listed in Table 2. As can be seen in Figure 6, there are two dispersion
regions in the range from 1.55 to 4.42 eV: one is the transparent region (1.55–4.00 eV for the as-deposited
and 500 ◦C annealed SrTiO3 film, and 1.55–3.50 eV for SrTiO3 film annealed at 600–800 ◦C), and the
rest region is the absorption region. Figure 6a shows that the refractive index increases with annealing
temperature before annealing at 700 ◦C, and decreases with annealing temperature after annealing at
700 ◦C. Such a change is attributed to different values of packing density p of the films [9,10], which
can be calculated from Lorentz-Lorenz relation [20],

p =

(
n2 − 1
n2 + 2

)/(
n2

b − 1
n2

b + 2

)
(7)

where nb is the refractive index of bulk SrTiO3. Taking nb = 2.432 at 550 nm, the values of packing
densities are 0.86, 0.87, 0.96, 0.94 and 0.93 for the as-deposited film and films annealed at 500 ◦C, 600 ◦C,
700 ◦C and 800 ◦C, respectively. The as-deposited SrTiO3 film has a minimum packing density, which
increases a little after annealing at 500 ◦C. The increase in packing density will lead to a decrease in
thickness of SrTiO3 layer, as shown in Table 1. When the annealing temperature is up to 600 ◦C, the
packing density increases to a maximum value, which is caused by the crystallization of SrTiO3 film.
After annealing at 700 ◦C and 800 ◦C, the packing density shows a tendency of decreasing, which is
attributed to the presence of cracks in the films at higher annealing temperatures.
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Figure 6. The calculated (a) refractive indices and (b) extinction coefficients of SrTiO3 thin films
prepared at different temperatures.
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Table 2. Main parameters (ε(∞), Ai and Ei) of the Lorentz oscillator model and the calculated band
gap Eg for SrTiO3 thin films annealed at different temperatures.

Sample ε(∞) A1 (eV) E1 (eV) A2 (eV) E2 (eV) Eg (eV)

As-deposited 1.51 0.67 4.37 8.11 6.63 4.11
500 ◦C 1.63 0.65 4.37 7.47 6.45 4.08
600 ◦C 1.50 1.39 4.15 14.02 9.20 3.80
700 ◦C 1.68 1.51 4.11 10.19 7.80 3.75
800 ◦C 1.73 1.48 4.08 13.70 10.80 3.71

As shown in Figure 6b, the extinction coefficients are very small (<0.02) in the transparent region.
Meanwhile, the absorption edge moves toward lower photon energy at higher annealing temperatures.
The absorption peak of the SrTiO3 thin film in high photon energy regions comes from the electronic
inter-band transition [9]. Hence, the movements of absorption edges are related to the varieties of the
bandgap structures in SrTiO3 thin films. The SrTiO3 thin film’s indirect-band-gap [21] and band gap
Eg can be determined from the power-law behavior of Tauc [22],

(αhν)1/2 = C
(
hν− Eg

)
(8)

where α is the absorption coefficient, hν is the photon energy, and C is a constant. The absorption
coefficient can be calculated from the relation,

α =
4πk

λ
(9)

Figure 7 shows the dependence of (αhν)1/2 on hν for SrTiO3 thin films prepared at different
temperatures. The band gap Eg is then determined by extrapolating the linear portion of the curves in
the limit (αhν)1/2 = 0. The values of the band gap Eg are listed in Table 2. As evident from Figure 7 and
Table 2, the band gap decreases as the annealing temperature increases. The as-deposited and 500 ◦C
annealed SrTiO3 thin films have a similar amorphous structure, and thus, the difference between
their band gaps is small. After annealing at 600 ◦C, the SrTiO3 thin film transits from an amorphous
phase to a polycrystalline phase, which results in a large decrease in band gap. When the annealing
temperature goes up to 700 ◦C and 800 ◦C, the band gap decreases due to better crystallinity of SrTiO3
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4. Conclusions

SrTiO3 thin films have been deposited on Si substrates using RF magnetron sputtering, and then
annealed in air at temperatures from 500 ◦C to 800 ◦C for 1 h. The as-deposited SrTiO3 thin film is
amorphous with a stoichiometric ratio of about 1:1:3. The RMSE roughness of the as-deposited film is
only 0.23 nm. The transition from amorphous phase to polycrystalline phase occurred at an annealing



Materials 2019, 12, 138 9 of 10

temperature between 500 ◦C and 600 ◦C. With the increase of annealing temperature, the average
grain size and surface roughness of SrTiO3 thin films increase, while the inhomogeneity decreases.
The refractive index in the transparent region increases with annealing temperature until 700 ◦C,
and then decreases. The band gaps are estimated to be about 4.11, 4.08, 3.80, 3.75, and 3.71 eV for
the as-deposited and annealed at 500 ◦C, 600 ◦C, 700 ◦C, and 800 ◦C SrTiO3 thin films, respectively.
These results are useful as references for the potential applications of SrTiO3 in integrated optical and
electrical devices.
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