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Abstract: Shape-adaptive or morphing capability in both aerospace structures and wind turbine blade
design is regarded as significant to increase aerodynamic performance and simplify mechanisms by
reducing the number of moving parts. The underlying bistable behavior of asymmetric cross-ply
composites makes them a suitable candidate for morphing applications. To date, various theoretical
and experiential studies have been carried out to understand and predict the bistable behavior of
asymmetric laminates and especially the curvature obtained in their stable configurations. However,
when the bi-stable composite plate is integrated with shape memory alloy wires to control the
curvature and to snap from a stable configuration to the other (shape memory alloy composite,
SMAC), the identification of the design parameters, namely laminate edge length, ply thickness
and ply orientation, is not straightforward. The aim of this article is to present the formulation
of an optimization problem for the parameters of an asymmetric composite laminate integrated
with pre-stressed shape memory alloys (SMA) wires under bi-stability and a minimum deflection
requirement. Wires are modeled as an additional ply placed at the mid-plane of the composite host
plate. The optimization problem is solved numerically in MATLAB and optimal design variables are
then used to model the SMAC in ABAQUS™. Finite element results are compared against numerical
results for validation.
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1. Introduction

Morphing structures applications are of interest in both aerospace structures [1] and wind
turbines [2], which take benefit of significant shape changes to increase performance and efficiency.
Asymmetric composite laminates (ACL) may be formulated such that they possess two stable shapes,
each of which is a natural equilibrium position. Therefore, ACL can settle at either of them without
the need of an external aid. The bi-stable behavior of ACL is related to the residual stress field that
develops after curing due to a mismatch in coefficient of thermal expansion in an unsymmetric
stacking sequence. The application of bending and twisting moments with respect to mid-plane,
can result in a new internal stress equilibrium at a second stable configuration. The state change can be
obtained by inducing in-plane strains, typically by smart actuators such as piezoelectric and shape
memory alloys (SMA). The intrinsic anisotropy of composite structures was first exploited by Hyer [3,4]
using unsymmetric layups to produce bi-stable morphing structure at room temperature. Jun and
Hong [5] modified Hyer’s theory by taking into account in-plane shear strain. Schlecht and Schulte [6]
firstly provided the bi-stable behavior of asymmetric laminates using MARC Finite Element Analysis
(FEA) software. Tawfik et al. [7] presented a finite element approach using ABAQUS™ to predict the
unsymmetric laminate shapes under thermal curing stresses.
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Shape memory alloys have functional properties associated with the pseudo-elastic behavior
and shape memory effect (SME). The pseudoelasticity effect allows the alloy to deform elastically up
to 7–8% strain, that means about forty times the elastic regime of most steels. Shape-memory alloys
can also remember their original shape (SME), after being pseudoplastically deformed below a given
temperature (transformation temperature), just deformed by increasing their temperature. The SME is
due to the thermoelastic austenite-martensite transformation, which can be described as a diffusion-less
process. One of the major advantages of SMAs over other actuator materials is their large recovery
force per unit area generated by the phase transformation following the initial deformation. In addition,
due to its high tensile strength, SMAs are appropriate for use in small-sized, high-output actuators.
Several SMA constitutive models have been proposed and developed over the past few decades to
describe the SMA phase transformation phenomenon [8–14]. However, SMA based actuators [15] have
a slow actuation speed which restricts their use in most of the nanotechnology applications such as RF
filters, fluid sensors, or devices for the quantum state measurement. Stachiv et al. [16] design tunable
high frequency SMA microcantilevers resonators and demonstrated that the phase changeable SMA
film can be used by enabling tunability of several consecutive resonant frequencies. Here, in contrast
to the usual thermally actuated SMA, the high frequency actuation is generated by the elastic substrate
material. Furthermore, Stachiv et al. [17] also proposed nanocantilevers with a tunable spectrum of the
resonant frequencies and changeable static deflection utilizing the phase transformation of NiTi film
sputtered on the elastic substrate material.

An SMA-embedded composite could be used as an integrated smart actuator–structure without
any additional or separated actuation device. As a result, it offers a significant contribution to the
design of lightweight structures. Ryu et al. [18] verified actuation of asymmetric laminate using SMA
spring actuator through the comparison between experiment and numerical simulation. Dano and
Hyer [19] used a mechanism wherein, after SMA wires were stretched between a system of support
placed above the laminate and upon electrical heating of the SMA wires, it was concluded that is
possible to use SMA wires to change the shape of unsymmetric laminates and to predict reasonably
well the overall response of the laminate as a function of the SMA wire temperature. Hassanli and
Samali [20] investigated the buckling of curved laminated composite panels reinforced with SMA
fibers. A different finite element method was used by Tawfik et al. [21] to examine the stability
behavior of SMA composite panels. In addition, Von Karman nonlinear strains were considered
in the formulations. Turner [22] examined the thermoelastic response of SMA hybrid structures by
finite element analysis. Niknami et al. [23] investigated the effect of induced heat generations on
impact responses and phase transformations of hyrbid SMA composite plate through proposing
a refined Helmholtz free energy expression and refined constitutive and contact laws, in addition
to employing a return-map Newton-Raphson method for enhancement of the numerical solution
algorithm. Birman et al. [24] illustrate that SMA fibres embedded within the layers of a composite
plate can significantly enhance its global resistance to low-velocity impact and the effectivness of SMA
fibre can be further improved by optimizing their distribution throughout the plate. Gandhi et al. [25]
presented the possibility to trigger the snap-through from one stable configuration to another by means
of SMA wires embedded into the laminate.

Moving on from the work done in [25], the aim of the present study is to predict the optimal design
variables for an asymmetric, square laminate with embedded SMA wires such that the laminate can
attain a desired stable configuration after the cure cycle and a second stable configuration is admissible,
that can be attained by snap from the first one actuated with the help of SMA wires. However, the need
of a detailed investigation to identify the optimal design variables necessary to obtain the actuation,
requires the definition of an optimization technique in order to avoid a time-consuming trial-and-error
procedure, that is based on intuition with no prior knowledge about the obtained configuration and
out-of-plane displacement. While a square, asymmetric laminate was selected based on the fact it
allows a bistable behavior and a theoretical framework for optimization without SMA is already present
in the literature [26], it is acknowledged that this will not cover all laminate configurations which
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may be considered for practical applications as, for example, rectangular laminates. The optimization
study considers the design of bi-stable laminates through variation in ply orientations, ply thickness
(same for all plies), and laminate edge length. An objective function has been defined to optimize
the ratio of bending stiffness in two chosen direction of the laminate in order to control the shape of
the laminate after the curing process. The search space comprises of multiple local and global optima
that vary with the bounds posed on the design variables and the deflection constraint. MATLAB’s
sequential quadratic programming method [27,28] is used to solve the optimization problem. Given
the complex and multimodal nature of the laminate design problem, MultiStart Algorithm is used
to generate random points within the bounds to capture all local optima and search thoroughly for
the global minimum. The optimization problem is solved, as an example, for [45◦, 0] and [75◦, 0◦]
low and high stiffness bending direction to find optimal geometric design variable when the laminate
is subjected to deflections and bi-stability constraints. The accuracy of the optimal design is verified
against SMAC model implemented in ABAQUS to predict the shape after curing and the response of
the model.

2. Governing Equations

2.1. Constitutive Model of SMA Wires

The constitutive model for SMA response to mechanical and thermal load is available as
a user-defined material model (UMAT) for the ABAQUS™ 6.13 software [29], that is a FORTRAN
(Formula Translation) code numerical implementation compiled against the Intel Fortran compiler
v13.1 and linked into an ABAQUS executable via Microsoft Visual Studio 2012 Professional (Microsoft,
Redmond, WA, USA).

This particular constitutive model is rigorously developed to ensure that the key constitutive
relations and evolution equations are thermodynamically sound. A detailed discussion of the model
derivation process can be found in the works of Lagoudas et al. [13], and so will not be covered in this
work. However, a brief summary of the resulting constitutive relations and transformation conditions
is outlined here.

The total strain tensor ε is additively decomposed into elastic strain εel, thermoelastic strain εth,
and transformation strain εt:

ε = εel + εth + εt, (1)

For simplicity, this work assumes that the only inelastic strain component is the transformation
strain εt and does not take in account for the evolution of transformation-induced plastic strain in SMA
or consider the reorientation of variants of martensite.

The constitutive equation is stated as:

ε = S(ξ)σ+ α(T − T0) + εt, (2)

where α is a second-order thermal expansion coefficient tensor and S is a fourth-order compliance
tensor. The compliance tensor is a function of the evolving martensite volume fraction ξ and the
compliance tensors SA and SM for the austenite and martensite phases, respectively, and is formulated
as a rule of mixtures given by:

S(ξ) = SA + ξ(SM
− SA), (3)

The evolution equation, which is responsible for relating the time rate of change of transformation
strain with the time rate of change of the internal state variable ξ, assumes the form of a flow rule:

.
εt = Λ

.
ξ, (4)
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Here, the transformation tensor Λ indicates the direction of transformation with the
branching function:

Λ =

 3
2 Hmax σ′

σ′
;

.
ξ > 0

Hmax εt−r

εt−r ;
.
ξ < 0

, (5)

where Hmax is a material parameter associated with the maximum transformation strain, and εt−r and
εt−r are the transformation strain and the effective transformation strain at the point of transformation
reversal (i.e., the point at which the material stops forward transforming and begins reverse
transforming). For reference, the deviatoric stress σ′ is given by:

σ′ = σ −
1
3

tr(σ)I, (6)

while the associated effective von Mises scalar measure of the stress tensor σ′ is defined by:

σ′ =

√
3
2
‖σ′‖2, (7)

The effective transformation strain at the reversal of the phase transformation is given by:

εt−r =

√
2
3

∥∥∥εt−r
∥∥∥2, (8)

The phase transformation of the SMA is described by a transformation function, Φ = Φ(σ, T, ξ),
such that:

Φ =

 π−Y,
.
ξ > 0

−π−Y,
.
ξ < 0

, (9)

where Y is the critical thermodynamic driving force necessary to initiate transformation, the current
value (π) of which is given by:

π(σ, T, ξ) = σ : Λ + 1
2σ : ∆S : σ+ σ : ∆α(T − T0) − ρ∆c

(
(T − T0) − T ln

(
T
T0

))
+ρ∆s0T − ρ∆u0 −

∂ f
∂ξ ,

(10)

where ∆(·) refers to difference in the material properties between the martensite and austenite phases,
i.e.; ∆(·) = (·)M

− (·)A, ρ is the material density, c is the specific heat capacity, s0 and u0 are the respective
reference entropy and internal energies, and f (ξ) is a chosen transformation hardening function.
As seen in Equation (10), transformation occurs when π value equals Y. Thus, during transformation
Φ is necessarily zero. From the above relations, the evolution of the martensitic volume fraction is
said to be governed by the set of constraints called the Kuhn-Tucker conditions. These conditions are
concisely stated as:

.
ξ ≥ 0; Φ(σ, T, ξ) = π−Y ≤ 0; Φ

.
ξ = 0,

.
ξ ≤ 0; Φ(σ, T, ξ) = −π−Y ≤ 0; Φ

.
ξ = 0, (11)

With the equations described here, the constitutive model is implemented in the finite
element framework.

2.2. The Constitutive Model of SMAC

2.2.1. Mathematical Modelling for Composite Laminate

The model to predict the cured shape is based on a nonlinear extension of the classical
laminated plate theory with approximated midplane strain functions and nonzero in-plane shear strain.
The coordinate system used is such that origin is placed at the geometric center of the laminate and plies
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are defined in order starting from the bottom (negative thickness coordinate) surface. The midplane
strains including geometrical nonlinearity according to the von Karman hypothesis are defined as:


ε0

x

ε0
y

γ0
xy

 =


∂u0
∂x + 1

2 (
∂w0
∂x )

2

∂v0
∂y + 1

2 (
∂w0
∂y )

2

∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y

, (12)

where u0, v0 and w0 are the in-plane displacements in the x-, y- and z-directions respectively. Therefore,
the total strains distribution is given by the Kirchhoff hypothesis as:


εx

εy

γxy

 =


ε0

x

ε0
y

γ0
xy

+ z


κ0

x

κ0
y

κ0
xy

;


κx = −∂

2w0
∂x2

κy = −∂
2w0
∂y2

κxy = −2∂
2w0
∂x∂y

, (13)

where ε0
xx, ε0

yy, γ0
xy and κ0

x, κ0
y, κ0

xy are the total midplane strains and curvature respectively.
Since the composite laminate is subjected to the thermal load, the constitutive law of off-axis

stress-strain relation in the macro-mechanical behavior of a lamina can be presented as stress-strain
relations of the kth layer in a multilayered laminate.

σx

σy

τxy

 =


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k



εx

εy

γxy

−


αx

αy

2αxy

∆T

, (14)


εTot

x

εTot
y

γTot
xy

 =


ε0

x

ε0
y

γ0
xy

−


αx

αy

2αxy

∆T, (15)

where α’s are the thermal expansion coefficients in the x-y plane and are defined as:
αx

αy

αxy

 =


cos2 θ sin2 θ −2 cos θ sin θ
sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ− sin2 θ



α1

α2

0

, (16)

where α1 and α2 are the material thermal expansion coefficients in the fiber and transverse directions
respectively and ∆T denotes the change in temperature from cure to operating temperature.
The transformation stiffness Qi j and the transformation matrix presented in the following matrix form:

[
Q
]
k
= [R][Q]k[R]

T; [R] =


cos2 θ sin2 θ −2 cos θ sin θ
sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ− sin2 θ

, (17)

[Q]k is the reduced stiffness matrix of the laminate defined as follows:

[Q]=


Q11 Q12 0
Q12 Q22 0

0 0 Q66

;


Q11 = E11
1−υ12υ21

Q22 = E22
1−υ12υ21

Q12 = E11υ21
1−υ12υ21

Q66 = G12

, (18)

where E11 is the longitudinal Young’s modulus, E22 is the transverse Young’s modulus, G12 is the shear
modulus, υ12 is the major Poisson’s ratio, and the minor Poisson’s ratio υ21. The respective values
used in this work are shown in Table 1.



Materials 2019, 12, 1733 6 of 21

Table 1. Material properties of M21/T800 prepreg sheet data from [30].

Material Properties Value

E11 157.0 GPa
E22 8.5 GPa
υ12 0.35
G12 4.5 GPa
α1 −0.09× 10−6 K−1

α2 30.0× 10−6 K−1

The resultant forces and moments acting on a laminate are obtained by integration of the stresses
in each lamina through the laminate thickness. The entire collection of force and moment resultants for
an N layered laminate for mechanical and thermal strain are defined as,

Nx

Ny

Nxy

 =

∫ H/2

−H/2


σx

σy

τxy


k

dz =
N∑

k=1

∫ H/2

−H/2


σx

σy

τxy

dz (19)


Mx

My

Mxy

 =

∫ H/2

−H/2


σx

σy

τxy


k

zdz =
N∑

k=1

∫ H/2

−H/2


σx

σy

τxy

zdz. (20)

Since the middle surface strains and curvatures are not a function of z (because these values are
always at the middle surface z = 0), they need not be included in the integration. Also, the laminate
stiffness matrix is constant for a given ply so it will be a constant over the integration of a lamina
thickness, too. Substituting the stress-strain relation of Equation (14) and pulling these constants to the
front of the integral, we obtain the following constitutive relation for laminate in matrix notation:

N = AεTot + Bκ,
M = BεTot + Dκ

(21)

where,
Ai j =

∑N
k=1 Qi jk

(zk − zk−1), Bi j =
1
2
∑N

k=1 Qi jk

(
z2

k − z2
k−1

)
and

Di j =
1
3
∑N

k=1 Qi jk

(
z3

k − z3
k−1

)
.

(22)

The Ai j are extensional stiffnesses, the Bi j are bending-extension coupling stiffnesses, and the Di j
are bending stiffnesses. The presence of the Bij implies coupling between bending and extension of
a laminate, because both forces and curvatures as well as moments and strains simultaneously exist.

2.2.2. Integration of SMA Wire in Composite Laminate

The additional SMA layer is accommodated at the mid-plane of the composite host plate, assuming
that epoxy resin fills in the space within wires such that even and an equal number of composite plies
are placed on the top and bottom surface of epoxy/SMA layer as shown in Figure 1a. This approach
requires a volume fraction method to combine the properties of the SMA and epoxy taken from [24].
Accordingly, the thermo-elastic properties of an epoxy/SMA layer are written as

Es
11 = EmVm + EsVs

Es
22 = EsEm/(EmVs + EsVm)

υs
12 = υmVm + υsVs

Gs
12 = GsGm/(GmVs + GsVm)

αs
11 = αmVm + αsVs

αs
22 = αsαm/(αmVs + αsVm)

υ21 = υ12
Es

22
Es

11


, (23)
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where the “m” and “s” subscripts stand for the composite matrix and SMA fibers, respectively, and the
value of Vs is

Vs = n
πd2

s
Lts

(24)

where n, ds and ts stands for number of SMA wires, the diameter of SMA wire and epoxy/SMA ply
thickness respectively. Material parameters Es

11, Es
22, Gs

12, υs
12, αs

11, αs
22, Qs

i j, denote therefore the
values of the corresponding SMA/epoxy ply. The homogenization of SMA and epoxy properties across
a ply according to Equations (23) and (24) has been chosen as a simple way to introduce SMA wires
contribution in the plate. Of course, it is recognized that, when a small number of wires is considered,
this is a simplifying assumption since the layer containing SMA wires is strongly heterogenous.
The material parameters of the epoxy/SMA ply are evaluated using the values reported in Tables 2
and 3. The stress influence coefficients values as shown in Table 2 has been modified to keep the
consistency of sign in the article. However, for FEA simulation these coefficients must be modified
back to its original form of ρ∆sA and ρ∆sM which can be achieved as follows

CA = −
ρ∆sA

H

CM = −
ρ∆sM

H

. (25)

Since there is a large change in Young’s modulus of SMA with phase transformation, which is
reflected in Equation (23), leads to established a relation between the SMAC stiffness matrix and ξ.
However, for the number of wires that can be embedded in practice, as considered in this paper,
the value of Vs makes the contribution of SMA wires to the stiffness of the laminate negligible.
Based on this, it is possible to assume that the change in the Es due to phase transformation can be
neglected and Es can be set to a constant value equal to that at the end of the transformation, simplifying
the optimization problem.
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Table 2. Material parameters for NiTi SMA data from [29].

Material Parameter Value

Elastic stiffness of the austenite EA 70 GPa
Elastic stiffness of the martensite EM 30 GPa

Poisson’s ratio (equal for both phases) υ 0.33
Coefficient of thermal expansion for the austenite αA 22.0× 10−6 K−1

Coefficient of thermal expansion for the martensite αM 22.0× 10−6 K−1

Martensitic start temperature M0s 291 K
Martensitic final temperature M0 f 271 K
Austenitic start temperature A0s 295 K
Austenitic final temperature A0 f 315 K

Maximum transformation strain H 0.05
Stress influence coefficient for austenite CA 7 MPa K−1

Stress influence coefficient for martensite CM 7 MPa K−1

Table 3. Material properties of Epoxy Resin data from [31].

Mechanical Properties Value

Tensile Modulus Em 10.5 GPa
Flexural Modulus Gm 10 GPa

Poisson ratio υm 0.475
Coefficient of linear thermal expansion 34.0× 10−6 K−1

The constitutive equations of off-axis stress-strain relation for epoxy/SMA ply with arbitrary wire
orientation can be presented as follows [23]:

σs
x

σs
y

τs
xy

 =


Qs

11 Qs
12 Qs

16

Qs
12 Qs

22 Qs
26

Qs
16 Qs

26 Qs
66




εxx

εyy

γxy

−

αs

xx

αs
yy

2αs
xy

∆T

−


VsEsξεt cos2 θ

VsEsξεt sin2 θ

VsEsξεt cos θ sin θ

. (26)

The appearance of the Martensite Volume Fraction (MVF), ξ, and the Transformation Strain
(TRNS), εt, in the stress-strain relation for the epoxy/SMA ply in Equation (26) manifest the presence of
the SMA wires on the resultant force developed inside the epoxy/SMA ply. Hence, the total forces per
unit length of the SMAC can be expressed as:

NT
x

NT
y

NT
xy

 =


Nx

Ny

Nxy

−


Ns
x

Ns
y

Ns
xy

, (27)

where, Ns
x stands for resultant force in the epoxy/SMA ply which can be calculated by substituting

Equation (26) into Equation (19). The linear superposition principle can be used to calculate the total
internal force based on the taken assumption that stiffness computed for epoxy/SMAC is constant.
Hence, the net force caused by laminate and epoxy/SMA ply is the sum of the responses that would
have been caused by each stimulus individually.

2.3. Optimization of SMAC

Betts [26] presented an optimization technique for the design of bistable laminates based on
an analytical solution for an unsymmetric laminate design. A laminate of arbitrary orthogonal layup
with two stable shapes with equal and opposite curvatures was considered by applying the following
design rules:
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1. Even number of groups of plies, where those below the laminate midplane are rotated 90◦ with
respect to the corresponding ones above the midplane (see Figure 1a); in this work, the number
of groups of plies above the midplane (n in Figure 1a) is set to 2;

2. Square edge length L;
3. Each ply thickness about the laminate midplane, t1, t2, . . . , tn;
4. Each ply is made of the same material.

The stacking sequence, illustrated in Figure 1a, was selected as it provided scope for tailoring the
directional stiffness properties, while the orthogonal alignment of plies and the square laminate profile
enabled maximum useful deflection between states.

2.3.1. Constrained Optimization Problem

The constrained optimization formulation is introduced as follows:
min

θ1,θ2,t,L
F(x) : Ratio of bending stiffness in two chosen

directions, ϕ1 and ϕ2

Subject to

 Bistability constraint : a + b > 0

Deflection constraint : wde f =
(a1+b1)L2

4

,

The optimization problem is solved using MATLAB’s sequential quadratic programming (SQP)
method, fmincon. The essential idea of SQP is to model (27) at the current iterate by a quadratic
programming subproblem and to use the minimizer of this subproblem to define a new iterate.
The keynotes about SQP algorithm is discussed in Appendix B. Furthermore, due to the presence of
multiple global and local minima in the optimization domain, MATLAB’s MultiStart algorithm is used
to generate potential initial points that are uniformly distributed within the domain in order to identify
all minima.

The SMAC structure considered to be fixed at its center when the temperature change from cured
∆T = −160 K (cure 453 K, ambient 293 K) is applied to the structure. In the case of FE simulation, also
the out-of-plane displacement was constrained in order to simulate the presence of the mold.

2.3.2. Objective Function

The formulation of the optimization problem maximizes the bending stiffness in a given direction
of loading while at the same time the bending stiffness in the direction of snap to the second stable
configuration is minimized (see Figure 1c). The objective function that optimizes the ratio of bending
stiffness in two chosen direction of the laminate is represented by Equation (28), whereϕ1 is the direction
of low bending stiffness, ϕ2 is the direction of high bending stiffness and δ is the differential operator,

F(x) =
δaϕ2

δMxϕ2

/
δaϕ1

δMxϕ1

. (28)

The bending stiffness is characterized as a function of ϕ by the change of a shape coefficient aϕ
with respect to a moment applied in that direction Mxϕ. The definition of the shape coefficients is given
in Appendix C. The bending stiffness is evaluated by considering the plate constitutive equations
which relate applied forces and moments, N’s and M’s, to the plate curvatures (or shape coefficient),
aϕ, bϕ and cϕ, and midplane strains, ε0’s, using the A, B and D matrices of SMAC and substituting into
the plate equation lead to Equation (29). The presence of epoxy/SMA ply is taken in consideration by
evaluating the overall ABD matrices of SMAC, i.e., by replacing reduced stiffness terms of composite
(Qi j) in Equation (22) with Qs

i j terms of reduced stiffness of epoxy/SMA ply at the mid-plane of the
composite host laminate. With that, it is acknowledged that the incorporation of SMA wires as an
additional layer epoxy/SMA layer at the mid-plane of the composite host laminate violates the above
design rules 1 and 4 but, since the contribution of this layer to the overall bending stiffness of the
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SMAC laminate is negligible (see Section 2.2.2), the approximation related to the violation of the design
rules is negligible, too.

Equation (29) is then transformed to align with the direction eitherϕ1 orϕ2. Note that the subscript
ϕ has been removed from plate curvatures a, b and c in order to avoid confusion in Equation (31). The
forces and moments in the transformed direction except Mx are set to zero and the remaining system is
solved to give an expression in the terms of A, B, D and Mx. This is used to determine the objective
function of Equation (28) which is to be minimized.

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16

A12 A11 −A16

A16 −A16 A66

B11 0 B16

0 B11 −B16

B16 −B16 0
B11 0 B16

0 B11 −B16

B16 −B16 0

D11 D12 D16

D12 D11 −D16

D16 −D16 D66





ε0
x

ε0
y

γ0
xy

−aϕ
−bϕ
−cϕ


, (29)

2.3.3. Deflection and Bistability Constraint

The out-of-plane deflection, expressed by Equation (30), is applied as a constraint for the optimization,

w(x, y) =
1
2

(
aϕx2 + bϕy2 + cϕxy

)
κx = −

∂2w
∂x2 = −aϕ, κy = −

∂2w
∂y2 = −bϕ, κxy = −2

∂2w
∂x∂y

= −cϕ, (30)

For a deflection constraint, the out-of-plane displacement at a corner between stable configurations
I and II was used (see Figure 1b). The corner deflection between states wde f at x = y = L/2 can be
expressed by:

wde f = wI −wII =
1
8

(
aϕI + bϕI + cϕI

)
L2
−

1
8

(
aϕII + bϕII + cϕII

)
L2, (31)

The curvatures aϕ, bϕ and cϕ can be expressed in terms of the first state (I) alone, as the two states
have equal and opposite curvatures. Therefore, the equation had been rewritten in terms of aϕI and
bϕI only,

wde f =
1
4

(
aϕI + bϕI

)
L2, (32)

A minimum deflection requirement wde f > wde f is used to set a restriction on the allowable design
space. The inequality was solved as a part of the numerical solution of the optimization problem.
It is noted that, as a matter of fact, Equation (32) incorporates the bistability constraint, a + b > 0.

3. Results and Discussion

3.1. Simulation of Uniaxial Behavior of an SMA Wire

The inelastic strain in the SMA wire is the result of the stress-induced martensite phase
transformation while it is loaded and unloaded at a temperature below A0s. By subsequently heating it
above A0f, it is possible to recover inelastic strain and return to its parent phase (austenite) by virtue of
the reverse transformation. The above phenomenon described as one-way shape memory effect or,
simply SME. In this section, SME is exploited to control the shape of a composite plate and to snap
its curvature between two stable configurations, therefore a wire of length 300 mm and diameter of
0.1 mm, with material properties listed in Table 2, is first modeled using truss element that can carry
only axial loads alike thin, flexible NiTi wires. This in the attempt to emulate the cure cycle of the
SMAC and to gain insight about stress distribution, the evolution of martensite volume fraction and
transformation strain. The analysis consists of three steps: (i) Pre-strain of the wire at environmental
temperature up to 6% elongation; (ii) heating of the wire up to the cure temperature of the composite
plate Tcure = 453 K, at constant strain; (iii) cooling down to an environmental temperature at constant
strain. The results obtained at the end of the first step are also used as an initial condition for SMA
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wires in the SMAC laminate model as described in Section 3.3. The finite element mesh is composed of
30 linear truss elements of type T3D2 in ABAQUS. The ambient temperature is set to 293 K, which is in
between martensite start M0s, and austenite starts A0s temperatures (see Table 2).

Notice that after the cool-down step the strain is kept as if strain recovery was hampered by the
presence of the host composite plate.

As shown in Figure 2a, upon heating thermal expansion yields first a drop in axial stress from
241 MPa to 228 MPa, then the axial stress monotonically increases to a value of 884 MPa as the
temperature brought up to Tcure = 453 K due to the transformation of de-twinned martensite into
austenite. This can be observed in Figure 2b,c, as Martensite Volume Fraction (MVF) decreases from
ξ = 1 to ξ = 0.631 and transformation strain (TRNS) from εt = 0.05 to εt = 0.0314.
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Martensite Volume Fraction; (c) Induced axial Transformation Strain; (d) Total strain induced due to
applied displacement.

In the cool-down step, the stress initially increases from 884 MPa to 899 MPa due to the thermal
contraction of SMA (Figure 2a). As the temperature gradually decreases, high recovery stress which is
generated in SMA drops down the stress level which to about 241 MPa at the end of the cooling process.
At the same time, MVF gradually increases to unity by accomplishing full phase transformation to
de-twinned martensite. It has to be said that, even if the framework chosen to model the constitutive
behavior of SMA does not address the transformation of de-twinned into twinned martensite upon
cooling, in this case, the martensite remains de-twinned since the final stress level lies above the stress
transformation range as shown in Figure 2a, i.e., the martensite is in its fully de-twinned state.

3.2. SMAC Numerical Optimization

The material properties used for SMA and M21/T800 are those shown in Tables 2 and 3, respectively.
The in-plane dimension of the additional SMA ply is equal to the square composite laminate of edge
length L, which is a geometric design variable among with the ply orientation θ1 and θ2 defining the
stacking sequence of a four-ply laminate of constant ply thickness t. The SMA ply contains virtually
four SMA wires of 0.1 mm diameter and length equal to L. The thickness of the SMA ply is set to
ts = 0.2 mm.

The direction of low bending stiffness ϕ1 is set alternatively to 45◦ or 75◦ and the direction of high
bending stiffness ϕ2 is set based on the orientation of SMA wires, that is 0◦. The pattern of optimum
solutions is detailed in Tables 4 and 5 for, where the range of design variables and minimum deflection
requirement is also shown. The motive behind the chosen set for wde f is to draw a clear distinction
between the curvature acquired by various SMAC configuration simulated in the Abaqus as shown in
Section 3.3.
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Table 4. Optimal design parameters for deflection constrained optimization with ϕ1 = 45◦, ϕ2 = 0◦.

Optimization
Set

Deflection
Constraint (mm)

The Range of
Geometric Design

Variables

Optimal Design Parameters
[L/θ1/θ2/t]

Objective
Function

A1 wde f > 18
L ∈ [100, 200] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
200/90

◦

/90
◦

/0.4
]

2
[
200/ − 84

◦

/ − 53.2
◦

/0.4
] 0.4937

0.5752

B1 wde f > 35
L ∈ [100, 300] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

3
[
300/ ± 90

◦

/ ± 90
◦

/0.5
]

4
[
300/0

◦

/0
◦

/0.5
]

5
[
277/90

◦

/ − 55.7
◦

/0.41
] 0.4827

0.4827
0.6058

C1 wde f > 55
L ∈ [100, 400] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
400/ ± 90

◦

/ ± 90
◦

/0.577
]

2
[
400/0

◦

/0
◦

/0.577
]

3
[
400/ ± 6.36

◦

/ ± 56.3
◦

/0.5
] 0.4769

0.4769
0.5012

D1 wde f > 55
L ∈ [100, 500] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
500/ ± 90

◦

/ ± 90
◦

/0.9
]

2
[
500/0

◦

/0
◦

/0.9
]

3
[
451/ ± 90

◦

/ ± 90
◦

/0.735
]

4
[
500/26.4

◦

/ − 90
◦

/0.4
]

0.4623
0.4623
0.4682
0.8704

E1 wde f > 92
L ∈ [100, 650] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
650/ ± 90

◦

/ ± 90
◦

/0.93
]

2
[
650/0

◦

/0
◦

/0.93
]

3
[
494/ ± 90

◦

/ ± 90
◦

/0.532
]

4
[
535/ − 89

◦

/89
◦

/0.4015
]

5
[
514/ − 88

◦

/ − 81
◦

/0.4425
]

0.4612
0.4612

0.48
0.4935
0.503

Table 5. Optimal design parameters for deflection constrained optimization with ϕ1 = 75◦, ϕ2 = 0◦.

Optimization
Set

Deflection
Constraint (mm)

The Range of
Geometric Design

Variables

Optimal Design Parameters
[L/θ1/θ2/t]

Objective
Function

A2 wde f > 18
L ∈ [100, 200] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
200/ − 80

◦

/ − 80
◦

/0.4
]

2
[
200/90

◦

/54.1
◦

/0.4
] 0.6994

0.7628

B2 wde f > 35
L ∈ [100, 300] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
300/ − 80

◦

/ − 80
◦

/0.496
]

2
[
300/10

◦

/10
◦

/0.496
]

3
[
300/ − 82

◦

/90
◦

/0.52
] 0.6921

0.6921
0.7044

C2 wde f > 55
L ∈ [100, 400] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
400/ − 80

◦

/ − 80
◦

/0.571
]

2
[
400/10

◦

/10
◦

/0.571
]

3
[
400/18.1

◦

/65.2
◦

/0.4
]

4
[
400/ ± 90

◦

/ ± 90
◦

/0.5
]

0.6867
0.6867
0.7173
0.7888

D2 wde f > 55
L ∈ [100, 500] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
500/ − 85

◦

/26
◦

/0.4
]

2
[
500/ − 80

◦

/ − 80
◦

/0.883
]

3
[
500/10

◦

/10
◦

/0.883
]
4[

500/ ± 90
◦

/ ± 90
◦

/0.82
]

0.5996
0.6755
0.6755
0.7765

E2 wde f > 92
L ∈ [100, 650] mm;
θ1, θ2 ∈

[
−90

◦

, 90
◦
]
;

t ∈ [0.4, 2] mm

1
[
500/ − 85

◦

/26
◦

/0.4
]

2
[
650/ − 80

◦

/ − 80
◦

/0.916
]

3
[
650/10

◦

/10
◦

/0.916
]

4
[
595/13.3

◦

/25.5
◦

/0.487
]

5
[
650/ ± 90

◦

/ ± 90
◦

/0.9241
]

0.5977
0.6747
0.6747
0.7167
0.7741



Materials 2019, 12, 1733 13 of 21

The two cross-ply solutions [90
◦

/90
◦

/0
◦

/0
◦

]T and [−90
◦

/ − 90
◦

/0
◦

/0
◦

]T for optimization sets
A1, B1, C1, D1 and E1 in Table 4, are global optima with the lowest objective function value of
0.4937, 0.4827, 0.4769, 0.4623 and 0.4612 respectively, meaning the chosen direction of high stiffness is
approximately two times stiffer than the flexible direction. For a given deflection constraint (sets C1
vs. D1), it has to be noted that the lowest objective function values are similar. This occurs because
the effect of a thicker ply found as optimal in D1 is compensated by a shorter edge length in C1. The
four sets of design parameters with a higher value of the objective function (

[
200/ − 84

◦

/ − 53.2
◦

/0.4
]
,[

277/90
◦

/ − 55.7
◦

/0.41
]

and
[
500/26.04

◦

/ − 90
◦

/0.4
]

for sets B1, C1, D1 and E1, respectively), are
local optima.

The results in Table 5 are referred to ϕ1 = 75◦ and ϕ2 = 0◦. The idea behind this example is to
understand the dependence on the relative values of the low and high bending stiffness directions.
A [−80

◦

/ − 80
◦

/10
◦

/10
◦

]T layup is the global optimum for optimization sets A2, B2 and C2 with the
lowest objective function value of 0.6983, 0.6921 and 0.6867, respectively, whereas optimization sets
D2 and E2 obtain the lowest objective function value for a

[
−85

◦

/ − 26
◦

/64
◦

/5
◦
]

layup. Notice that,
for all optimization sets except B2, the last optimal solution in the list shows a small angle between
low bending stiffness, ϕ1, and ply fiber directions. This results obviously a value of the objective
function that is significantly higher, as expected. Therefore, these solutions can be no longer considered
global optima.

The minimum deflection requirement and the range of L are gradually increased from a first
guess value in order to explore a range of design configurations where the optimal solutions tend to
set progressively to the highest value of L and the lowest of t. In this way it is possible to determine
a larger set of optimal parameters including local and global optima, that is represented by all the
results included in Tables 4 and 5.

Figure 3 represents the graphical illustration of the objective function for sets D2 and E2 where
the global optimum is located at the point θ1 = −85◦, θ2 = 26◦ is the correct ply orientation in order to
obtain low bending stiffness in ϕ1 in comparison with the rotated cross-ply solution [−80

◦

2/10
◦

2]T.
On the other hand, the rotated cross-ply solution in set D2 and E2 settled down for higher ply thickness
as in comparison with the global optima and at these ply orientations, there are many solutions
achieving almost equal objective function values. The deflection between states for these solutions
vary from 18 to 93 mm. The laminate edge length, which does not affect the objective function, but
only the deflection constraint. Therefore, a rotated cross-ply is chosen over the optimal solution with
an allowable loss of 12.65% in laminate bending stiffness. Notice that that solution θ1 = 5◦, θ2 = −85◦

while achieving an objective function value of 0.5272, is discarded since the bi-stability constraint as
not satisfied.
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3.3. FE Simulation of SMAC

In this section, the commercial finite element code ABAQUS is employed to verify the shape after
the manufacturing cycle of the SMAC with the optimal design variables determined in the previous
section. In particular, the value of wdef of the optimization problem is compared with the one coming
from FEA in order to assess the accuracy of the numerical solution. An L× L mm2 laminate is modeled
in ABAQUS using 4-node, reduced integration shell elements S4R with 4-plies of uniform ply thickness
t and a

[
θ1/θ2/90

◦

+ θ1/90
◦

+ θ2
]

stacking sequence. The embedded SMA wires are modeled using
T3D2 truss elements such that the nodes of SMA wires coincide with the nodes of the laminate and
a tie constraint is established between the node region of SMA wires and laminate. The tie constraint
between the nodes of SMA wires and the laminate physically implies that pre-strained wires are
consolidated in the composite matrix and based on this assumption, initial conditions for SMA wire at
the beginning of cool-down step are set to the values listed down in Table 6. The Finite Element mesh
consists of 100 linear quadrilateral elements of type S4R and 40 linear line elements of type T3D2.

Table 6. SMA wires initial condition at cool-down step.

Axial Stress
σs

11

Total Strain
εs

11

MVF
ξ

TRNS
εt

11

884 MPa 0.0583 0.631 0.0314

The out-of-mold shape of the laminate after curing is obtained by cooling down from an initial
temperature Tcure applied to all the nodes of the model to room temperature. All the nodes of the
laminate are constrained in the z-direction while the center node of SMAC is fixed to suppress rigid
body motions. At the end of the cooling phase, the constraint in the z-direction is deactivated except
at the center node to simulate the opening of the mold. Geometric nonlinearity is accounted for in
this step.

Figure 4 shows the out-of-plane displacement of the SMAC after the cool-down stage for the
optimal sets A1-1, B1-1, D1-1, E1-1 in Table 4, while in Figure 5 it is shown for the sets A2-1, B2-1,
D2-2 and E2-2. Even though the latter two are not global optima, they are considered since the values
of θ1 and θ2 are the same of A2-1 and B2-1 cases, therefore facilitating the comparison. It must be
underlined that neither L, nor t, nor L/t shows a unique relationship with the deflection, therefore it
would have been hard to find the optimal solution for a given deflection simply by trial-and-error.
For the results shown in Figure 5, a similar trend can be observed as variations in ply orientations
between the laminates are small. Finally, a significant variation in z-displacement can be registered
along the y-direction (I stable configuration) in comparison with the x-direction (II stable configuration).
Furthermore, a direct correspondence between the attained stable configuration I by SMAC and the
objective function criterion to have higher bending stiffness in ϕ2 = 0

◦

direction is hard to validate
since stable configurations are sensitive to modelled imperfections and uncertainties such as the effect
of an additional resin layer which is not modeled in FEA simulations.

The results of simulations have been particularly useful in gaining detailed insight into the
distribution of longitudinal and transversal stresses in the SMAC after curing. The case of set B1-1- is
reported in Figure 6. The 0◦ (180◦)-oriented bottom layer developed compressive stress of −49.31 MPa
in fiber direction due to the curvature acquired by the laminate after cool-down step. Note that the
peripheral region of the layer is under tension and the inner region under compression, and this
state of stress facilitates the snap of the laminate to the second stable configuration [25]. The stresses
developed in 90◦-oriented top layer is subject to stress concentrations near to the longitudinal edges:
the peak tensile stress is +146.4 MPa right along the edges and +68.2 MPa in narrow regions that run
longitudinally a small distance into the shell as shown in Figure 6b.
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Figure 7 depicts the behavior of embedded SMA wires when the initial conditions are set to the
values shown in Table 3. In Figure 7a, the stress falls back from 884 MPa to 228 MPa, which is above
the stress value requires to transform de-twinned to twinned martensite hence, the initial value of
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MVF can be preserved for actuation applications. It can be also deduced that the composition of
austenite and de-twinned martensite at the beginning of cool-down transforms into full detwinned
martensite phase as the final stress level lies above the stress transformation range. Due to cooling,
thermal contraction of SMA occurs, and the downward peak, in Figure 7a,b, indicates the release of the
constraint in out-of-plane direction (demolding).
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The comparison between the results obtained in ABAQUS and MATLAB is carried out in Tables 7
and 8 that represents the search space given by ϕ1 = 45◦, ϕ2 = 0◦ and ϕ1 = 75◦, ϕ2 = 0◦, respectively.
The resulting difference is contained with 10% and it decreases more sensibly for increasing edge length
in comparison to the laminate ply thickness. The incorporation of an SMA ply at the mid-plane in the
theoretical model of [26], which is exact in the case of pairs of orthogonal plies, is probably at the basis
of the difference between FE and MATLAB results. Since the volume fraction of SMA with respect
to whole laminate decreases with the square of edge length and linearly with the total thickness the
deviation from the original model due to the presence of SMA ply vanishes for increasing laminate size.

Table 7. Comparison of wde f obtained from ABAQUS’s model based on the optimal design parameters
for the search space given by ϕ1 = 45◦, ϕ2 = 0◦.

Optimization Set wdef in ABAQUS (mm) wdef in MATLAB (mm) Percentage Difference (%)

A1-1 21.19 18.9 10.8
B1-1 39.05 37.748 3.33
C1-1 59.57 58.722 1.42
D1-1 59.08 58.6 0.813
E1-1 97.31 98.15 0.863

Table 8. Comparison of wde f obtained from ABAQUS’s model based on the optimal design parameters
for the search space given by ϕ1 = 75◦, ϕ2 = 0◦.

Optimization Set wdef in ABAQUS (mm) wdef in MATLAB (mm) Percentage Difference (%)

A2-1 20.53 18.5 9.88
B2-1 37.86 35.6 5.79
C2-1 61.58 59.14 3.96
D2-2 62.6 63.5 1.44
E2-2 102.76 101.91 0.827
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4. Conclusions

The efficient modelling technique for the asymmetric, bi-stable composite laminates becomes even
more significant when the possibility of actuation by SMA wires is introduced. Therefore, in this work,
a design optimization technique for bi-stable composite plates embedded with SMA wires has been
developed to find the suitable design variables for a given initial out-of-plane deflection, without having
prior knowledge about a “good initial guess”. The optimization problem formulation is based on the
minimization of the bending stiffness ratio in two directions, namely ϕ1 (low stiffness) and ϕ2 (high
stiffness) in order to have a plate that is stiff under loading (membrane) and/or bending in ϕ2 direction
but easy to snap to the other stable configuration by membrane/bending loading in in ϕ1 direction.
The procedure was implemented in MATLAB the analysis was carried out for ϕ1 = 45◦, ϕ2 = 0◦ and ϕ1

= 75◦, ϕ2 = 0◦ low and high stiffness bending direction, respectively, demonstrating the efficiency in
finding both global and local optima. Furthermore, the initial deflection wde f estimated with MATLAB
was compared with a FE analysis done with the software ABAQUS, that yielded a difference within
10%, decreasing down to 1% for increasing laminate size, that confirms the procedure developed in this
work as a fast and reliable tool to estimate the optimal design of SMAC bi-stable laminates subjected to
an initial deflection constraint. Future work is dedicated to the include in the objective function the
SMA wires actuation force necessary to obtain the snap of the laminate to its second stable shape.
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Appendix A

The stress and temperature conditions for phase transformation involves the determination
of transformation “surfaces,” or boundaries of the transformation regions in a stress-temperature
space. These indicate where a given transformation begins or ends. These four surfaces, and their
equations (given below) point out the following, from first to last: The beginning of forward phase
transformation; the end of forward phase transformation; the beginning of reverse phase transformation
and end of reverse phase transformation, respectively, at zero stress. For a stress-space (σ11, σ22),
the three-dimensional plot of the transformation surfaces for forward or reverse phase transformation
can be presented in the σ-T space. In Figure A1a, a slice of the transformation surface boundaries of
a 3D plot at a constant temperature is shown.

π(σ, T, ξ) = Y at σ = 0, T = Ms, ξ = 0.
π(σ, T, ξ) = Y at σ = 0, T = M f , ξ = 1.
π(σ, T, ξ) = −Y at σ = 0, T = As, ξ = 1.
π(σ, T, ξ) = −Y at σ = 0, T = A f , ξ = 0.

Similarly, considering σ22 = 0 the boundaries of the transformation surfaces in the uniaxial σ-T
space is shown in Figure A1b. The form of these boundaries is assumed to be linear (it might be
quadratic which depend on the behavior of material) and irrespective of their form, these boundaries
are partially described by their intersections with the zero-stress axis and by the slopes at some stress
level (e.g., zero stress). Such slopes are known as “stress influence coefficients” [32].
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phase transformation at a given fixed temperature (T = 308 K); (b) schematics of stress-temperature
phase diagram for an SMA.

The value of entropy changes in the forward or reverse transformation (exothermic and
endothermic processes) can be calculated through a Clausius-Clapeyron-like relation [33]:

∆S = −
dσ
dT
εt;

dσ
dT

= CA = CM,

where, ∆S is a change in the entropy, εt is transformation strain, CA and CM represent stress influence
coefficient for austenite and martensite. The entropy relation holds for forward transformation (A→M )
by accounting for a decrease in entropy as the process is exothermic in nature however, it violates Le
Chatelier-Braun principle for reverse transformation (M→ A ). This is because εt does not provide any
information about the reversal of the phase transformation hence, it failed to evaluate the increase
in entropy during the endothermic process (M→ A ). This additional information about the phase
reversal can be understood by observing the rate of transformation at each time increment therefore,
the above relation is modified as follows:

.
∆S = −

dσ
dT

.
εt;

.
εt > 0 A→M
.
εt < 0 M→ A

,

Hence, a Clausius-Clapeyron-like relation justifies Le Chatelier-Braun principle for both forward
and reverse transformation.

Appendix B

Appendix B.1. Karush-Kuhn-Tucker (KKT) Conditions and the Lagrangian Function

The general Nonlinear Programming (NLP) problem
minF(x)

s.t.hi(x) = 0 i ∈ E

and gi(x) ≥ 0 i ∈ I

(active).

The Lagrangian function formulates the problem into one function using Lagrangian multipliers
λ for equality constraints and µ for inequality constraints:

L(x,λ,µ) = F(x) +
∑

i

λihi(x) +
∑

i

µigi(x).
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A single function can be optimized by finding critical points where the gradient is zero.
This procedure now includes λ and µ as variables. The system formed from this gradient yields the
KKT conditions:

∇L =


dL
dx
dL
dλ
dy
dµ

 =

∇F + λ∇h + µ∇g∗

h
g∗

 = 0.

Appendix B.2 The SQP Algorithm

Critical points of the objective function will also be critical points of the Lagrangian function
and vice versa because the Lagrangian function is equal to the objective function at a KKT point;
all constraints are either equal to zero or inactive. The algorithm is thus simply iterating Newton’s
method to find critical points of the Lagrangian function. Since the Lagrangian multipliers are
additional variables, the iteration forms a system:

xk+1
λk+1
µk+1

 =


xk
λk
µk

− (
∇

2Lk
)−1
∇Lk =


xk
λk
µk

− p,

The improvement direction p for Newton’s method iterations is found with a quadratic
minimization sub-problem that is solved using quadratic algorithms.

min
p

Fk(x) +∇ f T
k p + 1

2 pT
∇

2
xxLkp

s.t ∇hkp + hk = 0
and ∇gkp + gk = 0.

This problem is quadratic and thus must be solved with non-linear methods, which once again
introduces the need to solve a non-linear problem into the algorithm, but this predictable sub-problem
with one variable is much easier to tackle than the parent problem. This subproblem can be solved
using any Quadratic Programming algorithm.

Appendix C

A Rayleigh-Ritz method of minimisation of the total strain energy of the laminate is used to obtain
the shape coeffiecents of the laminate’s shapes. The total strain energy of the laminate W can then be
expressed as

W =
∫ Lx

2
−Lx

2

∫ Ly
2
−Ly

2

∫ H
2

H
2
( 1

2 Q11ε
2
x + Q12εxεy + Q16εxyεx +

1
2 Q22ε

2
y + Q26εxyεy +

1
2 Q66ε

2
xy

−

(
Q11αx + Q12αy + Q16αxy

)
εx∆T −

(
Q12αx + Q22αy + Q26αxy

)
εy∆T

−(Q16αx+Q26αy + Q66αxy)εxy∆T)dxdydz

where the Qi j’s are the symmetric transformed stiffness matrices of the individual layers, Lx and Ly are
the side lengths of the laminate, H is the total laminate thickness and ε’s are the total strains as stated
in Equation (13). Classical laminate theory follows the assumption that through-thickness stresses are
small in comparison to in-plane stresses. In assuming that, the normal stress in the z-direction and
out-of-plane shear stresses are assumed to be zero, and leads to an expression for the total energy as
a function of material and geometric properties, the temperature change and the total strains.
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The midplane strain in Equation (12) are approximated by third order polynomial. Based on,
Dano and Hyer [34] findings the form of the midplane strains can be reduced as follows:

ε0
x = d1 + d1x2 + d3xy + d4y2

ε0
y = d5 + d6x2 + d7xy + d8y2

ε0
xy = 2d9 + (ab− c2

4 + 2d4 + 2d6)x2 + ( 1
2 (

ac
2 + d3) + d10)xy + ( 1

2 (
bc
2 + d7) + d11)y2

,

The spatial integrations results in an expression for the total strain energy of the lamintae as follows:

W = W(a, b, c, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11),

To find the minimum energy state it is required that

δW =
14∑

i=1

∂W
∂pi

∂pi = 0,

where, pi’s are a, b, c, d1, . . . , d11. To meet this requirement it is necessary to have

Li =
∂W
∂pi

= 0; i = 1, 2, . . . , 14,

This results in 14 nonlinear equilibrium equations to be solved to find the stable shapes defined
by the 14 shape coefficients pi. The solutions of the equilibrium equations give the configurations of
the laminate at the room temperature. Based on the design rules (Section 2.3), it possible to reduce
the above system to just 3 equations and 3 unknows a, b and c and further details about the analytical
solution is presented in [26].
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