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Abstract: This study aims to investigate the prediction of critical buckling load of steel columns
using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System
optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized
by Particle Swarm Optimization (ANFIS-PSO). For this purpose, a total number of 57 experimental
buckling tests of novel high strength steel Y-section columns were collected from the available
literature to generate the dataset for training and validating the two proposed AI models. Quality
assessment criteria such as coefficient of determination (R2), Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) were used to validate and evaluate the performance of the prediction
models. Results showed that both ANFIS-GA and ANFIS-PSO had a strong ability in predicting the
buckling load of steel columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522 and MAE = 44.044) was
slightly better than ANFIS-GA (R2 = 0.916, RMSE = 65.371 and MAE = 48.588). The two models were
also robust even with the presence of input variability, as investigated via Monte Carlo simulations.
This study showed that the hybrid AI techniques could help constructing an efficient numerical tool
for buckling analysis.

Keywords: buckling behavior; Adaptive Neuro-Fuzzy Inference System; Particle Swarm
Optimization; Genetic Algorithm; steel column

1. Introduction

Instability is one of the most crucial failure of structural members under axial loading [1].
The problem of buckling was reported in the literature for structural components with different types
of materials such as composite materials [2,3] or metallic shells [4]. The instability of such structural
element depends on various parameters such as geometry of cross-section, length of structural
components, boundary conditions, loads, etc. [5]. In order to characterize the instability behavior
of structural components under compression, experimental investigations were carried out in many
studies. In the work of Shi et al. [6], a laboratory experiment on stub steel structure under axial
loading was conducted. Four specimens of square box section with similar slenderness ratio were
prepared by welding 460 MPa steel plates together. The result indicated that the stability condition of
steel tubes has been reduced regarding the standard designs. In many other experimental studies on
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buckling behavior of columns, such as box section (800 MPa yield strength steel) [7,8], I-section (690
and 460 MPa yield strength steels) [9,10] and hollow circular section (420 MPa yield strength steel) [11],
test results demonstrated that buckling appeared earlier than estimation provided by existing design
standards. However, all of these laboratory experiments were generally complex, costly and time
consuming. In spite of all the efforts, it is not always possible to investigate a large number of variables
such as length of columns, geometry of cross-section and mechanical properties of materials, as well as
boundary conditions.

Experimental studies on buckling behavior of columns showed that the relationships between
load and displacement is highly nonlinear [6,9]. Such nonlinear problem makes the analysis of
structural elements behaviors under compression more complicated [12,13]. Theoretical works
and semi-analytical analysis mainly concerned on cantilever beams [12–14] or simply supported
beams [15,16]. With the development of numerical analysis, finite element method has been widely
applied to investigate nonlinear phenomena in the field of mechanics, especially for buckling problem.
Shi et al. [11] used ANSYS software (Version 15, Ansys Inc., Canonsburg, PA, USA, 2014 ) to simulate
the mechanical behavior of circular steel tubes under axial compression. Finite element approach for
studying the instability of structural compression elements has also been reported in many works, for
instance, Shi et al. [6,8] for steel rectangular tubes, Yang et al. [10] for steel columns with I cross-section
or Jiang et al. [17] for hollow circular tubes made of Nickel Titanium alloy. The use of commercial
software such as ANSYS [18] or ABAQUS (Version 6.9, Dassault Systemes Simulia Corp, Providence, RI,
USA, 2009) [19] mostly applied only to specific cases with limited variations of input parameters such
as cross-section geometry, length, mechanical properties, loads, etc. In order to profoundly analyze
the problem and perform high-performance parallel computing with large data, code development in
programming languages is essential. However, nonlinear finite element method remains so challenging
for researchers, particularly in terms of nonlinear algorithm implementation [20–25]. Therefore, it
becomes clear that a more robust manner is required to better understand and predict the buckling
behavior of structural elements under compression.

In the past few years, Artificial Intelligence (AI) models are widely used in mechanical engineering
for predicting the properties and behaviors of structural elements [26]. Lakshmi et al. [27] developed
an artificial neural network for predicting the mechanical properties in superplastic region of austenite
stainless steel. Thankachan et al. [28] numerically investigated an AI model for the degradation
of metallic material properties under presence of hydrogen. The prediction of effective mechanical
properties of heterogeneous materials have also been studied using soft-computing techniques [29–31].
Various mechanical properties of material such as shear strength [32–34], tensile strength [35,36] and
compressive strength [37–42] were investigated in the literature using data-driven algorithms. Several
failure modes of structural elements have also been investigated with the help of AI approaches.
For instance, fatigue of steel components was studied using neural network algorithm [43]. In the works
of Tan et al. [44] and Padil et al. [45], damage in steel beams has been detected, located and quantified
using a non-probabilistic artificial neural network model. Regarding structural members instability,
buckling behavior of structural elements under axial loading was predicted using artificial neural
network technique for various geometries such as shells [46,47], panels [48], beams of I-section [49]
or elliptical section [35,50]. The prediction of column buckling under the presence of crack has also
been reported in the work of Bilgehan [51] using an Adaptive Neuro-Fuzzy Inference System model.
Thus far, studies involving AI models could strongly explain and predict the mechanical behavior of
structural elements, particularly in terms of buckling capacity.

The main purpose of this paper is to investigate the ability to predict the buckling load of steel
columns using two hybrid AI models such as Genetic Algorithm combined with Adaptive Neuro-Fuzzy
Inference System (ANFIS-GA) and Particle Swarm Optimization combined with Adaptive Neuro-Fuzzy
Inference System (ANFIS-PSO). The main difference between this work and previous studies is that
this is the first time these hybrid AI models have been performed for predicting the buckling load
of steel columns. Moreover, Monte Carlo simulations were applied to evaluate the robustness
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of both ANFIS-GA and ANFIS-PSO models, taking into account input variability. With this aim,
57 experimental results in the work of Yu et al. [52] with input variables (length of columns, geometry
of cross-section, initial geometrical deviation in both x and y directions) and one output variable (the
buckling load of 420 MPa high strength steel Y-section columns with slenderness ratio varying from
30 to 80) was used to generate training and testing datasets. Several statistical quality assessments
such as the coefficient of determination (R2), Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) were used to validate the performance of the proposed models.

2. Methods Used

2.1. Machine Learning Methods

2.1.1. Adaptive Networks-Based Fuzzy Inference System

A hybrid AI model constructed by coupling the Fuzzy Logic (FL) and Artificial Neural Networks
(ANN) is well-known as Adaptive Networks-Based Fuzzy Inference System (ANFIS) [53]. In such
a model, the number of nodes, which are connected by directional links in the ANN, can estimate the
fuzzy parameters of fuzzy logic algorithm [54]. The main principle of the ANFIS lies in the construction
of a set of fuzzy if-then rules with suitable membership functions to create the stipulated input and
output variables [51]. More specifically, it is supposed that there are two input parameters (x and y)
and one output variable (f), a base fuzzy if-then rules used in the ANFIS can be shown as follows [55]:

If x is A1 and y is B1, then f 1 = a1x + b1y + r1 (rule 1); (1)

If x is A2 and y is B2, then f 2 = a2x + b2y + r2 (rule 2). (2)

where A1, A2, B1, B2 are the functions of x and y, p1, q1, r1 and p2, q2, r2 are the linear output parameters
of rule 1 and rule 2, respectively.

The structure of the ANFIS, which includes two inputs and one output (Figure 1), consists of five
main layers, connected by adaptive nodes and fixed nodes as follow [53]:

Layer 1: Every node in this layer is a squared node with a node function as below:

O1,i = µAi(x) (3)

O1,i = µBi(y) (4)

where Ai(x) and Bi(y) are linguistic labels of the inputs x and y, respectively, and µAi(x) and µBi(y) are
the membership functions of Ai(x) and Bi(y).

Layer 2: Every node in this layer is fixed and labeled with an “M” sign, multiplies the incoming signals
and sends the output.

O2,i = wi = µAi(x).µBi(y) (5)

Layer 3: Every node is fixed and labeled with “N”. The outputs are normalized as:

O3,i = wi =
wi∑2

j=1 w j
(6)

Layer 4: Every node in this layer is an adaptive node with the node function indicated as
following equation:

O4,i = wi fi = wi(aix + biy + ri) (7)

where wi infers the outputs of layer 3.
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Layer 5: Every node in this layer is a single fixed node and labeled with “Σ”; it sums up all incoming
signals to compute the overall output:

O5,i =
∑

i

wi fi =
∑

i wi fi∑
i wi

(8)
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Figure 1. Architecture of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique.

2.1.2. Genetic Algorithm

Genetic Algorithm (GA) is a computational method inspired by the principle of biological
evolution, which is used for optimization and searching. The idea of GA was first introduced by
Holland and his students [56,57]. GA consists in moving a population of chromosomes (containing
strings of ones and zeros, which are called genes) to a new population that outperforms the old one,
using natural selection processes such as crossover or mutation [58,59].

Figure 2 illustrates the structure of GA, which can be presented in five main steps:

(1) Initialization of population: in this step, an initial set of solutions (population of chromosomes)
to the current problem is introduced. Given N such that the size of the population (number of
chromosomes), the choice of N is important, if N is too big, the algorithm might take too much
time to perform. On the other hand, if N is too small, it might not be sufficient to reach an optimal
solution. The choice of a fitness function is also defined in this step in order to evaluate how good
the solution is in the next step.

(2) Evaluation of fitness function value: in this step, the fitness function value of each chromosome in
the population is evaluated in order to verify if the chromosome is good enough to be reproduced.

(3) Selection for reproduction: in this step, a selection of best chromosomes is performed based on
the fitness function value of each chromosome. The better they fit the fitness function, the more
likely they will be chosen to be reproduced. After this step, if the stopping criterion is reached,
the algorithm will stop; if not, the next two steps will be executed.

(4) Crossover: this step is realized with the contribution of two chromosomes. A crossover point is
randomly chosen inside the chromosome; then, offspring are created by exchanging genes from
their parents. For example, considering two chromosomes S1 and S2 defined as:

S1 = [1 1 1 1 1] (9)

S2 = [0 0 0 0 0] (10)
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Given the crossover point i = 2, we have the new offspring of S1 and S2 such that:

S′1 = [0 0 1 1 1] (11)

S′2 = [1 1 0 0 0] (12)

(5) Mutation: this process is performed within each individual offspring after crossover, their genes
can be mutated in order to produce more offspring. For example, the new offspring of S1′ after
mutation can be expressed such that:

S′′1 = [1 0 1 0 1] (13)
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The diversity of the population can be maintained via the mutation process, which could also
prevent the premature convergence. The GA technique has been successfully applied in various
hybrid optimization studies. As typical examples, the GA was combined with both Support Vector
Regression [60] and Response Surface Methodology [61] respectively in order to optimize friction
welding process parameters for increasing tensile strength of ductile iron.

2.1.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization approach based on social behavior of
animals such that the movement of organisms in a bird flock or a fish school, which is initially proposed
in Eberhart and Kennedy [62]. The PSO has been largely applied to solve optimization problems [63–65].
Its main idea is to optimize a problem by iteratively moving a group of particles towards the best
position in a given search space. Inspired by the social behavior of animals, five main principles of the
PSO algorithm are outlined in the works of van den Bergh [66] and Wang et al. [67]:

• Proximity: it is able to perform simple calculations in time and space.
• Stability: the swarm does not change the behavior regarding every environment change.
• Quality: it is able to detect the quality change in the environment and respond to it.
• Diverse response: it has no limitation in the response to environment change.
• Adaptability: it is able to know if the change is worthy.

There are two main operators in the PSO structure: position update and velocity update. Figure 3
illustrates the basic algorithm of PSO which consists of four mains steps at each iteration of the process:

(1) For each particle of the population, the best position that the particle has reached thus far, called
pBest, is evaluated. If the current position is better than the previous position, then the particle
position is updated; otherwise, the previous position is kept.

(2) Evaluate gBest, which is the best position of the particles in the entire population.
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(3) Update the velocity using pBest and gBest. The new velocity is computed by:

vt+1
i = vt

i + αε1
[
pBestt

i − xt
i

]
+ βε2

[
gBestt

− xt
i

]
(14)

where i is particle index, t is time index, ε1 and ε2 are two random vectors in range [0, 1] and α
and β are positive constants.

(4) Update position of the particle. The new position of particles is calculated by:

xt+1
i = xt

i + vt+1
i (15)

These four steps are repeated to satisfy a stopping criterion, which means that the particles in the
population are in the best-desired positions.
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2.2. Validation Criteria

In this study, three statistical criteria namely coefficient of determination (R2), root mean squared
error (RMSE) and mean absolute error (MAE) were introduced in order to validate the developed AI
models. The R2 is widely used in regression analysis in order to estimate the percentage of variation of
target data that could be achieved by predicted data [68]. Both RMSE and MAE measure the average
magnitude of error [69]. However, RMSE is more useful in the case of large errors appeared (errors are
squared using RMSE). All three criteria are important as they exhibit significant information one to
another. R2, RMSE and MAE are defined by the following equations [70–74]:

RMSE =

√√√√
1
N

N∑
j=1

(p0, j−pt, j)
2 (16)
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MAE =
1
N

N∑
j=1

∣∣∣∣p0, j−pt, j

∣∣∣∣ (17)

R2 =

∑N
j=1

(
p0, j − p0

)(
pt, j − pt

)
√∑N

j=1

(
p0, j − p0

)2 ∑N
j=1

(
pt, j − pt

)2
, (18)

where N is the number of the observations, p0 and p0 are measured and mean measured values, while
pt and pt are predicted and mean predicted values of buckling critical load, respectively (j = 1:N).

2.3. Monte Carlo Method

Monte Carlo method has been largely used in many domains of science, particularly in mechanical
engineering [75]. Dao et al. [70] propagated random variability of various ingredients for the prediction
of compressive strength of geopolymer concretes. Tensile deformation and failure process of composites
were investigated by Yuan et al. [76] using Monte Carlo simulations. Guilleminot et al. [77] used
Monte Carlo method in order to take into account the fluctuation in mechanical properties of random
interphase in polymeric materials reinforced by nanoparticles. Various other uncertainty analyses
have also been carried out thanks to the numerical solver such as contact mechanics [78], dynamical
systems [79], measurement of mechanical properties [80] or viscoelastic composite structures [81]. This
method has an ability to propagate variability of input variables to the output results by repeating
randomly input sampling [82]. That way, automatic parallelization could be applied using Monte
Carlo method to reduce computational time [83] without dropping significant statistical information
in the input space. Figure 4 presents a schematization of using Monte Carlo method to propagate
variability in the input space to output through models.
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In this study, an indicator of convergence, called λ, was introduced in order to determine an
optimal number of Monte Carlo runs, as defined by the following equation [84]:

M 7→ λ(M) =
1

Um
1
M

M∑
i=1

Ui, (19)

where M is the number of Monte Carlo runs, U is the considered random variable and Um is the
average value of U. Such convergence analysis could help optimize simulation time and also provide
a reliable statistical result.

3. Data Used and Input Selection

In this study, 57 experimental results on buckling behavior of Y-section steel column were extracted
from the literature and summarized in Table 1. The dataset, conducted by Yu et al. [52], was achieved
from measures of steel columns with pinned-pinned boundary conditions (Figure 5a). This form of
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cross-section has been recently used in transmission tower to increase the performance under various
usage conditions. The Y-section columns were made by welding steel of equal angles and a steel plate
(Figure 5b). Both components of the Y-section columns were manufactured from high strength steel of
nominal 420 MPa yield strength and a Young’s modulus of 210 GPa. Along with the axial loading tests,
initial geometrical imperfections such as bending at middle of the columns, loading eccentricity at both
top and bottom cross-sections were also measured. The fluctuations of the real material properties
compared to the nominal one varied from 450 to 496 MPa of yield strength, as observed by the authors.
This finding has been reported for different high strength steels, such as circular tube section [11] or
box section [6]. The residual stresses have also been measured in a longitudinal direction using blind
hole drilling method [85]. It was shown that the cross-section could be self-balanced over the residual
stresses (i.e., the resultant force and moment over the cross-section could be calculated as zero). Indeed,
this is an important advantage of high strength over normal strength steel by reducing the ratio of
residual stress to yield strength [6].

Table 1. Data used in this study [52] (2017, Elsevier Ltd.). L denotes the length of columns. Width and
thickness of steel equal angles and steel plate are denoted by wa, ta, wp and tp, respectively, whereas δx

and δy denote the total deviation in x and y-direction, respectively. Pu is the buckling load of columns.

N◦ Specimen L (mm) wa (mm) ta (mm) wp (mm) tp (mm) δx (%�) δy (%�) Pu (kN)

1 M1130-1 1260 140.2 10.17 100.5 10.13 1.83 2.69 1523
2 M1130-2 1260 140.2 10.16 100.6 10.04 1.98 3.51 1483
3 M1130-3 1260 140.2 10.38 100.1 10.19 0.42 1.48 1631
- - - - - - - - - -
- - - - - - - - - -

55 M6680-1 2668 125.5 10.14 60.5 6.11 0.37 1.52 760
56 M6680-2 2674 125.8 10.41 60.6 6.2 0.2 −1.18 842
57 M6680-3 2672 125.5 10.09 60.2 6.16 1.73 1.41 735

Min 925.00 125.00 10.00 60.00 6.01 −3.28 −2.82 735.00
Average 2003.86 130.94 10.16 81.46 8.25 0.32 0.81 1247.51

Max 3314.00 141.50 10.44 101.20 10.44 3.05 3.51 1631.00
Standard
deviation 636.51 7.42 0.11 16.69 1.70 1.40 1.61 221.01
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In order to construct the buckling prediction models of columns, only geometrical information and
initial geometrical imperfections were considered as input parameters. The fluctuations of mechanical
properties as well as the residual stresses were considered having no effect on buckling behavior
of columns, as mentioned previously. However, initial geometrical imperfections could exhibit
a significant impact on buckling behavior of Y-section columns and it is necessary to evaluate [86,87].
Geometrical information constituted of length of columns, width, thickness of steel equal angles and
width and thickness of the steel plate. Initial geometrical imperfections were total deviations in the x
and y directions. Summary of the dataset is indicated in Table 1, including additional information
of buckling factor and slenderness ratios around the x-axis and y-axis. It is worth noticed that the
slenderness ratios and the buckling factor are dependent parameters. It was observed that the length
of columns varied from 925 mm to 3314 mm with mean value of 2003.86 mm and standard deviation
of 636.51 mm. The width of steel equal angles ranged from 125 mm to 141.50 mm with mean value of
130.94 mm and standard deviation of 7.42 mm. The width of the steel plate varied from 60.00 mm to
101.20 mm with mean value of 81.46 mm and standard deviation of 16.69 mm. The thickness of the
steel plate varied from 6.01 mm to 10.44 mm with mean value of 8.25 mm and standard deviation of
1.70 mm. The total deviation in x-direction ranged from −3.28%� to 3.05%� with mean value of 0.32%�

and standard deviation of 1.40%�. The total deviation in y-direction ranged from −2.82%� to 3.51%�

with mean value of 0.81%� and standard deviation of 1.61%�. The buckling load varied from 735 kN to
1631 kN with mean value of 1247.51 kN and standard deviation of 221.01 kN.

4. Methodology

The methodology of this study is presented in Figure 6, involving four main steps: (I) preparation
of data, (II) building of AI models, (III) validation of the models and (IV) robustness analysis.

Step I: In this step, the data collected including seven input variables and one output was
randomly split into training dataset, including 70% of data, and testing dataset with the remaining 30%
of data.

Step II: The training dataset was used to train the AI models. Regarding the ANFIS-PSO, the
PSO technique was performed using 25 particles, the inertia weight of 0.4 and 1000 iterations to
optimize the consequent and antecedent parameters of the ANFIS model. Regarding ANFIS-GA
model, the real coded GA technique was performed using a population size of 25. Such a number
of population size was chosen after trial-and-error testing with respect to both dimensionality of the
problem and computational time. Noting that population size in the range of 20 to 50 is commonly
used in optimization problems involving GA technique, for instance in Almeida et al. [88], Valarmathi
et al. [89] or Cheng et al. [90]. All GA parameters employed in this study are indicated in Table 2
as below:

Table 2. Parameters of Genetic Algorithm (GA) used in this study.

Parameters Value

Population size 25
Length of chromosome 220

Fitness function linear ranking
Cross-over type random pair

Cross-over probability 0.4
Number of off-springs 10

Mutation type random
Mutation probability 0.7
Number of mutants 18

Mutation rate 0.15

Selection function fitness proportionate selection
(roulette wheel selection)
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Step III: The trained models were tested and validated using the testing dataset. Statistical criteria
such as R2, RMSE and MAE were introduced to validate the developed models. A comparative study
of prediction performance between two AI models was also carried out.

Step IV: Monte Carlo simulations were conducted in order to investigate the robustness of AI
methods under the presence of input variability. Within a limit number of specimens, 200 Monte Carlo
runs were performed with ANFIS-GA and ANFIS-PSO in order to compare statistical analysis results.Materials 2019, 12, x FOR PEER REVIEW 10 of 19 
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5. Results and Discussion

5.1. Validation of Models and Prediction Capability

In this section, a validation of the two proposed AI models is performed. The regression graphs
between output results of AI models and the corresponding measured buckling capacity are shown



Materials 2019, 12, 1670 11 of 18

in Figure 7a,c for the training dataset, Figure 7b,d for the testing dataset, using ANFIS-GA and
ANFIS-PSO, respectively. A linear fit was also applied and plotted in each case. The normalized error
∆Pu was also introduced by the following equation:

∆Pu =
Ppredicted

u −Pmeasured
u

Pmeasured
u

×100, (20)

where Ppredicted
u and Pmeasured

u are values of predicted and measured Pu, respectively. The variation of
normalized error ∆Pu in function of sample index is shown in Figure 8a for the training part and in
Figure 8b for the testing part. A strong correlation between predicted outputs of two AI models and
experimental values of Pu was observed, clearly demonstrating the effectiveness of these algorithms.
Detailed values of R2, RMSE, MAE and ∆Pu are summarized in Table 3.

For the training part, ANFIS-PSO gave a higher value of R2 (0.937) compared to ANFIS-GA (0.899).
In terms of RMSE and MAE, ANFIS-PSO (RMSE = 54.437 and MAE = 40.143) also presented a better
performance compared to ANFIS-GA (RMSE = 68.711 and MAE = 53.824). Moreover, the mean value
of normalized error ∆Pm

u of ANFIS-PSO is closer to zero than that of ANFIS-GA (∆Pm
u = 0.038 and 0.490

with ANFIS-PSO and ANFIS-GA, respectively). For comparison purpose, the standard deviation of
normalized error ∆Pσu using ANFIS-PSO was 5.596, whereas ANFIS-GA was 6.832. This indicates that
the predicted values by ANFIS-PSO had a low order of error fluctuation than that of ANFIS-GA model.
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Figure 7. Regression results between measured Pu versus predicted Pu for the training part using
(a) Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA), (c) Adaptive
Neuro-Fuzzy Inference System optimized by Particle Swarm Optimization (ANFIS-PSO); for the testing
part using (b) ANFIS-GA, (d) ANFIS-PSO.
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Figure 8. Graphs of ∆Pu in function of sample index for: (a) the training part; (b) the testing part.

Table 3. Summary information of prediction capability (∆Pm
u and ∆Pσu are the average and standard

deviation of ∆Pu, respectively).

Dataset Methods R2 RMSE (kN) MAE (kN) ∆Pm
u (%) ∆Pσu(%)

Training ANFIS-GA 0.899 68.711 53.824 0.490 6.832
ANFIS-PSO 0.937 54.437 40.143 0.038 5.596

Testing ANFIS-GA 0.916 65.371 48.588 0.540 6.538
ANFIS-PSO 0.929 60.522 44.044 −0.101 5.844

With regard to the testing part, ANFIS-PSO exhibited a better prediction capability than ANFIS-GA.
Indeed, the values of R2, RMSE, MAE of ANFIS-PSO were 0.929, 60.522 and 44.044, while those of
ANFIS-GA were 0.916, 65.371 and 48.588, respectively. On the other hand, the values of mean and
standard deviation of the normalized error ∆Pu were −0.101, 5.844 for ANFIS-PSO and 0.540, 6.538 for
ANFIS-GA, respectively.

Based on the computed values of R2, RMSE, MAE, ∆Pm
u and ∆Pσu, it can be observed that

ANFIS-PSO was a better model for predicting of column critical buckling load. However, ANFIS-GA
also appeared a very promising candidate, as the difference between error criteria is rather small. Both
ANFIS-PSO and ANFIS-GA were potential techniques that could be widely applied for predicting
related problems in the field of mechanics.

5.2. Robustness of Models

The robustness of ANFIS-PSO and ANFIS-GA under the presence of input variability was
investigated with the help of Monte Carlo simulations, as detailed in Section 2.3. Statistical analysis
including convergence estimation (Equation (19)) of R2, RMSE and MAE distributions was carried out
and summarized in Table 4. Figure 9a–c shows the statistical convergence of two AI models within
200 Monte Carlo simulations, in terms of R2, RMSE and MAE, respectively. The convergence indicator
λ was deduced from the prediction outputs along with the number of Monte Carlo simulations M,
as described in Equation (19). It is shown that the optimal number of Monte Carlo simulations (i.e.,
when the stationary solution is reached) was the same for both ANFIS-GA and ANFIS-PSO for R2,
RMSE and MAE. Indeed, in the case of R2, the optimal number of Monte Carlo simulations is about
Mopt = 170, whereas Mopt = 100 and 120 in the case of RMSE and MAE, respectively. It means that
with respect to these criteria, a minimum number of Monte Carlo simulations of 170 was required to
obtain reliable statistical analysis. Moreover, this indicates that the proposed number of Monte Carlo
simulation in this study was sufficient.
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Table 4. Summary information of robustness analysis.

Criteria Methods Average StD Mopt

R2 ANFIS-GA 0.905 0.051 170
ANFIS-PSO 0.910 0.047 170

RMSE ANFIS-GA 65.247 13.199 100
ANFIS-PSO 62.986 12.679 100

MAE ANFIS-GA 49.318 10.887 120
ANFIS-PSO 47.629 10.343 120Materials 2019, 12, x FOR PEER REVIEW 13 of 19 
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Figure 9. Graphs of the convergence indicator λ over 200 Monte Carlo realizations for (a) R2, (b) Root
Mean Squared Error (RMSE) and (c) Mean Absolute Error (MAE).

Figure 10 shows the histogram of R2, RMSE and MAE distributions, whereas statistical analysis is
highlighted in Table 4. The values of average and standard deviation corresponding to the case of R2

were 0.905 and 0.051 for ANFIS-GA, whereas they were 0.910 and 0.047 for ANFIS-PSO. With respect
to RMSE, these values were 65.247 and 13.199 for ANFIS-GA, 32.986 and 12.679 for ANFIS-PSO. In the
case of MAE, the mean and standard deviation were 49.318 and 10.887 for ANFIS-GA, 47.629 and
10.343 for ANFIS-PSO. From the obtained results, it can be seen that the error distribution of ANFIS-GA
is very close to that of ANFIS-PSO. However, ANFIS-PSO is slightly better than ANFIS-GA in terms
of robustness.

From the statistical analysis, both ANFIS-GA and ANFIS-PSO produced excellent results in terms
of robustness analysis. It could be concluded that hybrid AI approaches using evolutionary optimization
algorithms such as PSO or GA combined with ANFIS are very promising computing models for
predicting the buckling load of steel columns. Such models could supply efficient information that
might be useful in the field of mechanics, civil engineering or related applications.
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From the statistical analysis, both ANFIS-GA and ANFIS-PSO produced excellent results in 
terms of robustness analysis. It could be concluded that hybrid AI approaches using evolutionary 
optimization algorithms such as PSO or GA combined with ANFIS are very promising computing 
models for predicting the buckling load of steel columns. Such models could supply efficient 
information that might be useful in the field of mechanics, civil engineering or related applications. 

6. Conclusions 

This work was devoted to the construction and validation of two hybrid AI approaches (ANFIS-
GA and ANFIS-PSO) for predicting the critical buckling load of steel columns. To this aim, 57 
measures of buckling load were collected from experiments in the literature for 420 MPa Y-section 
steel columns. The two AI models were constructed and validated using R2, RMSE and MAE criteria. 
Both ANFIS-GA and ANFIS-PSO models produced good results in predicting the buckling load of 
columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522, MAE = 44.044) is slightly better than ANFIS-GA 
(R2 = 0.916, RMSE = 65.371, MAE = 48.588). ANFIS-GA and ANFIS-PSO were also proved as robust 
models under the variability of inputs using Monte Carlo method. However, in this study, several 
information was not considered in the modeling, such as the fluctuation of mechanical properties in 
terms of yield strength or longitudinal residual stresses. In addition, the AI models were constructed 
to predict only Y-section columns with various slenderness ratios (i.e., varying from 30 to 80). 
Therefore, these factors might be taken into account in further research, so that a better 
comprehension of instability of columns might be achieved, including empirical formula for linear 
buckling resistance analysis in order to facilitate the use in engineering applications. In addition, data 
normalization into a uniform range could also be helpful for minimizing bias within the datasets for 
better performance of the AI models. It is also suggested that numerical analysis involving AI 
techniques coupled with Finite Element method could be a potential candidate for establishing robust 
prediction models of structural element damage in the non-linear post-buckling regime. 
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6. Conclusions

This work was devoted to the construction and validation of two hybrid AI approaches (ANFIS-GA
and ANFIS-PSO) for predicting the critical buckling load of steel columns. To this aim, 57 measures of
buckling load were collected from experiments in the literature for 420 MPa Y-section steel columns.
The two AI models were constructed and validated using R2, RMSE and MAE criteria. Both ANFIS-GA
and ANFIS-PSO models produced good results in predicting the buckling load of columns, but
ANFIS-PSO (R2 = 0.929, RMSE = 60.522, MAE = 44.044) is slightly better than ANFIS-GA (R2 = 0.916,
RMSE = 65.371, MAE = 48.588). ANFIS-GA and ANFIS-PSO were also proved as robust models under
the variability of inputs using Monte Carlo method. However, in this study, several information was
not considered in the modeling, such as the fluctuation of mechanical properties in terms of yield
strength or longitudinal residual stresses. In addition, the AI models were constructed to predict
only Y-section columns with various slenderness ratios (i.e., varying from 30 to 80). Therefore, these
factors might be taken into account in further research, so that a better comprehension of instability
of columns might be achieved, including empirical formula for linear buckling resistance analysis in
order to facilitate the use in engineering applications. In addition, data normalization into a uniform
range could also be helpful for minimizing bias within the datasets for better performance of the AI
models. It is also suggested that numerical analysis involving AI techniques coupled with Finite
Element method could be a potential candidate for establishing robust prediction models of structural
element damage in the non-linear post-buckling regime.
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