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Abstract: Implanted biomedical devices can induce adverse responses in the human body, which
can cause failure of the implant—referred to as implant failure. Early implant failure is induced
numerous factors, most importantly, infection and inflammation. Natural products are, today,
one of the main sources of new drug molecules due to the development of pathogenic bacterial
strains that possess resistance to more antibiotics used currently in various diseases. The aim of
this work is the sol–gel synthesis of antibacterial biomedical implants. In the silica matrix, different
percentages (6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL) were
embedded. Subsequently, the ethanol solutions with high amounts of chlorogenic acid (CGA 20 wt %)
were slowly added to SiO2/PEG and SiO2/PCL sol. The interactions among different organic
and inorganic phases in the hybrid materials was studied by Fourier transform infrared (FTIR)
spectroscopy. Furthermore, the materials were soaked in simulated body fluid (SBF) for 21 days and
the formation of a hydroxyapatite layer on their surface was evaluated by FTIR and XRD analysis.
Finally, Escherichia coli and Pseudomonas aeruginosa were incubated with several hybrids, and the
diameter of zone of inhibition was observed to assessment the potential antibacterial properties of
the hybrids.

Keywords: sol–gel method; hybrid materials; antibacterial activity; chlorogenic acid; PEG;
PCL; biomaterials

1. Introduction

Bacterial resistance to antibiotics has been observed with increasing frequency in recent decades.
During implant surgery, it is possible to contract infections by pathogenic bacteria that cause serious
complications for patients as these infections are often difficult to treat with antibiotic therapies that
are becoming less effective [1–5].

In recent years, new strategies have been necessary to prevent infections associated with
biomaterials [6]. In particular, natural products are, today, one of the main sources of new drug
molecules due to the development of pathogenic bacterial strains that possess resistance to more
antibiotics used currently in various diseases [7]. Chlorogenic acid (CGA) is present in coffee beans,
as well as tea leaves, grapes, and apples. In recent years, the interest in this natural molecule has
increased [8–10] due to its many properties that promote health, such as anticancer, anti-inflammatory,
antioxidant, antidiabetic, antilipidemic, and antimicrobial activities [11]. The antimicrobial activity of
CGA might be useful in the medical field to develop new antibacterial hybrid materials [12]. In this
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context, two different hybrid materials containing silica as inorganic matrix, with a different content
(6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL), were synthesized by
sol–gel method; furthermore, high percentages of CGA were added in the hybrids as antibacterial drug.

The reaction products of silica-based materials can improve the biological properties, interactions
between cell and material, and response to cell invasion [13,14]. The biological properties of these
materials can be increased by the addition of polymers. In fact, the presence of polyethylene glycol
(PEG) or polylysine improves cell adhesion and growth through increasing the hydrophilicity of
materials [15–19], as well as PCL, which has been widely explored as a biomaterial for the controlled
release of therapeutic molecules. It is a biodegradable polyester widely used in the biomedical
field [20,21]. Furthermore, the silica-based materials could have, also, high antimicrobial activity
when different antibacterial compounds are embedded in these materials, like antimicrobial drugs,
as well as CGA or antimicrobial polymers. Gong et al. have been synthesized. Quaternary ammonium
silane-functionalized methacrylate (QAMS), produced by sol–gel method, has antimicrobial activity
which could help to prevent resin-based tooth filling failure due to recurrence of caries [22]. Also in the
work of Makvandi et al., quaternary ammonium methacrylate-modified silica nanoparticles (QMSNs)
were synthesized for the first time, and proposed as possible antimicrobial particles for free-radical,
photocurable monomers [23].

One of the more interesting methods to synthesize the organic–inorganic hybrid materials at low
temperature is the sol–gel technique. Two important reactions are involved; in fact, in this chemical
synthesis, the precursor undergoes hydrolysis to form a colloidal suspension (sol), followed by a
condensation reaction that allows “sol” evolution in a “gel” [24,25]. In the hybrid materials, when
the organic and inorganic phases are bonded by hydrogen bonds, van der Waals, or ionic bonds,
the materials are referred to as Class I, while, in Class II, strong chemical bonds are present (covalent
or polar covalent bonds) [26].

Furthermore, the presence of CGA in the different hybrids allows to classify the materials as
“green hybrids”, like reported by Unterlass [27]. In fact, when the hybrids are synthesized using at
least one green step or a component of green origin is incorporated, these materials are defined as
“green hybrids”.

The purpose of this work is the synthesis of new hybrids with antibacterial activity depending on
the incorporated CGA but, also, depending on the different types of polymers and their percentage.
The presence of the different interactions in the hybrid materials was studied with Fourier transform
infrared (FTIR) spectroscopy. In order to evaluate the hybrids’ bioactivity, FTIR spectroscopy was used
to observe the typical peaks of hydroxyapatite on the materials’ surface, after soaking in simulated
body fluid (SBF), and XRD was carried out to confirm the FTIR results. Finally, two different bacteria,
E. coli and P. aeruginosa, were incubated with the organic–inorganic hybrid materials to investigate
potential antibacterial activity.

2. Materials and Methods

2.1. Sol–Gel Synthesis of the Hybrid Materials

The sol–gel method was used to synthesize the different hybrid materials. The precursor of
silica matrix, tetraethyl orthosilicate (TEOS; Si(OC2H5)4; Sigma-Aldrich, Darmstadt, Germany),
was added to a solution of 99.8% ethanol (EtOH, Sigma-Aldrich, Darmstadt, Germany), HNO3 (≥65%,
Sigma-Aldrich, Darmstadt, Germany), and distilled water. The gel material was obtained by hydrolysis
and condensation reactions, therefore, nitric acid was used to favor the kinetics of these reactions.
The molar ratios of solution were EtOH/TEOS = 6.2, TEOS/HNO3 = 1.7, and H2O/TEOS = 6.

In order to prepare the SiO2/PEG/CGA hybrids or SiO2/PCL/CGA hybrids, different amounts
of PEG, dissolved in ethanol, or PCL, dissolved chloroform, were added in silica sol, with the same
percentages (6, 12, 24, 50 wt %), separately [15,18].
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Afterwards, the ethanol solutions with high amounts of CGA (20 wt %) (95%, Sigma Aldrich)
were slowly added to the SiO2/PEG or SiO2/PCL solutions. The remaining solvents in the wet gels
were removed by incubating in an oven at 40 ◦C for 24 h.

The Figure 1 shows the flow chart of the hybrid synthesis.
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Figure 1. Flow chart of sol–gel synthesis.

2.2. SEM and FTIR Analysis of the Hybrid Materials

Prestige 21 Shimadzu (Kyoto, Japan) FTIR instrument equipped with a DTGS detector was used
to evaluate the different interactions among the inorganic and organic components of the hybrids.

The samples were analyzed in KBr pelletized disks containing about 2 mg of each sample and
about 198 mg of KBr. The disks with a diameter of 13 mm, a thickness of 2 mm, were obtained by
pressing the sample powder and KBr into a cylindrical holder using a Specac manual hydraulic press.
Analysis was performed with Fourier transform infrared (FTIR) transmittance over a wavenumber
range of 4000–400 cm−1 with resolution of 4 cm−1 (45 scans). The FTIR spectra were processed by
Prestige software (IR solution). The surface morphology of the hybrid materials was investigated
by scanning electron microscopy analysis performed using AURIGA Zeiss High Resolution Field
Emission equipment (HR-FESEM, JEOL JSM-7000F, Zeiss, Kyoto, Japan).

2.3. Bioactivity Test

The bioactivity of the hybrid materials was evaluated using simulated body fluid (SBF) [28].
The dried gels were grinded in a mortar to obtain powders, and they were soaked in SBF for 21 days at
37 ◦C. The SBF solution contained an ion concentration almost equal to those of human blood plasma
(Table 1). The SBF was prepared by dissolving reagent grade chemicals NaCl, NaHCO3, KCl, MgCl2,
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1 M HCl, CaCl2·6H2O, and Na2SO4 (Sigma-Aldrich, St. Louis, MO, USA). The pH of the buffer was
adjusted to pH 7.4 using 1 M HCl.

Table 1. Simulated body fluid (SBF) composition.

Ion
Concentration/mol m3

SBF Human Blood Plasma

Na+ 142.0 142.0
K+ 5.0 5.0
Mg2+ 1.5 1.5
Ca2+ 2.5 2.5
Cl− 147.8 103.0
HCO3

− 4.2 27.0
HPO4

2− 1.0 1.0
SO4

2− 0.5 0.5

Every two days, the solution was replaced to avoid depletion of ionic species in the SBF caused
by nucleation of biominerals on the samples. After these days of exposure, the samples were dried
in a glass desiccator and, afterwards, the formation of apatite layer on sample surface was evaluated
by FTIR analysis and XRD analysis. XRD analysis was carried out in the range of 2θ from 20 to
70◦ using a Philips 139 diffractometer (Philips, Amsterdam, Netherlands) equipped with a PW 1830
generator, tungsten lamp, and Cu anode, where the source 140 of X-ray is given by a Cu-Kα radiation
(λ = 0.15418 nm).

2.4. Antibacterial Activity

The influence of materials on the microbial growth of Escherichia coli (ATCC 25922) and
Pseudomonas aeruginosa (ATCC 10145) was assessed.

E. coli was incubated in TBX medium (tryptone bile X-gluc) (Liofilchem, Italy), while
Pseudomonas aeruginosa in Pseudomonas CN agar (Liofilchem, Italy). The bacterial cell suspension
of 10 × 105 cfu/mL was obtained by dilution in distilled water. Afterwards, E. coli was incubated in
presence of the different materials for 24 h at 44 ◦C, while the Pseudomonas aeruginosa was incubated
for 48 h at 36 ◦C.

The diameter of the inhibition halo (ID) was measured to evaluate microbial growth. The results
were obtained on samples analyzed three times and used to determine the mean standard (SD)
deviation of measurements.

3. Results

3.1. SEM and FTIR Analysis of the Hybrid Materials

All hybrids containing PEG as well as PCL, with a high amount of CGA, are transparent, glassy,
yellowish, and reddish, as a function of PCL and PEG, respectively, but, also, affected by the presence
of CGA. Representative samples are reported in Figure 1.

The microstructure of the hybrids with different percentages of PEG or PCL, and the hybrid
materials contain the two polymers and CGA, have been studied by SEM (Figure 2). In the surface
morphology of the samples, there is no appreciable difference among the all materials. The results
suggest that the chlorogenic acid embedded in the materials does not affect the morphology of
SiO2/PEG and SiO2/PCL hybrids, respectively.
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Figure 2. SEM micrograph of (a) SiO2/PEG50 wt %; (b) SiO2/PCL50 wt %; (c)
SiO2/PEG50 wt %/CGA20 wt %; (d) SiO2/PCL50 wt %/CGA20 wt %.

In Figures 3 and 4 are reported the FTIR spectra of different hybrids that were compared with
pure PEG, PCL, and pure silica, to identify their interaction. In all spectra, the typical band of the
silica matrix is clearly visible [29,30]. The peaks recorded at 1080, 1200, and 800 cm−1 were due to
the asymmetric and symmetric Si–O stretching vibrations. The bending vibrations of Si–O–Si bonds
and Si–OH bond vibrations were attributed to the peaks at 460 cm−1 and 960 cm−1, respectively [31].
Furthermore, in all hybrid spectra, regardless of the content of the two different polymers and CGA,
the intensity band at 580 cm−1 is visible, caused by residual four-membered siloxane rings in the
silica network [29,30,32]. Also, the residual nitrate anions at 1382 cm−1 with a sharp N–O stretching
band [33] is observed because, during the synthesis procedure, the HNO3 catalyst was used.

Furthermore, the bands at 3445 cm−1 and 1640 cm−1, due to –OH stretching and bending
vibrations, change position and shape for the formation of hydrogen bonded solvent molecules
(H2O) and hydrogen-bonded –OH groups related to Si atoms [34].

The typical peaks of natural compound (CGA) are visible in all hybrid spectra, with similar
intensity. In the spectrum of pure CGA (Figures 3 and 4 curve a), the stretching C=O vibration
band is observed at 1726 cm−1. Instead, the displacement of this peak is visible in all of the hybrid
spectra, independent of the polymer type incorporated, due to the formation of H-bonds with the
SiO2 inorganic matrix [35]. Furthermore, the presence of intense signals of the phenyl ring and C–O–C
bonds caused the different shape and a broadening of the strong SiO2 band at 1080 cm−1, and the
increase of the intensity of the shoulder at 1200 cm−1 (Figures 3 and 4 curve a), which is also due to
the interactions with the two different polymers [36].
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Comparing Figures 3 and 4, it is possible to observe some different peaks due to several polymers
incorporated in the hybrids. When different amounts of PEG were added in the materials (Figure 3),
the bands of methylene C–H stretching and bending at 2930–2870 cm−1 and 1454 cm−1 are clearly
detectible in all spectra, furthermore, its intensity increased with increasing polymer amount [37].
The characteristic C–O stretching band at 1250 cm−1 is evident only when a high amount of PEG
was added in the hybrid [38]. Indeed, the presence of PCL in the materials (Figure 4) determines
the appearance of typical peaks not visible in Figure 3. The asymmetric and symmetric stretching of
polymer CH2 groups correspond to the bands at 2845 and 2866 cm−1, while the peaks at 1460 cm−1

and 1370 cm−1 are due to their bending modes. Moreover, when a high amount of PCL was added
in the hybrid (Figure 4 curve f), it is possible to observe a different shape of the typical silica band at
1080 cm−1 caused by the asymmetric O–C–O stretching of the polymer ester group and, also, the peak
at 1730 is attributable to the CO stretching vibration of the ester group [39].

In all hybrid spectra (Figure 4), the peak at 1736 cm−1, that is due to the stretching C=O vibration
of CGA, changes its intensity, despite that the concentration of CGA in the hybrid is the same and,
in fact, this effect is only due to the different amount of PCL. The intensity of the characteristic PCL
and PEG bands seemed strongly affected by the polymer content. The formation of the interactions
between all hybrid components are suggested by the displacement of the silica and polymers bands at
a lower wavenumber. The chlorogenic acid incorporated in the hybrids does not affect the structure
and interactions of SiO2/PEG and SiO2/PCL hybrid materials, respectively. Therefore, all components
are bonded by hydrogen bonds, that are very important in the hybrids structure.

3.2. Bioactivity Test

Kokubo’s test [28] was used to evaluate the bioactivity of hybrids as a function of CGA and
polymer content. Kokubo and his colleagues [28,40,41] have proposed that one of the important
requirements for a good biomaterial is the formation of apatite on its surface after implantation in the
human body. SBF solution, containing an ion concentration similar to that of human blood plasma,
can be used to produce the apatite layer; therefore, the standard protocol introduced by Kokubo et al.
has been followed [28]. The different hybrids were soaked in SBF solution for 21days and, after this
exposure time, the presence of the hydroxyapatite on the surfaces of all samples was detected by FTIR
and XRD.

Figures 5 and 6 show the FTIR spectra of both materials containing PEG and PCL with high
amounts of CGA, respectively.

In all hybrid spectra, the split of the bands at 570 cm−1 and 580 cm−1 in the hybrids, with PEG
and PCL, respectively, into two new ones was observed. In particular, in Figure 5 (curve a–d), bands at
587 cm−1 and 550 cm−1 were detected while, in Figure 6 (curve a–d), the same bands at 585 cm−1 and
550 cm−1 are visible. These peaks suggest the stretching of the –OH groups of hydroxyapatite and the
vibrations of the PO4

3− groups caused by the formation of hydroxyapatite precipitate [40–43].
The displacement of Si–OH band, from 955 cm−1 to 960 cm−1, is due to the interaction of the

hydroxyapatite layer with the –OH groups of the silica matrix.
The presence of hydroxyapatite on the materials surfaces is also confirmed by XRD measurement

(Figure 7), in fact, the intense peaks of hydroxyapatite crystalline are visible in all materials, and the
peaks obtained were similar with the phases found in the ICDD database. The main (h k l) indices for
hydroxyapatite are (002), (211), (300), (202), (310), (002), (222), and (213), regardless of the content of
the two different polymers and CGA, after 21 days in SBF.

The hydroxyapatite layer (Ca10(PO4)6(OH)2) occurs when the Ca2+ ions, present in the SBF,
interact with the –OH groups on the silica matrix and, subsequently, with the negative charge of the
phosphate ions [44].
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Figure 7. A representative XRD of SiO2/PEG50 wt %/CGA20 wt % soaked in SBF solution for 21 days.

3.3. Antibacterial Activity

The antibacterial properties were evaluated using two different bacteria: E. coli and P. aeruginosa.
Both bacteria were incubated in presence of the 100 mg of hybrid materials. In Figure 8A is reported
a representative image of E. coli inhibition zones. The results of the diameter of zone of inhibition
(Figure 8B) of all hybrids suggested that when both bacteria were inoculated with the materials
containing different amount of PEG without CGA, the inhibition of bacterial growth is not observed
compared to the materials with only different percentages of PCL; in fact, in SiO2/PCL, a mild
antibacterial activity is visible.

However, the hybrids with high amount of CGA, independently of the polymer type incorporated,
exhibited a strong activity against E. coli compared to P. aeruginosa. The antibacterial activity observed
is due to the presence of CGA in the hybrids. In the literature are reported many works about the
molecular mechanism of this natural compound [45–47]. The damage of the bacterial cell membrane
could be caused by reactive oxygen species (ROS) depletion due to CGA in the different materials [11].
Therefore, in the cells, when levels of ROS decrease, numerous signaling pathways are affected,
allowing inhibition of bacterial growth [48].

Finally, the diameter of the zone of inhibition of SiO2/PEG/CGA and SiO2/PCL/CGA were
compared. When E. coli were treated with the hybrids containing PEG, better antibacterial activity was
observed (Figure 8).

Furthermore, when E. coli and P. aeruginosa were incubated with the hybrids containing CGA,
it was possible to observe a different color of the medium in the zone of inhibition around the materials,
compared to the medium of both bacteria treated with the hybrids without CGA (Figure 8A). This effect
is probably due to the release of CGA from the different materials, causing the inhibition of bacterial
growth around the hybrids.
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diameter (mm) of inhibition zone of all materials. Values are the mean SD of measurements carried out
on samples analyzed three times. The means and SD are shown. * p < 0.05 vs. the bacteria control
treated with hybrids without CGA or vs. the bacteria treated with hybrids containing CGA.

4. Conclusions

The hybrid materials containing PEG or PCL and a high amount of CGA were synthesized by
sol–gel method. The interactions between the components in the hybrids were evaluated by FTIR
analysis. The spectra suggested that the organic and inorganic phases are linked through hydrogen
bonds. Furthermore, the standard protocol introduced by Kokubo et al. [28] was used for in vitro
bioactivity assessment of the different materials, and the results suggested that the bioactivity of the
silica matrix was not affected by the presence of PEG and PCL, as well as the CGA. Furthermore,
independently of the polymer types incorporated in the hybrid, it was possible to observe a strong
activity against E. coli compared to P. aeruginosa, in particular, with SiO2/PEG/CGA; this effect is due
to the presence of a high amount of CGA. In conclusion, the materials synthesized can be considered
as potential antibacterial hybrids which could be used as biomedical implants.
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