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Abstract: Polymeric nano-carriers are considered as promising tools in biomedical applications due to
multiple attractive characteristics including their low toxicity, high loading capacity, controlled drug
release capabilities, and highly tunable chemical properties. Here, a series of pH-sensitive star-shaped
copolymers, Ad-P[(EMA-co-MAA)-b-PPEGMA]4, was prepared via electron transfer atom radical
polymerization (ARGETE ATRP) and selective hydrolysis. These star-shaped copolymers can be
self-assembled into micelles (Dh = 150–160 nm) and their critical micelle concentrations (CMC) were
estimated to be 3.9–5.0 mg/L. The pH-sensitiveness of the micelles was evidenced by transmission
electron microscopy (TEM) and dynamic light scattering (DLS). The maximal paclitaxel (PTX) loading
efficiency (DLC) and entrapment efficiency (EE) were 18.9% and 36%, respectively. In vitro release
studies revealed that about 19% of the PTX released at an acidic condition of pH 1.2 over 70 h,
whereas more than 70% was released within the same time interval at pH 6.8. In vitro cytotoxicity
suggested that the low cytotoxicity of the blank micelles, while the PTX-loaded micelles providing the
cytotoxicity close to that of free PTX. These results indicated that this novel pH-sensitive nano-carriers
have great potential applications for oral drug-controlled release.

Keywords: nano-carrier; pH-sensitive copolymer; drug release; adamantane

1. Introduction

Polymeric nano-carriers (e.g., micelles, nanoparticles, liposomes, etc.) have been attracted
considerable interest due to low toxicity, drug-controlled release abilities, high drug efficacy, et al. [1–8].
Especially, pH-sensitive nano-carriers have remarkable properties which enable them to bypass
biological barriers and reach the goal of targeted drug delivery [9,10]. Poly(methacrylic acid) (PMAA),
bearing the carboxylic group with a pKa around 5–6, is frequently used in pH-sensitive polymers [11].
The block PMAA of copolymers could keep tight in the protonated form under an acidic environment,
whereas in the basic condition, the deprotonation and ionization of PMAA contribute to the swell of the
blocks. Such pH-sensitive properties can be used as oral drug delivery systems, where the drug could
go through the acidic environment of stomach and be released upon increasing the pH. For instance,
Yang et al. prepared a series of a linear amphiphilic copolymer containing a PMAA block for oral
hydrophobic drug delivery [12–14].

However, compared with traditional linear polymers, star-shaped copolymers present unique
properties and advantages, such as multiple topological structures, increased stability, high functionality,
and also have attracted extensive attention [15,16]. For example, Zhang’s group synthesized a series of
tetramethylolmethane-based or β-cyclodextrin-based polymeric micelles for drug/DNA delivery [17–19].
Zhu et al. made an in-depth study on cholic acid-based star polymers for drug delivery system [20–22].
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Recently, star-shaped copolymers bearing rigid molecular core (e.g., POSS) use as nano-carriers of drugs
or DNA have attracted more attention [23–25]. Adamantane (Ad) with the same rigid and cubic core as
POSS, but the good lipophilicity and biocompatibility, has been widely studied in medicine, functional
materials as well as nanotechnology. Owing to their biocompatibility, low-toxicity and facile accessibility,
Ad should be regarded as a promising scaffold for drug delivery systems [26–28]. For instance, Guo et al.
developed a series of pH-responsive star-shaped polymer Ad-(PCL-b-PDEAEMA-b-PPEGMA)4.
The micelles prepared from these copolymers released 67% of doxorubicin (DOX) at pH 4.5 due to the
protonation of block poly(N,N-diethylamino-2-ethylmethacrylate) (PDEAEMA), while only 20% of
DOX was released at the pH 7.4. This fast release behavior driven by the tertiary amine groups under
the acidic conditions is not suited for use as oral drug delivery nano-carriers [29]. Therefore, it is highly
demanded to explore novel pH-sensitive nano-carriers assembled by Ad-based star-shaped polymers
for oral drug delivery.

Herein, pH-sensitive nano-carriers based on star-shaped copolymer, adamantane-
poly[(ethylmethacrylate-co-methacrylic acid)-b-poly(poly(ethyleneglycol)methyl ether methacrylate)]4

(Ad-P[(EMA-co-MAA)-b-PPEGMA]4), were designed for oral drug controlled release. The hydrophobic
PEMA was incorporated randomly with the pH-sensitive PMAA, forming the core of micelles and
rendering the pH-sensitiveness of the micelles. The hydrophilic block PPEGMA could form the out
layer of micelles, for maintaining the stability and increasing water solubility. Paclitaxel (PTX), one of
the hydrophobic anticancer drug, was used as a model drug and encapsulated into the Ad-P[(EMA-co-
MAA)-b-PPEGMA]4 micelles. Such PTX-loaded micelles could keep a tight structure in an acidic
environment (pH 1.2). The deprotonation of -COOH groups of PMAA at pH 6.8 may contribute to the
swell of the micelle structure, thus the PTX could be released (Scheme 1). The cytotoxicity of these
nano-carriers was also studied.
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2. Materials and Methods

2.1. Materials

Ethyl methacrylate (EMA), tert-butyl methacrylate (tBMA), poly(ethylene glycol) methyl ether
methacrylate (PEGMA, Mn = 500 Da), N,N,N′,N′,N”-pentamethyldiethylenetriamine (PMDETA),
CuBr2, stannous octoate (Sn(Oct)2), trifluoroacetic acid (TFA), pyrene and paclitaxel (PTX) were
purchased from Aladdin (Aladdin Chemistry Co., Ltd., Shanghai, China).
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2.2. Characterization

1H NMR spectra were recorded on Bruker AVANCE Ш400 MHz (Bruker, Rheinstetten, Germany)
using deuterated chloroform (CDCl3-d) or sulfoxide-d6 (DMSO-d6) as a solvent. The number average
molecular weight (Mn) and dispersity index (Mw/Mn) were measured on a gel permeation chromatography
(GPC) using Waters 1525/2414 (Waters, Milford, MA, USA) with THF as the eluent (1.0 mL/min).
The particle size (Dh) and zeta potentials were determined by dynamic light scattering (DLS) with
Brookhaven (Brookhaven, NY, USA). Transmission electron microscopy (TEM, HITACHI HT7700,
Tokyo, Japan) was employed to characterize the morphologies of the nanoparticles. Fluorescence
spectra were obtained using a fluorescence spectrophotometer (FluoroMax-4, HORIBA Jobin Yvon,
Edison, NJ, USA).

2.3. Synthesis of Ad-P[(EMA-co-MAA)-b-PPEGMA]4

2.3.1. Synthesis of Ad-P[(EMA-co-tBMA)]4

Ad-P[(EMA-co-tBMA)]4 was synthesized by ARGET ATRP of EMA and tBMA. In brief, Ad-(Br)4

(0.12 g) (Figure S1) [30], EMA (3.3 mL, 26.5 mmol), tBMA (3.4 mL, 21 mmol), CuBr2 (11.2 mg, 0.05 mmol),
PMDETA (105 µL, 0.5 mmol), Sn(Oct)2 (160 µL, 0.5 mmol) and 30 mL of THF were placed in a 100 mL
Schlenk flask and degassed by three-freeze-thaw cycles. The mixture was then heated to 60 ◦C for 24 h
under an argon atmosphere. After cooling to room temperature, the catalyst was removed by passing
through a neutral alumina column (THF as the eluent). Finally, after precipitating by n-hexane, the
final product was dried under vacuum for 24 h.

2.3.2. Synthesis of Ad-P[(EMA-co-tBMA)-b-PPEGMA]4

The synthetic procedure of Ad-P[(EMA-co-tBMA)-b-PPEGMA]4 was similar to Ad-P[(EMA-co-
tBMA)]4. In brief, Ad-P[(EMA-co-tBMA)]4 (0.5 g), PEGMA (3.5 mL, 7.7 mmol), CuBr2 (11.2 mg,
0.05 mmol), PMDETA (105 µL, 0.5 mmol), Sn(Oct)2 (160 µL, 0.5 mmol) and 30 mL of THF were placed in
a 100 mL Schlenk flask and degassed by three-freeze-thaw cycles. The mixture was then heated to 60 ◦C
for 24 h under Argon atmosphere. After cooling to room temperature, the catalyst was removed by
passing through a neutral alumina column (THF as the eluent). Finally, after precipitating by n-hexane,
the final product was dried under vacuum for 24 h.

2.3.3. Hydrolysis of Ad-P[(EMA-co-tBMA)-b-PPEGMA]4

Ad-P[(EMA-co-MMA)-b-PPEGMA]4 was synthesized by hydrolysis. Briefly, Ad-P[(EMA-co-tBMA)-
b-PPEGMA]4 (0.5 g) was dissolved in 20 mL of DCM. 2 mL of TFA was added slowly into the mixture
with vigorous stirring under 0 ◦C. After stirring at 0 ◦C for 30 min, the reaction was carried out at
25 ◦C for 24 h. After evaporating all the solvent, the residues were dissolved in 5 mL of THF and
precipitated into 50 mL of n-hexane. The resulting copolymer Ad-P[(EMA-co-MMA)-b-PPEGMA]4 was
collected by filtration and dried under vacuum for 24 h.

2.4. Critical Micelle Concentration (CMC) Measurement

The CMC of the copolymer was measured using pyrene as a hydrophobic fluorescent probe
The copolymer solutions in various concentrations were equilibrated with a constant concentration
of pyrene (6 × 10−7 M) for 24 h in the dark. The CMC values were determined by the fluorescence
excitation spectra.

2.5. Study of the pH-Sensitive of the Blank Micelles

In brief, 40 mg of the copolymer was dissolved in 10 mL of DMF. Under stirring, the solution was
added dropwise to deionized water (40 mL). The mixture was placed into a dialysis bag (Molecular
weight cut off (MWCO) = 3.5 kDa) and dialyzed against deionized water for 48 h at 25 ◦C. The blank
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micelle solution was further used to study the pH-sensitiveness. Acid-base titration was measured (the
method was shown in the Supplementary Materials). Dynamic light scattering (DLS) and transmission
electron microscopy (TEM) were used to test the particle size, zeta potential and morphologies of the
nano-carriers in different pHs.

2.6. Preparation of PTX-Loaded Micelles

In brief, 40 mg of copolymers and 13 mg of PTX were dissolved in 10 mL of N,N-dimethylformamide
(DMF). The solution was transferred into a dialysis bag (MWCO = 3.5 kDa) and dialyzed against
deionized water for 48 h at 25 ◦C. Finally, the PTX-loaded polymers were collected by lyophilization.
The drug loading content (DLC) and entrapment efficiency (EE) were calculated using formula:

DLC (%) =
mloaded drug

mdrug−loaded micelle
× 100% (1)

EE (%) =
mloaded drug

mdrug in f eed
× 100%. (2)

2.7. In Vitro PTX Release Study

In brief, PTX-loaded micelles (5 mg) were suspended in 5 mL of simulated gastric fluid (SGF,
pH 1.2) or simulated intestinal fluid (SIF, pH 6.8), and then placed into a dialysis bag (MWCO = 3.5 kDa).
The bag was placed into 35 mL of SGF or SIF solution. Sample solution (4 mL) was taken out at specified
time intervals and 4 mL of fresh SIF or SGF solution was added to maintain the total volume at 37 ◦C.
The cummulative PTX release percent (Er) was calculated using formula:

Er(%) =

Ve
n−1∑

1
Ci + V0Cn

mPTX
× 100 (3)

where mPTX is the amount of PTX in the micelles, V0 = 40 mL, Ci is the concentration of PTX in the ith
sample. Each experiment was repeated three times.

2.8. In Vitro Cytotoxicity Test

The in vitro cytotoxicity of the blank and PTX-loaded micelles were evaluated against 3T3 and
MCF-7 cells by the CKK-8 assay. The 3T3 and MCF-7 cells were first cultured and maintained in DMEM.
Cells seeded in 96-well plates were incubated in 5% CO2 at 37 ◦C with blank and PTX-loaded micelle
solution with different concentration for 48 h. Afterwards, 10 µL of freshly prepared CKK-8 solution
was added to each well and incubation for another 2 h. The absorbance was measured at 450 nm by a
microplate reader. Cell viability was expressed as the percentage of surviving cells compared to the
cells in untreated control wells.

3. Results and Discussion

3.1. Synthesis and Characterization of Ad-P[(EMA-co-MAA)-b-PPEGMA]4

Ad-P[(EMA-co-MAA)-b-PPEGMA]4 was synthesized via ARGET ATRP and selective hydrolysis
of tert-butyl groups of tBMA, as shown in Scheme 2. The signals of -CH2- and -CCH3 on methacrylate
backbone appear at 1.8–2.0 ppm (a, a′) and 0.9–1.2 ppm (b, b′), respectively, on 1H NMR spectra in
Figure 1a. Meanwhile, the peaks at 4.05 ppm (c) and 1.42 ppm (d) are ascribed to the -CH3 on EMA
unit and -C(CH3)3 on tBMA unit, respectively. The peaks at 3.38 (f) and 3.64 (e) ppm were assigned to
the signals of -OCH3 and -OCH2CH2- protons in the PEGMA unit (Figure 1b). As seen in Figure 1c,
after hydrolysis, the tert-butyl groups (1.42 ppm) disappears, while the signal of the carboxyl group
can be observed at 12.37 ppm (g). According to GPC analysis, the Mn of the copolymers Ad-P1 and
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Ad-P2 were about 21.4, and 20.9 × 103 Da with the Mw/Mn of 1.33, and 1.5, respectively (Table 1,
Figure S2). In addition, the CMC values of AdP-1 and AdP-2 were determined to be ~5.0 and 3.9 mg/L,
respectively (Figure 2 and Table 1). The low CMC values indicated that stable micelles could be formed
at a lower concentration, and may endow the carriers with long-circulating characteristic [31].
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Table 1. Characterization of Ad-P[(EMA-co-MMA)-b-PPEGMA]4.

Sample Mn, GPC
1 Mw/Mn

1 Mn, th
2 CMC 3 (mg/L)

AdP-1 Ad-P[(EMA11-co-MAA9)-b-PPEGMA10]4 21.4 × 103 1.33 25.1 × 103 5.0
AdP-2 Ad-P[(EMA11-co-MAA12)-b-PPEGMA7]4 20.9 × 103 1.50 23.5 × 103 3.9

1 Determined by GPC. 2 Value by design. 3 Calculated from a fluorescence spectroscopic method.

3.2. pH-Sensitive Behaviors of Blank Micelles

The pH-sensitive ranges of AdP-1 and AdP-2 were evaluated by the acid-base titration, as shown in
Figure 3a. With the increase of NaOH solution, the pH values increased gradually and reached a plateau,
because of the deprotonation of carboxyl groups (-COOH) in PMAA segments. The buffering pH regions
of AdP-1 and AdP-2 were 5.2–8.1. It also could be seen that AdP-2 with longer PMAA segments needs
more NaOH solution. Furthermore, the particle size (Dh), zeta potential and morphologies of blank
micelles at different pHs were measured to investigate the pH-sensitiveness. In Figure 3b (Figure S3),
the particle size is larger than 400 nm at pH 1–2, probably due to the aggregation of the micelles formed
by the hydrogen bonding from -COOH of PMAA. At pH = 3–5, the size of the micelle was kept below
200 nm, indicating the stability of the micelle structure [12,32,33]. In the pH range of 5–7, the size of the
micelles showed an increasing trend, which may be related to the deprotonation of PMAA and swelling
of the micelles. Zeta potential presented higher negative charges as shown in Figure 3c also confirmed
the ionization of the -COOH groups from PMAA [24]. The negative charges of the micelles could benefit
the bioadhesion between the micelles and intestinal epithelial cells [12,34–36]. TEM images in Figure 4
reflected the morphologies of the micelles in different pHs. At pH 2, the micelles may congregate into
irregular aggregates due to hydrogen bonding among micelles. Due to the deprotonation at pH 7, the
swelling of micelles may lead to some destruction of the micellar structures.

Materials 2019, 12, x FOR PEER REVIEW 6 of 13 

 

Figure 2. Critical micelle concentration (CMC) values of AdP-1 and AdP-2. 

Table 1. Characterization of Ad-P[(EMA-co-MMA)-b-PPEGMA]4. 

 Sample Mn, GPC 1 Mw/Mn 1 Mn, th 2 
CMC 3 
(mg/L) 

AdP-1 Ad-P[(EMA11-co-MAA9)-b-PPEGMA10]4 21.4×103 1.33 25.1 × 103 5.0 
AdP-2 Ad-P[(EMA11-co-MAA12)-b-PPEGMA7]4 20.9×103 1.50 23.5 × 103 3.9 

1 Determined by GPC. 
2 Value by design. 
3 Calculated from a fluorescence spectroscopic method. 

3.2. pH-Sensitive Behaviors of Blank Micelles 

The pH-sensitive ranges of AdP-1 and AdP-2 were evaluated by the acid-base titration, as 
shown in Figure 3a. With the increase of NaOH solution, the pH values increased gradually and 
reached a plateau, because of the deprotonation of carboxyl groups (-COOH) in PMAA segments. 
The buffering pH regions of AdP-1 and AdP-2 were 5.2–8.1. It also could be seen that AdP-2 with 
longer PMAA segments needs more NaOH solution. Furthermore, the particle size (Dh), zeta 
potential and morphologies of blank micelles at different pHs were measured to investigate the 
pH-sensitiveness. In Figure 3b (Figure S3), the particle size is larger than 400 nm at pH 1–2, 
probably due to the aggregation of the micelles formed by the hydrogen bonding from -COOH of 
PMAA. At pH = 3–5, the size of the micelle was kept below 200 nm, indicating the stability of the 
micelle structure [12,32,33]. In the pH range of 5–7, the size of the micelles showed an increasing 
trend, which may be related to the deprotonation of PMAA and swelling of the micelles. Zeta 
potential presented higher negative charges as shown in Figure 3c also confirmed the ionization of 
the -COOH groups from PMAA [24]. The negative charges of the micelles could benefit the 
bioadhesion between the micelles and intestinal epithelial cells [12,34–36]. TEM images in Figure 4 
reflected the morphologies of the micelles in different pHs. At pH 2, the micelles may congregate 
into irregular aggregates due to hydrogen bonding among micelles. Due to the deprotonation at pH 
7, the swelling of micelles may lead to some destruction of the micellar structures. 

0 1000 2000 3000 4000 5000 6000 7000
2

4

6

8

10

12

 

 

pH

V NaOH / uL

 Water
 AdP-1
 AdP-2

 
(a) 

Materials 2019, 12, x FOR PEER REVIEW 7 of 13 

 

2 3 4 5 6 7
100

150

200

250

300

350

400

450

500

 

 

D h / 
nm

pH

 AdP-1
 AdP-2

 

2 3 4 5 6 7
-50

-40

-30

-20

-10

0

10

 

 

Za
ta

 p
ot

en
tia

l /
 m

V

pH

 AdP-1
 AdP-2

 
 

(b) (c) 

Figure 3. Titration curves (a); Effects of pH on Dh (b) and zeta potential (c) of the micelles 
formed by Ad-P1 and AdP-2. 

 

500 nm

pH=2

 

pH=7

500 nm
 

(a) (b) 

Figure 4. Transmission electron microscope (TEM) images of blank micelles formed by 
Ad-P1 at different pH conditions (a) pH = 2; (b) pH = 7. 

3.3. In Vitro PTX Controlled Release 

As shown in Figure 5, because chloroform is a good solvent for both PTX and polymer, so the 
signals of PTX and the polymeric micelles have been observed (Figure 5a). In D2O, only signals of 
PPEGMA are visible whereas the signals corresponding to PTX and hydrophobic segments 
disappear (Figure 5b). This indicates that the PTX was encapsulated into the core of the polymeric 
micelles. The size of blank micelles was about 150–160 nm and increased to be 300 nm after loading 
PTX (Table 2). Drug loading content (DLC) and entrapment efficiency (EE) were influenced by the 
weight ratio of drug to copolymer [13,29,37]. A series of PTX-loaded micelles with different weight 
ratios of copolymers were optimized. As the amount of PTX increased, the DLC was enhanced 
gradually, while the EE increased first and then decreased. The results showed that the optimal 
drug loading efficiency was obtained at a ratio of PTX and copolymer 13:40 (≈1:3). According to 
previous studies, the micelles with longer hydrophobic segment have higher drug loading content 
and entrapment efficiency [29,38,39]. Under the same drug feed ratio test condition, AdP-2 
exhibited higher drug entrapping ability than AdP-1, due to the longer hydrophobic content of 
AdP-2. Both blank and PTX-loaded nano-carriers showed spherical morphology on TEM images 
(Figure 6). 

Figure 3. Titration curves (a); Effects of pH on Dh (b) and zeta potential (c) of the micelles formed by
Ad-P1 and AdP-2.



Materials 2019, 12, 1610 7 of 12

Materials 2019, 12, x FOR PEER REVIEW 7 of 13 

 

2 3 4 5 6 7
100

150

200

250

300

350

400

450

500

 

 

D h / 
nm

pH

 AdP-1
 AdP-2

 

2 3 4 5 6 7
-50

-40

-30

-20

-10

0

10

 

 

Za
ta

 p
ot

en
tia

l /
 m

V

pH

 AdP-1
 AdP-2

 
 

(b) (c) 

Figure 3. Titration curves (a); Effects of pH on Dh (b) and zeta potential (c) of the micelles 
formed by Ad-P1 and AdP-2. 

 

500 nm

pH=2

 

pH=7

500 nm
 

(a) (b) 

Figure 4. Transmission electron microscope (TEM) images of blank micelles formed by 
Ad-P1 at different pH conditions (a) pH = 2; (b) pH = 7. 

3.3. In Vitro PTX Controlled Release 

As shown in Figure 5, because chloroform is a good solvent for both PTX and polymer, so the 
signals of PTX and the polymeric micelles have been observed (Figure 5a). In D2O, only signals of 
PPEGMA are visible whereas the signals corresponding to PTX and hydrophobic segments 
disappear (Figure 5b). This indicates that the PTX was encapsulated into the core of the polymeric 
micelles. The size of blank micelles was about 150–160 nm and increased to be 300 nm after loading 
PTX (Table 2). Drug loading content (DLC) and entrapment efficiency (EE) were influenced by the 
weight ratio of drug to copolymer [13,29,37]. A series of PTX-loaded micelles with different weight 
ratios of copolymers were optimized. As the amount of PTX increased, the DLC was enhanced 
gradually, while the EE increased first and then decreased. The results showed that the optimal 
drug loading efficiency was obtained at a ratio of PTX and copolymer 13:40 (≈1:3). According to 
previous studies, the micelles with longer hydrophobic segment have higher drug loading content 
and entrapment efficiency [29,38,39]. Under the same drug feed ratio test condition, AdP-2 
exhibited higher drug entrapping ability than AdP-1, due to the longer hydrophobic content of 
AdP-2. Both blank and PTX-loaded nano-carriers showed spherical morphology on TEM images 
(Figure 6). 

Figure 4. Transmission electron microscope (TEM) images of blank micelles formed by Ad-P1 at
different pH conditions (a) pH = 2; (b) pH = 7.

3.3. In Vitro PTX Controlled Release

As shown in Figure 5, because chloroform is a good solvent for both PTX and polymer, so the
signals of PTX and the polymeric micelles have been observed (Figure 5a). In D2O, only signals of
PPEGMA are visible whereas the signals corresponding to PTX and hydrophobic segments disappear
(Figure 5b). This indicates that the PTX was encapsulated into the core of the polymeric micelles.
The size of blank micelles was about 150–160 nm and increased to be 300 nm after loading PTX (Table 2).
Drug loading content (DLC) and entrapment efficiency (EE) were influenced by the weight ratio of drug
to copolymer [13,29,37]. A series of PTX-loaded micelles with different weight ratios of copolymers
were optimized. As the amount of PTX increased, the DLC was enhanced gradually, while the EE
increased first and then decreased. The results showed that the optimal drug loading efficiency was
obtained at a ratio of PTX and copolymer 13:40 (≈1:3). According to previous studies, the micelles with
longer hydrophobic segment have higher drug loading content and entrapment efficiency [29,38,39].
Under the same drug feed ratio test condition, AdP-2 exhibited higher drug entrapping ability than
AdP-1, due to the longer hydrophobic content of AdP-2. Both blank and PTX-loaded nano-carriers
showed spherical morphology on TEM images (Figure 6).
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Table 2. The properties of blank and paclitaxel (PTX)-loaded micelles.

PTX/Copolymer (mg/mg) Dh (nm) PDI Zata Potential (mV) DLC (%) EE (%)

AdP-1 0/40 150.8 0.155 −28 – –
10/40 196.1 0.227 −23 11.8 32.9
13/40 265.2 0.233 −18.6 14.6 33.3
20/40 294.8 0.248 −25 15.9 26.1

AdP-2 0/40 160.2 0.183 −30 – –
10/40 258 0.197 −26.8 14.7 38.9
13/40 300.6 0.258 −21.3 18.9 36
20/40 330 0.210 −24.1 16.8 35.7
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Figure 6. TEM images of AdP-1 blank micelles (a), AdP-2 blank micelles (b), AdP-1 PTX-loaded
micelles (c) and AdP-2 PTX-loaded miceles (d).

In vitro release profiles of PTX-loaded micelles nano-carriers were measured at 37 ◦C in SGF
(pH 1.2) and SIF (pH 6.8), respectively (Figure 7). At pH 1.2, due to the tight structure of PTX-loaded
micelles, the release rates were slow and only about 19% of PTX was released after 70 h, indicating the
PTX can be protected in the acidic environment. At pH 6.8, the release rates of PTX were accelerated
without burst release and 34–44% of PTX released in 10 h and 67–73% in 70 h, respectively, due to the
swelling of micelles caused by the -COOH groups of PMAA. As PEMA and PMAA were defined as a
random copolymer, the pH-sensitiveness of the micelles increased with the increase of PMAA ratios.
Thus, at pH 6.8, the cumulative release of AdP-2 (73%) was higher than that of AdP-1 (67%). In brief,
the in vitro PTX release tests demonstrated that the pH-sensitive micelles can be potentially used as oral
drugs nano-carriers. In addition, to evaluate the mechanism of drug release from nano-carriers, release
data were fitted with zero order, first order, Hixson-Crowell and Korsmeyer-Peppas kinetic models,
respectively [40–43] in Table 3. The Hixson-Crowell model may be the best-fitted kinetic model.
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Table 3. In vitro release kinetics equation simulation of the nano-carriers.

Model Equation R2 R

AdP-1 at pH 1.2
Zero order Y = 0.1048x + 10.979 0.5189 0.7203
First order Y = 10.38e0.009x 0.4083 0.6390

Hixson-Crowell Y = 0.0002x3
− 0.0224x2 + 0.8466x + 7.2662 0.8838 0.9401

Peppas Y = 7.7009x0.2103 0.8609 0.9278
AdP-2 at pH 1.2

Zero order Y = 0.1328x + 11.281 0.6486 0.8053
First order Y = 10.77e0.01x 0.5034 0.7100

Hixson-Crowell Y = 0.0002x3
− 0.0205x2 + 0.8156x + 7.8419 0.8949 0.9460

Peppas Y = 8.009x0.2215 0.9159 0.9570
AdP-1 at pH 6.8

Zero order Y = 0.6742x + 24.549 0.9045 0.9511
First order Y = 24.52e0.017x 0.7829 0.8848

Hixson-Crowell Y = 0.0004x3
− 0.0481x2 + 2.3484x + 15.822 0.9968 0.9984

Peppas Y = 17.443x0.3092 0.9811 0.9905
AdP-2 at pH 6.8

Zero order Y = 0.7379x + 28.67 0.8665 0.9310
First order Y = 28.054e0.016 0.7291 0.8539

Hixson-Crowell Y = 0.0005x3
− 0.0625x2 + 2.9045x + 17.412 0.9883 0.9941

Peppas Y = 19.648x0.3128 0.9651 0.9824

3.4. In Vitro Cytotoxicity Test

For the potential biomedical applications, it is necessary to investigate the cytotoxicity of polymeric
nano-carriers. Figure 8 showed the results of cells treated with blank and PTX-loaded micelles for 48 h,
respectively. It should be noticed that the viability of the 3T3 cells was observed to be close to ~90%
even at higher concentration of 300 mg/L after 48 h (Figure 8a), indicating the good cytocompatibility
of nano-carriers. In addition, PTX-loaded micelles or PTX was used in the incubation of MCF-7
cells and both of them showed significant antitumor activity, which positively correlated with their
concentrations (Figure 8b).
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48 h.

4. Conclusions

Star-shaped pH-sensitive copolymers Ad-P[(EMA-co-MMA)-b-PPEGMA]4 were synthesized by
ARGET ATRP. The copolymers can be self-assembled into micelles with pH-sensitiveness. In vitro
drug release behaviors of the PTX-loaded micelles suggested that the rate of the PTX release could
be controlled by the pH values of the environment. Less than 20% of PTX released in SGF solution
(pH 1.2), while 67–73% of PTX released in SIF solution (pH 6.8) within 70 h. The in vitro cytotoxicity
assay confirmed the low cytotoxicity of the blank micelles formed by star-shaped copolymers. Thus,
the as-made pH-sensitive micelles could be the promising oral drug nano-carriers for biomedical
applications. In addition, further and more studies (e.g., cell uptake test and in vivo test, such as
cytotoxicity, biocompatibility, and in vivo drug release) is ongoing in our lab.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/10/1610/s1,
Figure S1: 1H NMR spectrum of Ad-(Br)4, Figure S2: GPC traces of AdP-1 and AdP-2, Figure S3: The DLS data of
AdP-1 and AdP-2 in different pH values.
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