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Abstract: This study is devoted to the modeling and simulation of uncertainties in the constitutive
elastic properties of material constituting a circular column under axial compression. To this aim,
a probabilistic model dedicated to the construction of positive-definite random elasticity matrices
was first used, involving two stochastic parameters: the mean value and a dispersion parameter.
In order to compute the nonlinear effects between load and lateral deflection for the buckling problem
of the column, a finite element framework combining a Newton-Raphson solver was developed.
The finite element tool was validated by comparing the as-obtained critical buckling loads with
those from Euler’s formula at zero-fluctuation of the elasticity matrix. Three levels of fluctuations
of material uncertainties were then propagated through the validated finite element tool using
the probabilistic method as a stochastic solver. Results showed that uncertain material properties
considerably influenced the buckling behavior of columns under axial loading. The coefficient of
variation of a critical buckling load over 500 realizations were 15.477%, 26.713% and 41.555% when
applying dispersion parameters of 0.3, 0.5 and 0.7, respectively. The 95% confidence intervals of
column buckling response were finally given. The methodology of modeling presented in this paper
is a potential candidate for accounting material uncertainties with some instabilities of structural
elements under compression.

Keywords: uncertainty quantification; critical buckling load; probabilistic model; finite element
method; random elasticity matrix; Newton-Raphson

1. Introduction

Various parameters of structural elements are uncertain in nature, for instance, the length of
structural components [1]; geometry of the cross-section [2]; boundary conditions [3]; loads [4]; and
especially mechanical properties of materials [5–12]. Indeed, uncertainty in Young’s modulus, Poisson’s
ratio and yield strength of materials constituting structural elements has been experimentally explored
in the literature, such as by Shi et al. [5] for hollow circular steel tubes, Ma et al. [1] for I-section steel
columns, Cao et al. [7] for welded T-section structural elements, Jamaluddin et al. [13] for elliptical
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concrete filled columns and Vu et al. [14] for circular concrete filled steel tubes. The uncertainties
of materials’ properties exhibited an important effect on the force-resistance of structural elements
regarding the initial design [15], particularly for structural members under axial compression. As an
example, Shi et al. [5] found that the ultimate stress of steel circular tubes under axial load was smaller,
that is, 0.8–0.9 times, than the corresponding stress calculated by the two standards Eurocode BS EN
1993-1-12 [16] and ANSI/AISC 360-10 [17] for steel structures. This means instability of steel tubes
appears even before estimation that is provided by the two standards mentioned. In order to fully
characterize the mechanical behavior of structural elements, it is necessary to take into account the
uncertainties of material properties in modeling and simulation, as they become relevant.

In the last three decades, uncertainty quantification has received a tremendous amount of
attention from researchers around the world in the field of computational mechanics, especially
in mechanical and structural engineering [18,19]. A stochastic model based on Karhunen-Loeve
expansion was early proposed by Spanos et al. [20] for modeling the random rigidity of a cantilever
beam. In another attempt, Soize [21,22] developed a theory of random matrices ensembles based on
the theory of information with the maximum entropy principle. The author was the first to obtain
nonparametric probabilistic models for the generalized matrices of mass, dumping and stiffness
in structural dynamics. Besides, the reliability of structural components in the presence of random
mechanical properties, subjected to random loads, was investigated by Der Kiureghian et al. [23],
using finite element method. Within the context of multiscale modeling, Vu-Bac et al. [24] studied the
uncertainty propagation induced by input parameters on the effective properties of nano-composite
polymer based on molecular dynamics simulations. Moreover, Akmar et al. [25] investigated the
sensitivity analysis of uncertain input parameters that affects the effective mechanical behavior of dry
textiles under different deformations. The mechanical properties of masonry structures have been
stochastically represented by Falsone et al. [10] based on image processing techniques. A hyper-elastic
constitutive model of laminated composite has been identified by Staber et al. [26] using non-Gaussian
random fields. Regarding uncertainty modeling in structural analysis, Castaldo et al. [27,28] proposed
a probabilistic quantification for safety factors of reinforced concrete members based on the use
of the nonlinear finite element technique. Manifold studies of Haukaas et al. [29], Most [30] and
Ben Ftima et al. [31] also investigated model uncertainty in structural engineering using a Bayesian
approach for assessment of model parameters. Other sources of uncertainties in structural analysis were
discussed in the work of Der Kiureghian et al. [32]. So far, studies involving uncertainty quantification
have been able to explain and predict the reliability of mechanical responses of structural elements.

Nevertheless, in regard to buckling analysis of columns under axial compression, most of the
models previously developed are, until now, deterministic and have presumed that material uncertainty
has no effect on the critical buckling load. Several studies involving uncertainty quantification
have been recently introduced in the literature. Korkmaz et al. [33] proposed a model based
on fuzzy logic for accounting material uncertainty of reinforced concrete columns under axial
loads. Buckling uncertainty of steel pipelines in contact with elastic soil was investigated by
Athmani et al. [34]. In the work of Gao et al. [35], the authors introduced a Chebyshev surrogate
model to characterize the dynamic buckling of beam-column structures. Last but not least, buckling
uncertainty of carbon nanotube-reinforced composite under compressive stress was reported in the
work of Pouresmaeeli et al. [36], using Galerkin’s method.

Despite all of these efforts, it is not always possible to investigate the highly nonlinear relationship
between load–lateral deflection of columns under axial loading, as reported in the literature [1,2,5,6,11,37–39].
Such nonlinear phenomenon (large displacement when the load increment is small) made the instability
analysis of structural components under compressive stress more complicated [40,41]. Yang et al. [4] used
the commercial finite element software Abaqus to investigate the buckling problem for I-section steel
columns under axial loading. Jiang et al. [39] applied Abaqus in order to simulate the buckling behavior
of pseudo-elastic Nicken Titanium alloy tubes. Shi et al. [5] employed another commercial software,
namely Ansys, to generate 60 finite element buckling configurations based on 24 initial experimental
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tests. However, commercial software programs are not compatible with large datasets when propagating
material uncertainty on buckling responses [42,43]. Within the context of uncertainty propagation through
partial differential equations, the development of code in programming language is indispensable.

The main purpose of this study is to quantify the impact of uncertainties in material properties on
the critical buckling load of columns under axial compression. With this aim, uncertainty in material
properties was modeled using the ensemble of random matrices, constructed by Soize [21,22,44].
A nonlinear finite element tool involving the Newton-Raphson solver was implemented and validated
for tracking the mechanical response of columns. Monte Carlo method was finally carried out as
a stochastic solver with such in-house numerical tools for statistically estimating column buckling
capacity in the presence of material uncertainties.

2. Materials and Methods

2.1. Description of the Considered Column and Its Material Properties

In this study, a fixed-pinned circular column subjected to axial load is considered. Geometry of
the column is schematized in Figure 1a, including the length L (in m), the radius R (in m) of the circular
cross-section. The column was subjected to axial force N (in kN). The load factor involving critical
Euler’s buckling load was defined by the following equation [45]:

λ =
N

NEuler
, (1)

where NEuler was defined such as [40,46]:

NEuler =
π2EI

(KL)2 , (2)

where E is the Young’s modulus of material (in GPa), I is the minimum area moment of inertia of
the cross section of the column (in m4), L is the length of the column (in m) and K is the column
effective length factor. In this case of circular cross-section and fixed-pinned end boundary conditions,
I = πR4/4 and K = 0.7. Slenderness of the circular column was introduced such as:

SLD =
2L
R

(3)

Lateral deflection of the column ∆r (in %) was defined using the following equation:

∆r =
r
L
× 100, (4)

where r is the maximum lateral deflection in m over the centerline of the column. For such a
column under axial compression, typical buckling behavior was reported by many researchers in the
literature [2,5,6,8]. A schematization of the nonlinear relationship between load and lateral deflection
of the column is presented in Figure 1b. The elastic medium of the column was assumed to be
homogeneous, for which the typical symmetric positive-definite elasticity matrix was modeled by a
random matrix [C] with values into the set of (6 × 6) real-valued positive definite matrices, which
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can be written as in Equation (5). In Equation (5), elements [C]ij are a set of statistically dependent
real-valued random variables for which the probabilistic models should be constructed.

[C] =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

Sym. C55 C56

C66


(5)

In this paper, it is assumed that, on average, the random elastic medium is isotropic and is

represented by the (6 × 6) symmetric positive-definite matrix
[
Cisotropic

]
, defined as

[
Cisotropic

]
=



k + 4µ/3 k− 2µ/3 k− 2µ/3 0 0 0
k + 4µ/3 k− 2µ/3 0 0 0

k + 4µ/3 0 0 0
2µ 0 0

Sym. 2µ 0
2µ


(6)

where
k =

E
3(1− 2ν)

,µ =
E

2(1 + ν)
(7)

which involves the mean bulk modulus k and the mean shear modulus µ that are defined with respect
to the mean Young modulus E = 210 GPa and the mean Poisson’s ratio = 0.28 by Equation (7).

Figure 1. Description of column under axial loading: (a) schematization of the column considered in
this study, including length, geometry of cross-section, fixed-pinned boundary conditions and axial
loading at the top surface, and (b) typical mechanical response of columns under axial compression
(buckling load factor versus lateral deflection).

2.2. Probabilistic Model for Random Matrix

In this paper, a probabilistic model of the random elasticity matrix [C] was constructed in using the
ensemble of random matrices SE+ introduced by Soize [21,22]. The construction of the ensemble SE+ is
based on the information theory and on the use of the Maximum Entropy Principe. The probability
distribution of the random matrices were derived analytically in solving an optimization problem
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under statistical constraints that correspond to the available information concerning the random
matrices. Such an available statistical information is the following,

• Random matrix [C] in ensemble SE+ is positive-definite almost surely with values in M+
6 (R);

• Mean value of [C] is the 6 × 6 given and equal to
[
Cisotropic

]
:

[
C
]
= E

{
[C]

}
=

[
Cisotropic

]
, (8)

where E{} denotes the mathematical expectation operator.
• Inverse of random matrix [C] is almost-surely a second-order random variable:

E
{
ln

{
det

{
[C]

}}}
< +∞ (9)

The probability density function of the random matrix [C] is then derived as well as an adhoc
algebraic representation for the random matrix [C]. We have, almost certainly:

[C] =
[
L

C

]T
[G]

[
L

C

]
(10)

where
[
L

C

]
is a (6 × 6) upper triangular matrix constructed from the Cholesky factorization of the

deterministic matrix
[
Cisotropic

]
=

[
L

C

]T
L

C
in which upper script T means the transpose operator of

the matrix. Random (6 × 6) positive-definite valued random matrix [G] added into Equation (10) can
be written, in using its Cholesky factorization, almost certainly as:

[G] = [L G]
T [L G] (11)

In which [L G] is a (6 × 6) upper triangular matrix-valued random variable. It has been proved that
[C] belongs to ensemble SE+ if and only if the elements [L G]ij of random matrix [L G] are real-valued
random variables, such that:

[LG]ij = σUij for i < j ≤ 6 (12)

[LG]ii = σ
√

2Vj for i < j ≤ 6 (13)

in which σ = δG7−1/2 in which δG is a given dispersion coefficient, where Uij and Vj with 1 ≤ i <
j ≤ 6 are a set of statistically independent real-valued random variables with normal probability
distribution for Uij (normalized and centered) and with gamma probability distribution with coefficient:

α j =
7
2δ

2 +
(1− j)

2 for Vj.
First, we note that for such a probabilistic model, entries Cij of the random matrix [C] are statistically

dependent real-valued random variables whose probabilistic model is not Gaussian. This model is
different to the probabilistic model obtained by taking [C] into the Gaussian orthogonal ensemble
(GOE). Second, the algebraic representation of [C] given by Equations (10)–(13) allows the use of Monte
Carlo numerical method as a very straightforward stochastic solver. Finally, it is quite remarkable to
note that this probabilistic model, based on the theory of information, depends only on a minimal set

of parameters, the dispersion coefficient δG and the entries of the mean elasticity matrix
[
Cisotropic

]
.

Finally, for δG = 0, the probability distribution of [C] is a Dirac distribution, and consequently [C]

is almost certainly equal to its mean value
[
Cisotropic

]
. In addition, it has also been proved that the

dispersion coefficient δG is bounded by
√

7/11.



Materials 2019, 12, 1828 6 of 19

2.3. Finite Element Formulation

The equations of the boundary value problems in finite displacements are written

∀x0 ∈ Ω0, divx0(F0(x0)Π0(x0)) = 0
∀x0 ∈ Σ0,F0(x0)Π0(x0)n0(x0) = λfs
∀x0 ∈ Γ0, u0(x0) = 0

(14)

where F0 is the gradient of deformation; Π0 is the second Piola Kirchhoff stress tensor; u0 is the
displacement field of the natural configuration which occupies the domain Ω0; λfs is the force applied
on the surface Σ0 of the boundary of Ω0 where λ is a load factor and fs is a reference force; n0 is the
exterior normal vector of Ω0 on the edge ∂Ω0 of Ω0. The medium that occupies the domain Ω0 is
assumed to be linear elastic in finite displacement. It is then assumed that the constitutive equations
finite displacement yields linear equations between the stress tensor of Piola Kirchhoff Π0 and the
strain Green Lagrange E0 is written as

Π0 = A0 : E0 (15)

in which A0(x0) is the fourth order elastic tensor which satisfies the following properties:{
A0(x0)

}
i jkh =

{
A0(x0)

}
jikh =

{
A0(x0)

}
i jhk =

{
A0(x0)

}
khi j{

A0(x0)
}
i jkh{X0}i j{X0}kh ≥ c{X0}i j{X0}kh

(16)

for any real symmetric second order tensor X and for a given real c> 0. For finite element analysis, let
us introduce Cad the set of functions u defined on Ω0 with the values in R3 and sufficiently regular
on Ω0. Let C0 the subset of functions u of Cad whose trace is null on Γ0. The weak formulation of the
boundary value problems can be written as:

Find u ∈ C0 such that for all v ∈ C0

ke(u, v) + k2,1(u, u, v) + k2,2(v, u, u) + k3(u, u, u, v) = λl(v) (17)

In Equation (17), the symmetric bilinear operator ke is defined as

ke(u, v) =
∫
Ω0

{
A0 :

∂u
∂x0

}
:
∂v
∂x0

dx0 (18)

This is a symmetric definite-positive bilinear form on C0 ×C0. Furthermore, in Equation (19), the
three other multi-linear forms k2,1 and k2,2 (defined on C0 ×C0 ×C0) and k3 (defined on C0 ×C0 ×C0 ×C0)
are defined as

k2,1(u, v, w) = 1
2

∫
Ω0

{
A0 :

{
∂uT

∂x0

∂v
∂x0

}}
: ∂w
∂x0

dx0

k2,2(u, v, w) =
∫

Ω0

{
A0 : ∂u

∂x0

}
:
(
∂vT

∂x0

∂w
∂x0

)
dx0

k3(u, v, w, r) = 1
2

∫
Ω0

{
A0 :

{
∂uT

∂x0

∂v
∂x0

}}
:
(
∂wT

∂x0

∂r
∂x0

)
dx0

(19)

Finally, the linear form l(v) defined on C0 is defined as

l(v) =
∫

x∈Σ0

v(x0) · fs(x0)dS(x) (20)

where the dot means the Euclidian inner product. Hereafter, the existence and uniqueness of a solution
to the problem is assumed.
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2.4. Newton-Raphson Technique

The weak forms of the problem can be written as operators for the sake of simplicity when
discussing the numerical scheme for constructing a solution to the problem. Let us introduce the set C′0
of the linear forms defined on C0 as well as the operator Ke defined on C0 with values in C′0 such that:〈

Ke(u), v
〉
= ke(u, v) (21)

where 〈, 〉 is the duality bracket between C′0 and C0. Let us also introduce three multi-linear operators
K2,1, K2,2 (defined on C0 ×C0 ×C0) and K3 (defined on C0 ×C0 ×C0 ×C0) with values in C′0 such that〈

K2,1(u, v), w
〉
= k2,1(u, u, v)〈

K2,2(v, u), w
〉
= k2,2(v, u, u)〈

K3(u, v, w), r
〉
= k3(u, u, u, v)

(22)

Let qext be also the linear form in C′0 defined as〈
qext, v

〉
= l(v) (23)

Written in term of operators, Equation (17) is rewritten as

Ke(u) + K2,1(u, u) + K2,2(u, u) + K3(u, u, u) = λqext (24)

which can formally be rewritten as

g(u,λ) = rint(u) − λqext = 0 (25)

where
rint = Ke(u) + K2,1(u, u) + K2,2(u, u) + K3(u, u, u) (26)

Let us now consider a physical system, described in the previous section, whose deformed
configuration is represented by the displacement field u. The physical system is submitted to external
loads which are proportional to load factor λ. It is assumed that u and load factor λ are the solutions of
a set non-linear equations that can be written as:

g(u,λ) = 0 (27)

Let KT(u,λ) be the tangent operator of u 7→ g(u,λ) such that, for all v,

KT(u,λ)v = lim
h→0

1
h
(g(u + hv,λ) − g(u,λ)) = lim

h→0

1
h
(rint(u + hv) − rint(u)) (28)

Consequently, KT(u,λ) is independent of the load factor λ, and thus it can be rewritten as KT(u).
The Newton-Raphson method is an effective method that allows an accurate approximation of solution
u to be computed for given values of λ. The principle of the method is to compute the increment ∆u,
given an increment ∆λ of load factor such that:

g(u + ∆u,λ+ ∆λ) = 0 (29)

where (u,λ) is a known solution of the above equation which has been previously computed.
An iterative scheme is used to compute ∆u as the limit of the sequence {∆ku}k ≥ 0 in which ∆ku is
defined by the following recurrence equation:

∆ku = ∆k−1u + δku (30)



Materials 2019, 12, 1828 8 of 19

where
∆ku = KT(uk−1)

−1[(λ+ ∆λ)qext − rint(uk−1)]

uk−1 = u + ∆k−1u
(31)

2.5. Monte Carlo Method

Monte Carlo method has been largely used as a very powerful stochastic solver in various
domains of science, especially for uncertainty quantification [47,48]. Stochastic analysis involving
Monte Carlo simulations as a stochastic solver has been reported in many works, for example,
for structural dynamics [49–51], in vascular mechanics [52–54], for composite materials [15,55–58],
for model reduction [59,60], for concrete structures [61,62], for hyper-elastic materials [26,63], and
for heat transfer problems [64]. Such techniques, based on statistically independent sampling, are
extremely efficient and powerful for calculating the statistical quantities that measure the propagation
of the uncertainty of input parameters on the output results. The method could provide good statistical
investigation and also has a strong capability in parallelization computing [47,65–67], especially in
combination with a finite element model [19]. Convergence analysis of the Monte Carlo method with
respect to the number of statistically independent samples is carried out by studying the convergence
of the following function [57,68,69]:

NMC 7→ fconv(NMC) =
1
W

1
NMC

NMC∑
i=1

Wi, (32)

where W is the mean value of a given random variable W and NMC is the number of statistically
independent samples W1, . . . , WNMC of random variable W. Such a convergence estimator also provides
efficient information about the time-consuming process within a context of reliable statistical analysis
of the results.

3. Methodology for Modeling

In this study, the methodology for modeling and simulation (Figure 2) was constructed, involving:
(i) a probabilistic model for generating uncertainties in material elasticity matrix; and (ii) a finite element
model for tracking equilibrium of column under axial compression using the Newton-Raphson method.
Dispersion coefficient δG and elastic constants of materials such as Young’s modulus and Poisson’s ratio
are the inputs of the probabilistic model. The construction of this probabilistic model is presented in
Section 2.2. Regarding the finite element tool, the code is developed in Matlab for solving the boundary
value problem of partial differential equations defined in Section 2.3. The Newton-Raphson method
was implemented in order to solve nonlinear equations for the column under compressive stress.
The Monte Carlo method was also carried out as a stochastic solver for quantifying the propagation of
uncertainties related to the random elasticity matrix on the buckling response of the columns. Finally,
statistical analysis was performed to quantify significant information, including the probability density
function of the critical buckling load and the 95% confidence intervals.
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Figure 2. Methodology modeling of the present study including probabilistic model for random matrix
and finite element tool combined with the Newton-Raphson technique.



Materials 2019, 12, 1828 10 of 19

4. Results and Discussion

In this study, the column considered was discretized using linear 4-node tetrahedron—1 integration
point elements (Figure 4a). The convergence of the finite element mesh with respect to the number of
elements was analyzed by increasing the number of nodes in the domain Ω0. In this work, 12 elements
along the radial direction and 220 elements along the length of column were adopted as optimum.
Finally, the column was discretized by a total of 44,154 elements (corresponding to 29,568 degrees of
freedom). In order to simulate fixed-pinned end boundary conditions of the columns, all nodes at the
bottom end of the mesh were fixed, while only axial translation of the center point at the top end was
permitted. In the finite element code, lateral translations in both the x-axis and y-axis of the center
point at the top surface were set to be zero, while all other nodes at the top surface were set to be free.
Uniformly distributed load was applied at the top end of the column. Since triangular mesh was not
regular at the top surface (Figure 4d), that is, the nodal applied force was not exactly the same from
one node to another. That way, the instability of column was triggered.

4.1. Validation of Numerical Tool

In this section, 13 fixed-pinned columns of slenderness ranging from 120 to 240 were investigated
using the in-house finite element tool in order to compare the results with those obtained analytically
using Euler’s equation [40,45]. Details of the geometry of the 13 columns are given in Table 1.
The Young’s modulus of all columns was 210 GPa while the Poisson’s ratio was 0.28 (i.e., associated to
the mean model of the elasticity matrix introduced in Equation (6)). Figure 3a presents the buckling
load factor versus lateral deflection, while Figure 4c shows the deformed centerline of columns with
SLD = 120, 140, 160, 180 and 200, respectively. The initial and deformed meshes of 120 SLD columns
under axial compression are shown in Figure 4a,b, respectively. The critical buckling load was achieved
(Table 1) and plotted in Figure 3b for comparison with Euler’s formula.

Figure 3. Buckling response of columns under axial compression: (a) load factor versus lateral deflection
and (b) comparison between critical buckling loads obtained from finite element tool and Euler’s
formula, for columns with SLD ranging from 120 to 200, respectively.

The validation of the in-house finite element tool was achieved as shown in Figure 3b. It can
be observed that the finite element results are in good agreement with the Euler’s formula values.
The value of the coefficient of determination R2 = 0.9975 was obtained. Based on this, it can be
concluded that the in-house finite element tool is reliable and efficient in investigating the buckling
response of the fixed-pinned end columns under axial compression. In the next section, this numerical
tool is used to quantify the uncertainties related to the material properties on the buckling capacity of
structural elements under compression.
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Table 1. Summarized information to validate the developed finite element tool.

Length of
Column L (m)

Radius of Circular
Cross-Section R (m)

Slenderness of
Column SLD

Critical Buckling
Load Factor from

FEM

Euler’s Critical
Buckling Load Factor

Critical Buckling
Load from FEM (kN)

Euler’s Critical
Buckling Load (kN)

0.60 0.01 120 1.010 1 91.339 90.434
0.65 0.01 130 0.962 1 74.121 77.057
0.70 0.01 140 0.996 1 66.176 66.442
0.75 0.01 150 1.004 1 58.109 57.878
0.80 0.01 160 1.012 1 51.480 50.869
0.85 0.01 170 0.965 1 43.461 45.061
0.90 0.01 180 1.001 1 40.233 40.193
0.95 0.01 190 0.973 1 35.092 36.073
1.00 0.01 200 1.015 1 33.044 32.556
1.05 0.01 210 0.965 1 28.493 29.529
1.10 0.01 220 1.012 1 27.229 26.906
1.15 0.01 230 0.986 1 24.270 24.617
1.20 0.01 240 1.016 1 22.970 22.608

Figure 4. (a) Initial and (b) deformed tetrahedron meshes of 120 SLD column under axial loading,
(c) deformed centerline of columns with SLD = 120, 140, 160, 180 and 200, respectively, and (d)
visualization of the triangular mesh at the top surface for the case SLD = 120.

4.2. Uncertainty Quantification

In this section, the impact of material uncertainty on the buckling capacity of columns is quantified.
Three levels of fluctuations (i.e., 0.3, 0.5 and 0.7) in the elasticity matrix of the material constituting
the 120 SLD columns were investigated. The probabilistic model for the material uncertainties is first
presented using the probabilistic model, presented in Section 2.3. The validated in-house finite element
tool presented in the previous section was used to quantify the statistical fluctuations of the responses
in finite displacement using the Monte Carlo approach. Convergence analysis was also carried out in
order to study the convergence of Monte Carlo simulations and estimate the confidence interval for
the column buckling responses in finite displacement.

4.2.1. Parameters of the Probabilistic Model for Material Uncertainties in Finite Displacement

The probability density functions of random entries Cij of random matrix [C] were estimated
using the kernel smooth density method with 500 statistical independent realizations of [C]. The mean
values of entries Cij, given by Equation (6), are also reported in Figure 5. In Equation (33), a random
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realization of elasticity matrix [C] (in GPa) associated with a level of fluctuations δG = 0.5 is presented.
The eigenvalues of the elasticity matrix for this realization are all positive and are equal to 580.23, 42.61,
215.21, 199.33, 158.40 and 108.37.

[
CδG=0.5

realization−N◦i

]
=



285.79 52.91 128.04 20.00 −12.42 −46.94
182.66 130.80 36.63 7.05 −42.71

396.40 58.42 −31.24 −74.46
94.48 17.23 −78.42

Sym. 142.00 28.71
202.83


(33)

Figure 5. Probability density functions of several components of elasticity matrix over 500 random
realizations for (a) C33, (b) C31, (c) C32 and (d) C66 (in GPa) associated to three levels of fluctuations
respectively. Value of the corresponding mean model is also indicated.

4.2.2. Uncertainty Quantification

The Monte Carlo numerical method was carried out to quantify the propagation of uncertainties
on the responses of the nonlinear mechanical system. A number of NMC = 1500 random statistical
independent realizations of the elasticity matrix [C], corresponding to 3 different values of levels of
fluctuations given by δG, were used as input for the in-house finite element tool. Figure 6a–c presents
500 curves of buckling load factor–lateral deflection associated to δG = 0.3, 0.5 and 0.7, respectively.
It can be seen that uncertainties related to the material properties greatly affect the buckling responses
of column under axial loading, that is, different load–lateral deflection relationships are obtained.
Consequently, depending on each random realization of the random elasticity matrix [C], the buckling
points were found at different lateral deflections. In this paper, a critical lateral deflection of 0.1% was
chosen in order to normalize the impact of the material uncertainty on the global buckling response
of the columns. This choice is reasonable, as the initial geometry of the column was unchanged.
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At 0.1% of lateral deflection (Figure 6), the buckling load factor varies from 0.6 to 1.5 with δG = 0.3,
from 0.3 to 1.6 with δG = 0.5 and from 0.1 to 1.7 with δG = 0.7. This means that the fluctuations of
material properties cause a significant impact on the buckling capacity of columns.

Figure 6. Buckling responses of columns under axial compression accounting fluctuations in the
elasticity matrix for (a) δG = 0.3, (b) δG = 0.5 and (c) δG = 0.7. 500 Monte Carlo runs were performed for
each case.

The convergence function values of the critical buckling load factor at 0.1% of lateral deflection
over 500 Monte Carlo realizations is presented in Figure 7a–c for 3 levels of fluctuations 0.3, 0.5 and 0.7,
respectively. It is worth noting that this convergence function is defined in Equation (32). It is also
worth noting that 500 realizations are enough to reach a convergence of the statistical estimators in
average, yielding reliable results for the column buckling response. Especially in the case of δG = 0.7,
at least 400 Monte Carlo simulations were required to reach the converged statistical value in a range
±1% around the average value.

The probability density function values of buckling load factor at 0.1% of lateral deflection are
shown in Figure 8a–c associated with three levels of fluctuations δG = 0.3, 0.5 and 0.7, respectively.
The mean values, standard deviations and coefficients of variations of the random critical buckling
factor λ are also reported in Table 2. The ratios between the coefficients of variation and the fluctuation
levels were deduced and are equal to 0.5176, 0.5341 and 0.5928, respectively. Regarding the mean values,
it is worth noting that increasing material uncertainty could decrease the buckling capacity of columns.
The mean values of the critical buckling load are 90.43, 89.94, 77.88 and 60.51 kN when increasing the
fluctuations in material uncertainty associated with four levels of 0, 0.3, 0.5 and 0.7, respectively.
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Figure 7. Convergence functions over 500 Monte Carlo simulations for (a) δG = 0.3, (b) δG = 0.5 and (c)
δG = 0.7. The discontinuous lines represent ±1% deviation around the average value.

Figure 8. Probability density functions of critical buckling load at 0.1% of lateral deflection for (a)
δG = 0.3, (b) δG = 0.5 and (c) δG = 0.7.
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Table 2. Summary of statistical analysis of critical buckling load factor.

Level of Fluctuations
in the Elasticity Matrix Mean Standard Deviation Coefficient of Variation (%)

0 1 0 0
0.3 0.995 0.154 15.477
0.5 0.861 0.230 26.713
0.7 0.669 0.278 41.555

The confidence interval of 95% for the buckling behavior of columns under axial loading from 0
to 4% of lateral deflection was achieved and is shown in Figure 9a–c for the 3 levels of fluctuations,
respectively. The confidence interval appeared wider when the fluctuation level (controlled by δG)
increased. Such information might be helpful in investigating the post-buckling behavior of columns.

Figure 9. The 95% confidence intervals of column buckling behavior from 0 to 4% of lateral deflection
for (a) δG = 0.3, (b) δG = 0.5 and (c) δG = 0.7.

In conclusion, the nonlinear finite element tool developed shows a good level of efficiency
and robustness when combined with the Monte Carlo numerical method as a stochastic solver for
quantifying the propagation of uncertainties of material properties on the buckling response of columns
under axial compression. The quantification of uncertainty could be useful in accounting for the
presence of fluctuations in the mechanical properties of material on the instability of columns, which is
the most important failure mode of structures.

5. Conclusions

In this paper, a probabilistic model was introduced in order to quantify the propagation
of uncertainties related to the elasticity matrices of materials constituting the structural element
under compression in finite displacement. Such a probabilistic model is only parameterized by
two parameters including the mean value of the elasticity matrix and a dispersion coefficient
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that controls the level of statistical fluctuations of the probabilistic model. An in-house finite
element tool based on a Newton-Raphson solver was developed in order to track the nonlinear
behavior of the columns under compressive stress. The critical Euler’s buckling load was analyzed
to validate this in-house finite element tool. Results showed that the finite element analysis in finite
displacement correctly computed the buckling response of the column for the mean value of the
material elasticity matrix. Statistical sampling of the random elasticity matrix has been calculated in
using the algebraic representation of the random elasticity matrix in the adhoc ensemble of random
matrices. Numerical experiments were conducted for three fluctuation levels, that is, δG = 0.3, 0.5 and
0.7. A total number of 500 Monte Carlo simulations were used to reach the convergence of the statistical
estimators to quantify the propagation of material uncertainties on the buckling behavior of columns
in finite displacement. Statistical analysis was performed in order to estimate the values of the mean,
standard deviation, coefficient of variation and confidence intervals of critical buckling loads at these
three different fluctuation levels. The results showed that the buckling behavior of a column under
axial loading is greatly affected, while accounting for material uncertainties. However, the statistical
convergence of Monte Carlo realizations was investigated only for the mean value. In order to better
characterize the statistical behavior of variables, a convergence estimator for the standard deviation
should also be addressed. In further research, methodology including the in-house finite element
tool could be useful to investigate the instability of columns under compression to account not only
for material uncertainties but also fluctuations in geometry of columns, loading eccentricity, residual
stresses, external contact, and so on. The probabilistic model could also be extended to account for the
correlation structure in heterogeneous materials using random fields of the elasticity matrix.
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