

Supplementary Information Improving the Dimensional Stability and Mechanical Properties of AISI 316L + B Sinters by Si₃N₄ Addition

Mateusz Skałoń^{1,2}, Ricardo Buzolin¹, Jan Kazior², Christof Sommitsch¹ and Marek Hebda^{2*}

- ¹ IMAT Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24/1, 8010 Graz, Austria; mateusz.skalon@tugraz.at (M.S.); ricardo.buzolin@tugraz.at (R.B.); christof.sommitsch@tugraz.at (C.S.)
- ² Institute of Materials Engineering, Cracow University of Technology, Cracow, 24 Warszawska ave, 31-155, Poland; kazior@mech.pk.edu.pl (J.K.)
- * Correspondence: mhebda@pk.edu.pl (M.H.); Tel.: +48 126283423

Figure S1. Scheil–Gulliver solidification plot of sample 0-0.

Figure S2. Scheil–Gulliver solidification plot of sample 1-0.

Figure S3. Scheil–Gulliver solidification plot of sample 1-2.

Figure S4. Scheil–Gulliver solidification plot of sample 1-4.

Figure S5. Scheil–Gulliver solidification plot of sample 1-6.

Figure S6. Scheil–Gulliver solidification plot of sample 1-8.

Figure S7. Scheil–Gulliver solidification plot of sample 2-0.

Figure S8. Scheil–Gulliver solidification plot of sample 2-2.

Figure S9. Scheil–Gulliver solidification plot of sample 2-4.

Figure S10. Scheil–Gulliver solidification plot of sample 2-6.

Figure S11. Scheil–Gulliver solidification plot of sample 2-8.

Figure S12. Scheil–Gulliver solidification plot of sample 3-0.

Figure S13. Scheil–Gulliver solidification plot of sample 3-2.

Figure S14. Scheil–Gulliver solidification plot of sample 3-4.

Figure S15. Scheil–Gulliver solidification plot of sample 3-6.

Figure S16. Scheil–Gulliver solidification plot of sample 3-8.

Figure S17. Scheil–Gulliver solidification plot of sample 4-2.

Figure S18. Scheil–Gulliver solidification plot of sample 4-4.

Figure S19. Scheil–Gulliver solidification plot of sample 4-6.

Figure S20. The composition of Cr₂B in sample 4-0.

Figure S21. The composition of Cr₂B in sample 4-8.

Figure S22. The composition of M₂B in sample 4-0.

Figure S23. The composition of M₂B in sample 4-8.

Table S1. The calculations of secondary phases amount depending on the chemical composition of the samples.

	Description of samples														
0-0 1-0 1-2 1-4 1-6 1-8 2-0 2-2 2-4 2-6 2-8 3-0 3-2 3-4 3-6 3-8 4-0 4-2 4-4 4-	1-6 1-8 2-0 2-2 2-4 2-6 2-8 3-0 3-2 3-4 3-6 3-8 4-0 4-2	3-6 3-8 4-0 4	3-2 3-4	3-0	2-8	2-6	2-4	2-2	2-0	1-8	1-6	1-4	1-2	1-0	0-0

 $\frac{Phase}{M_2B\,0.000\,1.166\,1.168\,1.152\,1.101\,0.986\,2.126\,2.068\,2.058\,1.994\,1.928\,2.953\,2.965\,2.852\,2.790\,2.727\,3.783\,3.720\,3.614\,3.540\,3.452}\,amoun$

 $t\ /\ Cr_2B\ 0.000\ 0.117\ 0.075\ 0.062\ 0.026\ 0.000\ 0.704\ 0.589\ 0.543\ 0.474\ 0.434\ 1.322\ 1.181\ 1.086\ 1.045\ 1.017\ 2.024\ 1.879\ 1.737\ 1.631\ 1.556\ mole$

8N 0.0000.0000.0250.0740.1040.0770.0000.0750.1260.2120.3070.0000.1260.1850.2800.4110.0000.1600.2550.3790.490

Table S2. The influence of boron and silicon nitride on the relative density of cylindrical sample	les.
--	------

			В	oron addition / wt	%	
		0.0	0.1	0.2	0.3	0.4
SS	0.0	78.95±0.19	81.17±0.22	82.63±0.22	90.14±0.25	93.01±0.26
ma / -	0.2	-	80.90±0.22	84.56±0.23	91.13±0.25	91.93±0.26
tio tio	0.4	-	80.36±0.21	84.75±0.23	90.90±0.25	92.57±0.26
ra ³ N4	0.6	-	80.56±0.21	82.60±0.23	90.61±0.25	88.97±0.24
Si	0.8	-	79.96±0.21	81.47±0.22	88.10±0.24	85.83±0.23

Table S3. Corrosion current of selected samples as a function of porosity.

Descriptions (second se	Icorr	Icorr st.dev.	Ecorr	Ecorrst.dev.	
Description of samples		μΑ	mV		
0-0	18.86	1.271	-305.2	1.144	
2-0	6.15	0.475	-315.8	0.330	
4-0	0.63	0.066	-272.4	8.674	
4-4	4.52	0.051	-338.7	7.270	
4-8	8.39	4.624	-320.7	5.564	

				Boron addition / v	wt %	
		0.0	0.1	0.2	0.3	0.4
SS	0.0	20±10	10±10	130±10	360±10	650±10
3N4/B mat ratio / -	0.2	-	50±10	120±10	350±10	490±10
	0.4	-	20±10	100±10	370±10	380±10
	0.6	-	20±10	80±0.01	320±10	260±10
Si	0.8	-	60±10	80±10	200±10	200±10

Table S4. Maximum dimensional distortions of \emptyset 20 × 5 mm cylindrical samples as a function of boron and silicon nitride additions.

Table S5. Density change of prismatic samples in the boron and silicon nitride addition functions.

		Boron addition / wt %								
		0.0	0.1	0.2	0.3	0.4				
ar	0.0	79.62±0.19	77.71 ± 0.18	79.72±0.19	82.52±0.18	84.15±0.20				
	0.2	-	79.14±0.18	79.04±0.19	82.16±0.18	84.25±0.19				
/B 1 tio	0.4	-	77.76±0.19	79.86±0.18	81.12±0.19	82.12±0.19				
ra ra	0.6	-	79.65±0.19	79.97±0.18	82.05±0.19	81.02±0.19				
Si	0.8	-	77.48±0.18	80.35±0.19	80.91±0.19	80.35±0.18				

Table S6. Hardness as a function of boron addition for different silicon nitride additions.

		Boron addition / wt %			
Si ₃ N ₄ addition / wt %	Si ₃ N ₄ /B wt ratio / -	0.1	0.2	0.3	0.4
0	0	62.9 ± 2.4	58.9 ± 3.0	71.1 ± 0.9	132.3 ± 2.1
0.08	0.2	71.4 ± 3.0	60.5 ± 1.4	74.5 ± 2.0	146.3 ± 6.0
0.16	0.4	69.6 ± 4.4	74.0 ± 1.3	88.0 ± 2.4	154.7 ± 5.2
0.24	0.6	66.9 ± 5.1	69.9 ± 2.0	108.7 ± 12.4	148.7 ± 0.9
0.32	0.8	64.0 ± 0.7	77.9 ± 2.9	123.0 ± 5.4	154.3 ± 6.9

 Table S7. Influence of Si₃N₄ and boron additions on transverse rupture strength (TRS).

 Boron addition / wt %

	-			Doron addition /	WL /o	
		0.0	0.1	0.2	0.3	0.4
ss	0.0	457±9	544±11	587±13	728±12	1002±23
3N4/B mai ratio / -	0.2	-	529±11	656±9	711±11	963±35
	0.4	-	548±7	670±17	720±18	975±26
	0.6	-	524±15	634±11	791±6	841±13
Si	0.8	-	563±15	658±14	847±15	775±5