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Abstract: Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative
to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage.
However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore,
in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to
be developed and researched. This review aims to provide an exhaustive discussion about the
state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the
variety of advantages they demonstrate in various critically important parameters, such as electronic
conductivity, structural stability, cycle life, and reversibility.

Keywords: sodium ion batteries; anodes; cathodes; 2D materials; MXenes; alloys; prussian blue;
NASICON

1. Introduction

1.1. Current Global Energy Scenario

The progressively increasing demands for energy to meet the needs of the steadily growing
population has led to huge global increases in the consumption of fossil fuels [1]. However, this large
demand and ever-growing consumption of fossil fuels has led to significant undesirable consequences,
primarily the large quantities of greenhouse gases (e.g., CO2) being liberated into the atmosphere as a
result of the combustion of these fuels, leading to global warming and climate change [2,3]. Another
challenge is the gradual dwindling of fossil fuel reserves, with only coal expected to last approximately
another 100 years, and oil and gas for a much shorter time, which raises important questions about
energy security in the long term [4,5]. As a result, a concerted effort is being taken to move away from
fossil fuels and toward renewable energy providing systems (e.g., solar, wind, water (hydroelectricity),
and geothermal energy) [6]. These energy systems have the advantage of being abundant (almost
inexhaustible), inexpensive, and most importantly, produce no greenhouse gases [7,8]. However,
most of these renewable sources, such as solar and wind, are intermittent, and, therefore, robust,
reliable, and economically viable storage systems are necessary. Different energy storage types exist,
such as pumped-hydro (accounting for 98% of U.S. energy storage), thermal energy storage, and
compressed air [7,9]. However, electrochemical energy storage systems, by virtue of their longevity,
low establishment and capital expenditure, and ease of set-up, are considered the best candidates for
energy storage from renewables [9,10]. Among these rechargeable electrochemical storage systems,
lithium ion battery (LIB) systems have come to play a pivotal role [11].
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1.2. Current Perspective on LIBs for Energy Storage

Ever since they were first commercialized by Sony in 1991, LIBs have transformed the way
electrochemical energy is stored [12,13]. The consistent specific energies around 120 Wh kg−1, low
reduction potentials (−3.04 V vs. SHE), and rather small ionic size of Li (0.76 Ẵ), which facilitates
smooth intercalation and fast electrochemical kinetics, are some of the important aspects that make
LIBs the gold standard in rechargeable metal ion electrochemical storage systems [14,15].

These advantages notwithstanding, certain aspects of LIBs need closer scrutiny. Most importantly,
Li resources are rather rare in the earth’s crust (~20 ppm), and coupled with its uneven geographical
availability, this scarcity makes for unfavorable LIB economics [16]. Secondly, economical constraints
hinder the application LIBs in large and very large scale storage systems, such as grid storage [17]. Also,
another important concern regarding LIB systems is environmental, as the usage of certain electrodes
that are toxic and the flammability of certain electrolytes have been reported [18].

With this perspective in mind, alternative rechargeable battery systems are being studied to
overcome the said challenges with lithium-based systems. It is in this scheme that sodium ion batteries
(SIBs) fit in, and it is hoped that they will carve out a niche of their own in the greater metal-ion based
rechargeable electrochemical energy storage ecosystem.

1.3. Rationale for SIBs for Energy Storage

SIBs provide several unique advantages and are, therefore, increasingly studied as a feasible
alternative to LIBs [19]. One of the most important factors is the abundant availability of Na metal
in the earth’s crust (it is the 6th most abundant element), consequently making its procurement and
processing relatively inexpensive [20]. Also, SIB systems have good performance in aqueous systems,
unlike their LIB counterparts, and this greatly helps to bring down costs as inexpensive electrolytes
and less complicated fabrication processes can be used [20,21]. Another advantage is that SIB systems,
to a large extent, mimic LIB systems in their electrochemical working, which proves beneficial from
a theoretical modeling standpoint, as a considerable body of knowledge already exists for LIBs [22].
All these factors lead to greater potential for SIBs to be applied in systems where large quantities of
sodium are required, making them prime candidates for grid scale storage [21].

Despite these advantages, SIB systems still have not been able to be commercialized as several
important hurdles still remain. Firstly, the large size of the Na+ ion (1.02 Ẵ) makes for considerably
sluggish kinetics [23,24]. Also, this large ionic size results in significant constraints for smooth
intercalation in the host electrode interstices, often resulting in large and undesirable volume changes,
thereby reducing cycle life and lowering longevity and performance [24,25]. Scientists and researchers
have been adopting different approaches to overcome these challenges, and one of the most important
avenues ahead for SIB systems is from the perspective of materials engineering, i.e., developing newer
and better electrodes with novel morphologies to enhance performance and longevity [26,27].

The main parameters to evaluate the high performance of an electrode material are broadly
classified into the four categories: (a) energy density, (b) rate capability, (c) cycleability, and
(d) thermodynamic stability [28]. Energy density is defined as the product of average operating
potential (V) and the total amount of charge transfer (Ah) and is expressed in Wh g−1/Wh L−1. In
general, for a high-performance electrode, it is desired that the electrode materials undergo fast
charge and discharge while maintaining high-energy density. On the other hand, the ability of the
anode material to reversibly cycle Na-ions with the least irreversible capacity (IRC) is the cycleability
of the material. To achieve thermodynamic stability and prevent the possible change in anode
structure, the addition of external matrix material or similar chemical modifications are desired for a
high-performance electrode material.

This manuscript, therefore, devotes itself to providing a substantial discussion on the current
state-of-the-art anodes (negative electrodes) and cathodes (positive electrodes) used for high
performance SIB systems, as well as the different types and classes of materials used and their



Materials 2019, 12, 1952 3 of 52

motivation, novel fabrication techniques, their performance, the advantages and disadvantages of
each, and what future research aims to be in this regard.

2. Anodes

With respect to anode materials for Na-ion batteries, it is a major challenge to develop high
performance anode materials with a high reversible capacity, stable cycling performance, and high rate
capability. In this review, the development of high performance of anode materials (carbons, alloy-based
materials, oxides, and 2D materials) for Na-ion battery systems are discussed. The strategies to improve
electrochemical performance in terms of materials fabrication, surface modification, electrolyte
optimization, applying a favorable voltage window, and electrochemical performance are summarized.

2.1. Carbons

Carbon based materials have been studied extensively for SIBs because of their sustainability
and natural abundance. Graphite had been studied for Na ion batteries in the 1980s, but it did not
allow significant Na+ insertion and its capacity was much lower. Therefore, soft carbons (SCs), like
petroleum coke, carbon black, pitch, and PVC, were tested during the 1990s, but also showed limited
capacities [29–31]. Later in 2011, the interest of Na-ion batteries was renewed with the study of Na
intercalation in hard carbon [32]. Since then, many families of hard carbons, such as sucrose, cellulose,
wood, argan shells, and peanut shells, have been studied for use as anodes, and their performance
reached beyond 300 mAh g−1. Also, interest in soft carbons (SCs) has been growing in recent years [33–36].
However, considerable work remains in improving carbon-based anodes for Na-ion batteries.

Carbon-based materials are insertion-based materials which insert/extract a certain amount of
Na+ during charge/discharge process. However, graphitic carbons hinder the intercalation of Na-ions
due to their large radius [37]. A minimum interlayer distance of ~0.37 nm is required for Na-ion
insertion, whereas the interlayer spacing of graphite is ~0.335 nm [23]. In contrast, other alkali metals,
such as K, Rb, Cs, etc., are found to intercalate into graphite, even though they have larger ionic sizes
than Na [38,39]. K-ion based Graphite intercalation compounds (GICs) have shown the ability to
adsorb molecular hydrogen and have good conductive properties [38]. The authors have reported
the successful formation of stage-I KC8 [38]. Alkali metals are shown to become less stable as ion size
decreases from Cs to Na because of reduced ionic bonding. Although, Li is an exception, as it forms
covalent bonds with C, resulting in negative formation energy. For this reason, graphite is a good
intercalation material for Li and K but not for the Na [39].

Jache and Adelhelm showed that, using co- intercalation phenomena in a diglyme-based electrolyte,
results in a stage-I ternary intercalation compound with an estimated stoichiometry of Na(diglyme)2C20

and the electrode showed a superior cycle life with capacities close to 100 mAh g−1 at a current density
of 37.2 mA g−1 for 1000 cycles and coulombic efficiencies >99.87% [40]. Wen et al. utilized another
strategy by expanding the interlayer distance of graphite to 0.43 nm through a process of oxidation
and partial reduction on graphite and reported a high reversible capacity of 284 mAh g−1 at 20 mA g−1

and retained 73.92% of its capacity at 100 mA g−1 after 2000 cycles [37].
Mesoporous soft carbon (MSC) was prepared by Cao et al. form mesophase pitch using

nano-CaCO3, which consists of a disordered region with a large interlayer distance [35]. As an anode
in Na-ion batteries, this MSC delivered a reversible capacity of 331 mAh g−1 at a current density of
30 mA g−1 and retained a capacity of 103 mAh g−1 at 500 mA g−1 after 3000 cycles. Recently, Yao et al.
fabricated microporous soft carbon nanosheets (SC–NS) through microwave assisted exfoliation [41].
According to the authors, micropores and defects at the edges of as-prepared SC–NS contributed to
enhanced kinetics and extra Na storage sites and exhibited a high reversible capacity of 232.2 mAh g−1

at 1000 mA g−1 and 128.7 mAh g−1 at 800 mA g−1 after 3500 cycles.
Hard carbons have also been utilized as anodes for Na-ion batteries due to their disordered

structure and large interlayer distance [42]. Further, Hard carbon can deliver high capacity and
low voltage plateau near 0.1 V (vs. Na/Na+) [43,44]. Luo et al. derived carbon nanofibers from
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cellulose nanofibers and investigated them as materials for an anode [45]. A high reversible capacity
of 255 mAh g−1 was obtained at a current density of 50 mA g−1 and an excellent cycling ability of
176 mAh g−1 was reported at 200 mA g−1 for over 600 cycles. Cao et al. prepared hollow carbon
nanowires (HCNWs) through the pyrolization of a hollow polyaniline nanowire precursor [23]. The
HCNWs used as an anode for Na-ion batteries delivered a high reversible capacity of 251 mAh g−1

at 50 mA g−1 and showed a capacity retention of 82.2% over 400 cycles between 1.2 and 0.01 V (vs.
Na+/Na). Li et al. also reported porous carbon nanofibers (P-CNFs) that delivered an reversible
capacity of ~140 mAh g−1 at a current density of 500 mA g−1 after 1000 cycles [46]. P-CNFs were
prepared by pyrolysis of PAN-F127/DMF nanofibers via an electrospinning process. Lotfabad et al.
utilized pyrolyzed banana peel pseudographite (BPPG) as the anode for Na-ion batteries and reported
a gravimetric capacity of 355 mAh g−1 at 50 mA g−1 and a stable charge capacity of 221 mAh g−1

at 500 mA g−1 after 600 cycles [47]. The authors attributed this performance of BPPG to the dilated
intergraphene spacings for Na intercalation and near-surface nanopores.

For room temperature Na-ion batteries, Zhang et al. synthesized hard carbon, under an ultrahigh
temperature (2500 ◦C), from switchgrass [48]. The authors reported that because of its three-dimensional
porous hierarchical structure and large interlayer spacing of 0.376 nm, carbonized grass showed a
specific capacity of 210 mAh g−1 as the anode of Na-ion batteries at a current density of 0.1 A g−1, and
when cycled at 50 mA g−1, a stable capacity of 200 mAh g−1 was retained over 800 cycles with ~100%
coulombic efficiency after the first few cycles. Figure 1 represents a summary of the results of this group
as representative of the performance of the carbon-based anode material for high performance Na-ion
batteries. Figure 1a–f shows the microporous feature of the carbonized switchgrass and highlights the
array structure and micro/nanoscale holes for ion transport. Graphitic layer structures can be seen
from XRD and Raman in Figure 1i–j. Figure 1k–r shows the representative cyclic voltammogram (CV),
voltage profiles, and galvanostatic charge-discharge (GCD) of the carbon anodes for the 1st, 2nd, 5th,
and 10th cycles, at a current density of 50 mA g−1 in a potential range of 0.01−2 V versus Na/Na+. The
initial coulombic efficiencies for the GC-1000 and GC-2050 anode are calculated to be 42% and 64%,
respectively. Compared to GC-1000, the capacity of GC-2050 in both the sloping and plateau regions
reduced slightly, which is, according to the authors, due to a decrease of active sites of electrochemical
adsorption/desorption to sodium ions.

Large area phosphorous-doped carbon nanosheets (P-CNSs) were obtained from carbon dots
(CDs) and analyzed by Hou et al. [49]. A high reversible capacity of 328 mAh g−1 was obtained at
0.1 A g−1 with a stable capacity of 149 mAh g−1 at a current density of 5 A g−1 after 5000 cycles for
P-CNSs [49]. In the recent past, Hu et al. synthesized a nitrogen rich (17.72%), hierarchically porous,
and highly disordered carbonaceous material (N-HC), with an enlarged interlayer distance of 0.44 nm
by spray drying and pyrolysis under NH3 [50]. This porous and nitrogen doped N-HC was used as the
anode in Na-ion batteries and showed a reversible discharge capacity of 255.9 mAh g−1 at 500 mA g−1

in the 3000th cycles [50]. A low-cost typha-derived hard carbon with acid activation was synthesized
and analyzed in Na-ion batteries by Shen and coworkers [51]. They reported a high reversible capacity
of 204.8 mAh g−1 at a current density of 100 mA g−1 after 4000 cycles [51]. Zhao et al. synthesized a
low temperature (1300 ◦C) hard carbon with graphite crystals, using carbonized eggshell membranes,
and sucrose-derived microsphere as precursors [52]. The hard carbon/graphite structure showed a
discharge capacity of 310 mAh g−1 at 20 mA g−1 and 260 mAh g−1 after 1000 cycles at 100 mA g−1 [52].

Overall, Carbon based anodes are leading candidates for Na-ion batteries, but they need further
study. Graphitic carbons limit the Na intercalation by forming a compound that is not energetically
favorable, and solvation energy plays a role in intercalation, which needs to be further studied. Broad
interlayer spacings of carbon can lead to a higher capacity. On the other hand, for hard carbons,
it is believed that Na ion intercalations correspond to a low potential plateau. Additional study on
the Na storage mechanism, especially the contribution of plateau regions, is needed to understand
this intercalation.
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(carbonized switchgrass, GC-1000 and GC-2050) as an anode in Sodium ion batteries (SIBs): (a) Low 
magnification SEM image from a cross section of GC-1000. (b) Corresponding higher magnification 
SEM image of GC-1000. (c) Low magnification SEM image from longitudinal section of GC-2050 
where vertical lines are showing the array structure. (d) Higher magnification SEM image of GC-2050 
where dashed circles highlight the micro/nanoscale holes for ion transport. (e,f) HRTEM (High-
resolution transmission electron microscopy) images of GC-1000 and GC-2050. (g) Digital photograph 
of switchgrass derived carbon under Joule heating. (h) Light emission spectra of the carbonized 
switchgrass, here the temperature was fitted according to blackbody radiation equation. (i) XRD 
patterns of the GC-1000 (black) and Gc-2050 (red). Samples show identical twin broad peaks around 
2ϴ = 23.6֯ and 43.6֯, corresponding to the diffraction of graphitic layered structure. (j) Raman spectra 
of GC-1000 (black) and GC-2050 (red) confirmed the progressively ordered structure in the samples. 
(k,l) N2 adsorption/desorption isotherms and pore size distribution of GC-1000 and GC-2050, 
respectively. (m,n) Cyclic voltammogram (CV) curves for the first five cycles of GC-1000 and GC-
2050, respectively at a scanning rate of 0.5 mV s−1. (o,p) Voltage profiles of GC-1000 and GC-2050 
respectively at a current density of 50 mA g−1 in the potential range: (0.01–2 V). (q,r) Specific capacity, 
coulombic efficiency, and rate capability of GC-1000 and GC-2050 samples. Reprinted with 
permission from [48]. Copyright 2017 American Chemical Society. 

Figure 1. Structural characterization and electrochemical performance analysis of Hard Carbon
(carbonized switchgrass, GC-1000 and GC-2050) as an anode in Sodium ion batteries (SIBs): (a) Low
magnification SEM image from a cross section of GC-1000. (b) Corresponding higher magnification
SEM image of GC-1000. (c) Low magnification SEM image from longitudinal section of GC-2050 where
vertical lines are showing the array structure. (d) Higher magnification SEM image of GC-2050 where
dashed circles highlight the micro/nanoscale holes for ion transport. (e,f) HRTEM (High-resolution
transmission electron microscopy) images of GC-1000 and GC-2050. (g) Digital photograph of
switchgrass derived carbon under Joule heating. (h) Light emission spectra of the carbonized
switchgrass, here the temperature was fitted according to blackbody radiation equation. (i) XRD
patterns of the GC-1000 (black) and Gc-2050 (red). Samples show identical twin broad peaks around
2θ = 23.6◦ and 43.6◦, corresponding to the diffraction of graphitic layered structure. (j) Raman
spectra of GC-1000 (black) and GC-2050 (red) confirmed the progressively ordered structure in the
samples. (k,l) N2 adsorption/desorption isotherms and pore size distribution of GC-1000 and GC-2050,
respectively. (m,n) Cyclic voltammogram (CV) curves for the first five cycles of GC-1000 and GC-2050,
respectively at a scanning rate of 0.5 mV s−1. (o,p) Voltage profiles of GC-1000 and GC-2050 respectively
at a current density of 50 mA g−1 in the potential range: (0.01–2 V). (q,r) Specific capacity, coulombic
efficiency, and rate capability of GC-1000 and GC-2050 samples. Reprinted with permission from [48].
Copyright 2017 American Chemical Society.
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Table 1 lists the performance of several notable carbon-based anodes that have been used as
anodes for Na-ion battery applications.

Table 1. High performance of carbon-based anodes in Na-ion battery systems.

Type of Carbon Anode Electrolyte Chemistry Voltage
Range (V) Performance * Reference

Natural Graphite 1 M NaPF6 in DEGDME (-) 0.01–3.00 150/2500/100 [53]
Carbon nanosheets derived

from peat moss 1 M NaClO4 in EC/DEC (1:1) 0.01–3.00 255/210/100 [54]

Soft Carbon 1 M NaPF6 in EC/DEC (1:1) 0.01–2.00 114/300/1000 [33]
Nitrogen doped porous

carbon 1 M NaClO4 in PC (-) 0.01–3.00 243/100/50 [55]

Hollow carbon nanospheres 1 M NaClO4 in PC (-) 0.01–3.00 160/100/100 [56]
Hard carbon

micro-spherules 1 M NaClO4 in EC/DEC (1:1) 0.01–3.00 290/100/30 [57]

Wood fiber derived hard
carbon 1 M NaClO4 in EC/DEC (1:1) 0.01–2.5 196/200/100 [58]

Hard-soft composite carbon 1 M NaClO4 in EC/DEC (1:1) 0.01–2.5 191/100/150 [59]
Hard carbon microtubes

(HCTs) 0.8 M NaPF6 in EC/DMC (1:1) 0.01–2.5 305/100/30 [60]

Microstructure-controlled
amorphous carbon 1 M NaPF6 in EC/DMC (1:1) 0.01–3.00 190/200/300 [61]

* Specific capacity (mAh g−1)/number of cycles/current density (mA g−1). DEGDME = Diethylene glycol dimethyl
ether, EC = Ethylene carbonate, DEC = Diethyl carbonate, PC = Propylene carbonate, DMC = Dimethyl carbonate.

2.2. Alloys

Because of their high energy density and low redox potential, alloys have garnered considerable
interest as anode materials for Na-ion batteries. Alloy-based materials can alloy with Na to form
various Na-metal-alloy phases that contribute to higher capacities [19]. In 2011, Chevrier and Ceder
reported that Si, Ge, Sn, Pb, and Sb could alloy with sodium and show theoretical capacities of 954, 369,
847, 485, and 660 mAh g−1, respectively [62]. However, Si was found to be nearly inactive with Na [63].
Further, the large volume expansion of the alloy anodes during the charge/discharge process can lead
to poor cycle life, capacity fade, and degradation of the electrode coating [62]. A good binder, better
nanostructures, and active material diluted with inactive materials are being incorporated to alloys to
achieve cycling stability in Na-ion batteries [62,64]. During the last decade, researchers have started
fabricating alloy based compounds for Sn, Sb, Ge, P, and some other elements from group IVA (Pb, Bi)
with electrochemically inactive/active components, which help to alleviate volume variation during
the charge/discharge processes and provide good cycleability [65–68].

2.2.1. Sn-Based

Sn is an attractive anode for Na-ion batteries, as it can provide a theoretical capacity of ~850 mAh g−1

by forming Na15Sn4 [64,69]. In situ sodiation/desodiation TEM analysis of tin nanoparticles (80–400 nm)
shows different phase transitions from amorphous NaSn2 to Na-rich amorphous phases, such as
aNa9Sn4 and a-Na3Sn, respectively. Crystalline Na15Sn4 is finally obtained after full sodiation [70].
However, the Sn particles expand by 420% after sodiation, thus reducing the cycling performance of
the anode [42].

Hu et al. deposited thin film of Sn on a hierarchical wood fiber substrate and showed that the
soft nature of the wood fibers releases the mechanical stresses associated with the electrochemical
process. Moreover, their mesoporous structure works as an electrolyte reservoir [71]. They reported an
initial discharge capacity of 339 mAh g−1 at a current density of 84 mA g−1 and 145 mAh g−1 after 400
cycles [71]. Liu et al. prepared ultra-small Sn nanoparticles (~8 nm), homogenously embedding them
in the spherical carbon network by the spray analysis method, and the as-prepared 8-Sn@C delivered
an initial reversible capacity of 493.6 mAh g−1 at a current density of 200 mA g−1 and a stable capacity



Materials 2019, 12, 1952 7 of 52

of 415 mAh g−1 after 500 cycles at 1000 mA g−1 [72]. According to the authors, the well-dispersed
ultra-small Sn nanoparticles and the conductive carbon network contribute to the high performance of
8-Sn@C as anode in Na-ion batteries [72].

In addition, to alleviate the volume change, pipe-wire TiO2-Sn@carbon nanofibers (TiO2-Sn@CNFs),
synthesized by electrospinning and atomic layer deposition, were analyzed as an anode in Na-ion
batteries by Mao et al. [73]. A high reversible capacity of 413 mAh g−1 at 100 mA g−1 after 400 cycles
was reported, which, according to the authors, was due to the formation of the amorphous NaxSn phase
during charge/discharge, thus allowing Sn particles well-proportioned volume expansion in Na-ion
batteries [73]. Sha et al. studied Sn nanoparticles on a nitrogen-doped carbon nanofiber composite
(Sn@NCNFs), synthesized by electrospinning [74]. The results of this study indicate that, because of
the uniform distribution of Sn nanoparticles on the surface of the nitrogen-doped carbon nanofibers,
the material delivered a high specific capacity of 600 mAh g−1 at a current density of 84.7 mA g−1 and
maintained a capacity of 390 mAh g−1 at a high density of 847 mA g−1 over 1000 cycles [74]. Similarly,
Pan et al. distributed Sn nanodots (3.2 nm) in a sheet-like nitrogen-doped carbon framework (Sn@SNC)
and reported a high mass loading up to 20 mg cm−2 with a reversible areal capacity of 1.0 mAh cm−2

at 3 mA cm−2 after 700 cycles [75].
Figure 2 demonstrates the important findings of Pan et al.’s work in greater detail [75]. Figure 2a–c

shows the synthesis of hierarchically porous Sn@SNCs, which are beneficial for achieving high Na+

storage. The interconnected 3D microporous structure and uniform distribution of Sn nanodots are
confirmed by SEM (Scanning Electronic Microscopy) and TEM (transmission electron microscopy) in
Figure 2d–i. Figure 2j–n investigates the crystallinity and co-existence of metallic Sn and SNC using
XRD (X-ray diffraction), Raman, and XPS. A broad peak in the range of 0.4–0.1 V is recognized in all
cathodic scans in Figure 2o, corresponding to the insertion of Na+ into the Sn nanodots. From the 10th
cycle on, the coulombic efficiency remains unaltered (Figure 2p), demonstrating the high structural
stability and sufficient conductivity of the Sn@SNC foams. The high mass loading Na+ storage of the
hierarchically porous Sn@SNC foams is displayed in Figure 2q–s, indicating efficient diffusion of Na+

through thick porous electrodes.
In general, reducing the particle size of Sn to the nanoscale effectively mitigates the pulverization

of the electrode materials. Sn/carbon composites or carbon coated Sn show improved electrochemical
performance compared to bare Sn. The carbon matrix acts as a buffer for volume change and enhances
the electrical conductivity. As an effective approach to alleviate the volume changes of Sn-based
electrodes, electrically conductive CNT (carbon nanotube)-coated soft cellulose fibers are utilized to
release the mechanical stress caused by the volume change of Sn during sodiation and desodiation,
resulting in improved cycle performance. In addition, the porous nature of the substrates functions as
a reservoir that helps in the ion transportation of electrolytes. Crystalline Sn/carbon composites formed
by the carbonization of tin oxide nanoparticles and Sn nanoparticles dispersed in carbon nanofibers in
an argon atmosphere have also been effective in reducing volume change and showing high capacity.

However, Sn/carbon composites and Sn nanoparticles embedded in carbon show poorer kinetics
and rate performance in Na-ion batteries than Li-ion batteries. Therefore, optimized electrolytes need
to be developed along with Sn-based materials to decrease their charge transfer resistance, which
results from the formation of different solid electrolyte interphases (SEIs).



Materials 2019, 12, 1952 8 of 52
Materials 2019, 12, x FOR PEER REVIEW 8 of 52 

 

 
Figure 2. Structural characterization and electrochemical performance analysis of Sn-based alloy 
(Sn@SNC) as an anode in SIBs: (a) Synthetic procedure of Sn@SNC foam from SnO2/polyacrylamide 
composite hydrogel. (b,c) Photographs of SnO2/PAM composite hydrogel and hierarchically porous 
Sn/SNC foams. (d,e) SEM image of Sn@SNC structures show a 3D interconnected microporous 
structure and confirm the sheet-like carbon structure. (f,g) STEM & TEM images confirm the uniform 
distribution of Sn nanodots in the SNC. Inset shows the diameter of Sn nanodots are ~3.2 nm. (h) 
STEM with element mappings also confirm the homogenous distribution of the Sn nanodots 
throughout the SNC. (i) HRTEM image of Sn@SNC shows the lattice spacing of 0.30 nm, distinctive 
to the (200) plane of metallic Sn. (j) XRD patterns of the Sn@SNC shows the co-existence of metallic 
Sn and amorphous SNC. (k–n) XPS survey spectrum demonstrates the presence of C, N, and Sn, 
confirming the disordered structure and successful doping of N in SNC. (o) CV curves for the initial 
five cycles of Sn@SNC at a scanning rate of 0.1 mV s−1. (p) Voltage profiles of Sn@SNC at a current 
density of 100 mA g−1 delivering an initial discharge capacity of 377.6 mAh g−1 with 44.7% coulombic 
efficiency. (q) The Sn@SNC foams deliver a specific capacity of 101.8 mAh g−1 at a mass loading of 1 
mg cm−2 after 100 cycles at a current density of 100 mA g−1. At a higher mass loading of 20 mg cm−2, 
the anode shows a capacity decrease of 25% with a specific capacity of 76.3 mAh g−1. (r) The Sn@SNC 
anode shows a good cycling ability, delivering a high reversible areal capacity of 1 mAh cm−2 at a 
current rate of 3 mA cm−2 after 700 cycles. (s) Rate capability of Sn@SNC foams (mass loading = 20 mg 
cm−2) at various current densities. A reversible areal capacity of 0.6 mAh cm−2 is achieved at a high 
current of 4 mA g−1. Reprinted with permission from [75]. Copyright 2018 Elsevier. 

Figure 2. Structural characterization and electrochemical performance analysis of Sn-based alloy
(Sn@SNC) as an anode in SIBs: (a) Synthetic procedure of Sn@SNC foam from SnO2/polyacrylamide
composite hydrogel. (b,c) Photographs of SnO2/PAM composite hydrogel and hierarchically porous
Sn/SNC foams. (d,e) SEM image of Sn@SNC structures show a 3D interconnected microporous structure
and confirm the sheet-like carbon structure. (f,g) STEM & TEM images confirm the uniform distribution
of Sn nanodots in the SNC. Inset shows the diameter of Sn nanodots are ~3.2 nm. (h) STEM with
element mappings also confirm the homogenous distribution of the Sn nanodots throughout the SNC.
(i) HRTEM image of Sn@SNC shows the lattice spacing of 0.30 nm, distinctive to the (200) plane of
metallic Sn. (j) XRD patterns of the Sn@SNC shows the co-existence of metallic Sn and amorphous
SNC. (k–n) XPS survey spectrum demonstrates the presence of C, N, and Sn, confirming the disordered
structure and successful doping of N in SNC. (o) CV curves for the initial five cycles of Sn@SNC at
a scanning rate of 0.1 mV s−1. (p) Voltage profiles of Sn@SNC at a current density of 100 mA g−1

delivering an initial discharge capacity of 377.6 mAh g−1 with 44.7% coulombic efficiency. (q) The
Sn@SNC foams deliver a specific capacity of 101.8 mAh g−1 at a mass loading of 1 mg cm−2 after 100
cycles at a current density of 100 mA g−1. At a higher mass loading of 20 mg cm−2, the anode shows
a capacity decrease of 25% with a specific capacity of 76.3 mAh g−1. (r) The Sn@SNC anode shows
a good cycling ability, delivering a high reversible areal capacity of 1 mAh cm−2 at a current rate of
3 mA cm−2 after 700 cycles. (s) Rate capability of Sn@SNC foams (mass loading = 20 mg cm−2) at
various current densities. A reversible areal capacity of 0.6 mAh cm−2 is achieved at a high current of
4 mA g−1. Reprinted with permission from [75]. Copyright 2018 Elsevier.
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2.2.2. Sb-Based

In addition to Sn, Antimony (Sb) is also a promising alloy anode for Na-ion batteries. Sb performs
better as an anode in Na-ion batteries than in Li-ion batteries, which is believed to be due to the
formation of an amorphous intermediate phase of Na3Sb [19,76]. Allan et al. used operando pair
distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic
resonance (MAS ssNMR) to explain the alloying mechanism of high capacity SB anodes for Na-ion
batteries [77]. The authors identified two intermediate species: a-Na(3-x)Sb (x = 0.4–0.5), with a
significant number of Na vacancies and a-Na3Sb, with a highly amorphous structure. According to the
authors, sodium mobility within c-Na3Sb leads to the excellent rate capability of Sb anodes [77].

To overcome the volume changes during the charge/discharge process, Zhu et al. synthesized
freestanding electrospun Sb–C nanofiber mats (SbNP@C) without any binder, carbon black, or current
collector [78]. This study found that SbNP@C can deliver an initial capacity of 422 mAh g−1 and could
be sustained 350 mAh g−1 after 300 cycles at a current density of 100 mA g−1 [78]. Similarly, Wu et al.
synthesized Sb–C nanofibers through a single-nozzle electrospinning technique and calcination, where
the Sb particles were distributed homogenously in the carbon nanofibers [79]. The authors reported that
Sb–C nanofiber electrode as anode material of Na-ion batteries can deliver a high reversible capacity of
631 mAh g−1 at a current density of 40 mA g−1, good rate capability of 337 mAh g−1 at 3 A g−1, as well as
cycling stability (446 mAh g−1 at 200 mA g−1 after 400 cycles, showing a capacity retention of 90%) [79].

Zhao et al. dispersed ultrafine Sb nanoparticles in the Nitrogen-rich 3D conductive carbon
network structure solving the problems of pulverization, loss of electrical contact and low utilization
rate [80]. This study showed that, the full cell Na3V2(PO4)3@C//C@Sb had high output potential of
2.75 V and a discharge capacity of 264.3 mAh g−1 at 1 A g−1 after 500 cycles [80]. Cui et al. utilized Sb
nanorods encapsulated into highly conductive N and S codoped carbon frameworks (Sb@(N, S–C))
as an anode for Na-ion batteries and demonstrated that the Sb@(N, S–C) anode can display a high
discharge capacity of 812.7 mAh g−1 at 100 mA g−1 and maintain a reversible capacity of 390.8 mAh g−1

after 1000 cycles at a high current of 1 A g−1 [81]. The authors ascribed these impressive properties
to the unique cross-linked carbon networks that provide highly conductive frameworks for fast ion
transport and prevents the agglomeration of Sb nanorods during the electrochemical process [81].

Overall these studies highlight the beneficial aspects of Sb nanostructures well-dispersed in carbon
frameworks, improving the performance of an Sb anode in Na-ion batteries by reducing the volume
expansion and providing good electrical conductivity. As has been shown for Sn, Sb-based compounds
with carbon can suppress the deformation of alloy materials and enhance electrochemical performance.
Further, it is important to find an optimized electrolyte for an electrode material with a large volume
change to improve electrochemical performance.

A summary of Cui et al.’s results is presented in Figure 3, which is representative of the performance
of Sb-based anodes in high performance Na-ion batteries [81]. Figure 3a–d shows Sem and TEM images
of the Sb@(N, S–C). The “silk-like” carbon networks in the Sb@(N, S−C)-2 hybrid are distributed
around the Sb nanorods, which can be regarded as a highly conductive bridge for each Sb@C nanorod.
the elemental mappings of Sb@(N, S−C)-2 in Figure 3e–i confirm the uniform distribution of N, S,
C, and Sb, in the Sb@(N, S−C)-2 hybrid. The uniform distribution of N, S, C, and Sb are further
confirmed by XRD, Raman, and XPS in Figure 3j–m. Figure 3n shows the initial five cycles of the cyclic
voltammogram (CV) curves of Sb@(N, S−C)-2 at a scan rate of 0.1 mV s−1 between 0.01 and 2.50 V.
During the first cathodic scan, a sharp peak at ~0.27 V is clearly observed, which can be ascribed to the
alloy of Sb with Na forming NaxSb. Figure 3o displays the galvanostatic charge/discharge curves of
the Sb@(N, S−C)-2 at a current density of 100 mA g−1, in a voltage range of 0.01−2.50 V. In Figure 3p,
the Sb@(N, S−C)-2 electrodes at different states of charge/discharge are analyzed using in situ XRD.
As shown in the figure, the intensities of the three main Sb peaks become weaker in subsequent cycles,
demonstrating how amorphous Sb is accumulated during the sodiation–desodiation cycles. Figure 3q
shows the cycleability of the sample at a current density of 1 A g−1. After 1000 cycles, the sample
retains a reversible capacity of 390.8 mAh g−1.
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shows Sb nanorod diameter (120–160 nm). (c) HRTEM image of Sb@(N, S−C)-2 reveals the amorphous
carbon and clear lattice corresponding to the plane (012) of Sb. (d) Schematic representation of Sb@(N,
S−C)-2. (e–i) Elemental mapping of Sb@(N, S−C)-2 confirm the uniform distribution of C, S, N, and
Sb in Sb@(N, S−C)-2 hybrid. (j) XRD patterns of the Sb@(N, S−C)-1 (black), Sb@(N, S−C)-2 (red), and
Sb@(N, S−C)-2 (blue) reveal the hexagonal structured Sb. (k) Raman spectra display the typical Sb
signals (~101 and ~138 cm−1) and Carbon (D-band ~1343 cm−1 and G-band ~1581 cm−1). (l,m) XPS
spectra of the Sb@(N, S−C)-2 Show the characteristic S 2p3/2 at ~161.7 eV and S 2p1/2 at ~162.9, which
are assigned to -C-S−C- covalent bond. In addition, the existence of pyridinic N at ~398.0, pyrrolic N at
~400.7, and graphitic N at ~401.9 eV is also confirmed in the XPS peaks of Sb@(N, S−C)-2. (n) CV curves
for the first five cycles of Sb@(N, S−C)-2 at a scanning rate of 0.1 mV s−1. (o) Voltage profiles of Sb@(N,
S−C)-2 at a current density of 100 mA g−1 in the potential range: (0.01–2.50 V). The capacity loss in the
first cycle is attributed to the SEI film formation. (p) In situ XRD measurements of Sb@(N, S−C)-2 for
initial three cycles indicates the sodiation of Sb follows the mechanism of Sb→ NaxSb→ Na3Sb→ Sb.
(q,r) Specific capacity and coulombic efficiency of Sb@(N, S−C)-2 sample at 1 A g−1. Reprinted with
permission from [81]. Copyright 2019 American Chemical Society.

2.2.3. Ge-Based

Recently, Ge is being studied as a promising anode material for Na-ion batteries, as Ge has shown
high lithium storage capacity and high lithium diffusivity [82,83]. However, Stojić et al. showed
that Na diffusion in crystalline Ge is several orders of magnitude slower than lithium diffusion in
germanium [84,85]. Abel et al. showed that using nanocolumnar germanium thin films, synthesized
by evaporative deposition, can cause faster diffusion in sodium [84]. They were able to achieve a high
initial sodium storage capacity of 430 mAh g−1, and 88% of this capacity was retained after 100 cycles
at a current density of 74 mA g−1. In addition, the nanocolumnar germanium exhibited a high rate
capability of 164 mAh g−1 at 10 A g−1. Comparing the dense germanium film with nanocolumnar
germanium. From the ab initio molecular dynamics simulations, the authors suggested that nanoscale
dimensions are essentially stable, and a high rate capability of germanium can be observed in Na-ion
batteries [84].

To overcome the large volume change during charge/discharge, Wang et al. synthesized
germanium@graphene@TiO2 core-shell nanofibers (Ge@G@TiO2 NFs) as an anode for Na-ion batteries
through electrospinning and atomic layer deposition [86]. This Ge@G@TiO2 NFs material, as an anode,
showed an initial capacity of 368 mAh g−1 at a current density of 100 mA g−1 and retained 182 mAh g−1

after 250 cycles. According to the authors, graphene could naturally accommodate the volume change
to release the stress in germanium, offer chemical stability, and provide more active site for sodium
ion insertion. On the other hand, SEI accumulated on TiO2 on the outer surface instead of the Ge
nanoparticles, thus increasing the stability of the anode [86].

2.2.4. P Based

Phosphorous (P) has gained attention as a non-metallic anode material in Na-ion batteries because
it exhibits a theoretical capacity of ~2600 mAh g−1 by forming Na3P compounds with a redox potential
of 0.4 V vs. Na+/Na [87,88]. Kim et al. showed that the electrochemical performance of amorphous
red phosphorous was dependent on volume expansion and electrical conductivity [89]. P has a low
electrical conductivity of 10−14 S cm−1. The authors reported that obtaining red phosphorous/carbon
composite powders by a simple ball milling process can provide a high specific capacity of 1890 mAh g−1,
at 73% of the theoretical capacity [89]. Nearly at the same time, Qian et al. reported an amorphous
phosphorous/carbon (a-P/C) nanocomposite, synthesized by high-energy ball milling at an optimized
ratio of 7:3 and showed a reversible capacity of 1764 mAh g−1 with a first cycle coulombic efficiency of
87%, at a current density of 250 mA g−1 [88]. The authors showed that adding 10% fluoroethylene
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carbonate (FEC) in the electrolyte to enhance the stability of the SEI film on the anode can deliver
~1000 mAh g−1 after 140 cycles.

Hollow nanoporous red phosphorous (HNPRP) with a little amount of iodine doping was
synthesized by Liu et al. and utilized as an anode for Na-ion batteries [90]. The HNPRP electrode
delivered a high capacity of 1658.2 mAh g−1 at a current density of 260 mA g−1 and an ultralong cycling
ability generating 857.3 mAh g−1 at 2600 mA g−1 after 1000 cycles. The authors attributed this result to
the hollow nanoporous structure that provides fast electronic transport and Na-ion accessibility [90].
Yao et al. also synthesized hollow porous carbon nanospheres with vaporization–condensation process
to achieve low volume expansion and high sodium storage [91]. They reported a long cycle life of
1000 cycles with 548 mAh g−1 at 1000 mAh g−1 and a high reversible capacity of 1915 mAh g−1 at a
current rate of 100 mA g−1 [91].

Very recently, Jin et al. proposed a ternary composite of black phosphorous (BP), graphite, and
polyaniline, containing 65 wt.% of black phosphorous [92]. This BP based ternary composite provided
an optimized ion pathway (electrolyte→ polyaniline (PANI)→ black phosphorous-graphite (BP-G)→
BP), which reduced the charge transfer resistance and allowed a higher sodiation/desodiation. This
ternary composite showed a reversible gravimetric composite of 1530 mAh g−1 at a current density
of 250 mA g−1 and a capacity retention of 520 mAh g−1 at a high current density of 4 A g−1 after
1000 cycles [92].

Figure 4 includes the important findings of Jin et al.’s work in details [92]. Figure 4a shows
different steps in the fabrication of a ternary black phosphorous-graphite-PANI composite, where
PANI offers a Na-ion pathway and the graphite reduces the ion charge transfer resistance. Raman and
XRD confirm that BP remains intact in the composite in Figure 4b,c. In Figure 4d–i, the microstructure
of the composite is characterized, and even the distribution of C, P, and N are shown by the HRTEM
and TEM mappings. The function of graphite and PANI in the BP-based composite have been
analyzed using ex-situ XAS (X-ray absorption spectroscopy) spectra and cross-sectional SEM images
in Figure 4j–n. Figure 4o shows the voltage profiles of BP-G/PANI at different current densities in the
range of 0.25–4 A g−1 within the voltage window of 0.01−2 V (vs. Na/Na+). The reversible capacity of
BP-G/PANI is 2350 mAh g−1 in terms of BP mass, which corresponds to 90% BP utilization and delivers
a capacity of 690 mAh g−1 at a higher current density of 4 A g−1 (Figure 4p). Similar measurements
carried out for BP and BP-G electrodes as shown in Figure 4q, which shows that the reversible capacity
of BP-G/PANI is almost contributed by the BP. Figure 4r proves the ultrastable cyclic capability of
BP-G/PANI at a high rate of 4 A g−1 for 1000 cycles.

In general, therefore, it seems that high energy mechanical milling and vaporization-condensation
strategies are effective processes. Phosphorous−Carbon nanostructures are well preserved and provide
fast Na-ion accessibility, which leads to higher cycling performance. However, the higher the loading
of P, the higher the capacity. On the other hand, the high interlayer size of black phosphorous provides
high intercalation of Na ions. Further, the conductive properties of black phosphorous (~300 S m−1)
promote electron transport within the composite.

2.2.5. Other Alloys

To date, outside of Sn, Sb, and Ge, metal alloys have not been commonly utilized as anode
materials for Na-ion batteries [93–95]. Among them, Bi-based alloys have shown promising properties.
Wang et al. showed that bulk Bi coupled with glyme-based electrolytes can achieve 400 mAh g−1 at a
current density of 50 mA g−1, and the capacity retention was 94.4% after 2000 cycles with 389 mAh g−1

at 400 mA g−1 [96]. This study showed that the bulk Bi electrode can gradually become porous during
initial cycling, thus ensuring facile Na+ transport and structural stability, which was in contrast with
the Na+ transport and structural stability in carbonate-based electrolytes [96]. Recently, encapsulated
Bi spheres with a conductive porous N-doped carbon shell (Bi@N-C) anode were synthesized by Yang
et al. [97]. This Bi@N-C anode in Na-ion batteries exhibited an initial charge capacity of 327 mAh g−1

at 1 A g−1 and a high cycling capability of 235 mAh g−1 after 2000 cycles at 10 A g−1 [97].
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Figure 4. Structural characterization and electrochemical performance analysis of P-based anode
(BP-G/PANI) in SIBs: (a) Schematic representation of sodiation process of black phosphorous-graphite
(BP-G) and black phosphorous-graphite with polyaniline (BP-G/PANI). (b) Raman spectra shows the
feature peaks of BP, graphite, and PANI. (c) XRD patterns show the characteristic diffraction peaks
for BP at 2θ values of 16.8, 26.5, 34.1, and 34.9◦, a broad peak for PANI at ~22◦. Raman spectra and
XRD patterns confirm that BP particles remain intact in the BP-G/PANI composite. (d) TEM image and
(e) HRTEM image of BP-G/PANI characterize the micro-structure. TEM and HRTEM image confirm
that the BP particle are well coated with PANI. (f–i) TEM mappings of BP-G/PANI confirm the uniform
distribution of P, C, and N in BP-G/PANI. (j) X-Ray absorption spectra of P state in BP and BP-G shows
higher absorption edge in BP-G corresponding to higher charge transfer. (k,l) Ex situ XAS of P K-edge
of BP-G and BP indicate the formation NAxP by sodiation in BP-G. (m,n) Cross-sectional SEM images
of BP-G/PANI electrode and BP-G electrode show that PANI coatings attenuate the volume changes
in electrode, providing a long cycling ability for BP-G/PANI. (o) The voltage profiles of BP-G/PANI
at different current densities in the potential range: (0.01–2.00 V). The capacity loss in the first cycle
is attributed to the SEI film formation. (p) Rate capability test of BP-G/PANI anode shows that it can
deliver 690 mAh g−1 (45% capacity retention) at high current rate of 4 A g−1. (q) The cycling stability
and coulombic efficiency of BP, BP-G, BP-G/PANI at 0.5 A g−1 show that the reversible capacity of
BP-G/PANI is mostly contributed by BP. (r) The cycling ability and coulombic efficiency of BP-G/PANI
anode at 4 A g−1 show that it can deliver a reversible capacity 520 mAh g−1 after 1000 cycles. Reprinted
with permission from [92]. Copyright 2019 American Chemical Society.
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Intermetallic composite anodes have also been investigated and show promising performance
as anodes for Na-ion batteries. For instance, Ji et al. reported using porous carbon nanofiber
supported SnSb nanocomposites as anodes for Na-ion batteries [98]. They showed that presence
of fluoroethylene carbonate (FEC) improved the kinetics of Na ions and delivered a high reversible
capacity of 350 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 99.4% for more
than 200 cycles [98].

Liu et al. fabricated a yolk-shell structure for a high capacity and electrochemically stable Sn4P3

electrode surrounded by a thin carbon shell [99]. According to the authors, the void space between
the C shell and Sn4P3 nanoparticles allowed volume expansion without deforming the structure.
Due to this unique structure, the Sn4P3@C nanoparticles delivered a high reversible capacity of
790 mAh g−1 at a current density of 100 mA g−1 and were stable after 400 cycles, delivering 360 mAh g
at 1500 mA g−1 [99].

Li et al. presented a carbon coated Mo3Sb7 composite (Mo3Sb7@C) as an anode material for
Na-ion batteries [100]. This study showed that Mo3Sb7@C had an initial capacity of 400 mAh g−1 at
98.8 mA g−1 and maintained 338 mAh g−1 at 247 mA−1 after 800 cycles with a capacity retention of
91.8% [100].

Nanostructured iron distannide (FeSn2)-graphite composite was fabricated by Edison et al., and
the influence of graphite concentration was studied for Na storage [101]. This composite FeSn2-Gr
composite delivered a sodiation capacity of over 400 mAh g−1 at a current density of 100 mA g−1 and
showed a high rate capability of ~200 mAh g−1 at high current of 1 A g−1 [101].

In the recent past, Gao et al. fabricated a nanoporous bismuth–antimony alloy (Bi2Sb6) and tested
it as an anode. This Bi2Sb6 alloy demonstrated an excellent cycling performance of 10,000 cycles
at 1 A g−1 with a capacity retention of only 0.0072% (~150 mAh g−1) [102]. The authors attributed
the high performance of the Bi2Sb6 to the porous structure of the alloy and the proper Bi/Sb atomic
ratio. The authors also presented a sodiation process ((Bi, Sb)→ Na(Bi, Sb)→ Na3(Bi, Sb)) during the
charge/discharge of the Bi2Sb6 alloy, using operando X-ray diffraction and density functional theory
calculations [102]. The main results of this work are shown in Figure 5 as a representative example
of the bimetallic anode’s high performance in Na-ion batteries. The scanning electron microscopy
(SEM) images (Figure 5a–c) show that all three np-Bi-Sb samples exhibit typical three-dimensional
bicontinuous ligament-channel structures. Transmission electron microscopy (TEM) is used to further
confirm the nanoporous feature of the np-Bi-Sb (Figure 5d–f), which are in good agreement with the
SEM results. In Figure 5g, the XRD patterns of the three samples are indexed to the single phase of
BiSb alloy, while the minor shifts of the peaks are attributed to the compositional difference between Bi
and Sb. Figure 5h shows the Cyclic Voltammetry. In the first cathodic scan, one board peak at 0.69 V
(vs. Na/Na+) and a strong broad peak at 0.20 V (vs. Na/Na+) can be seen. These values are attributed
to the formation of a solid electrolyte interphase (SEI) film and the two-step alloying processes of (Bi,
Sb)→ Na(Bi, Sb)→ Na3(Bi, Sb), respectively. Figure 5i shows the galvanostatic discharge−charge
curves of the np-Bi2Sb6 electrode in different cycles at a current density of 200 mA g−1 over a potential
window of 0.01−2.0 V (vs. Na/Na+). Overlapping of the voltage profiles of the 1600th and 2000th
cycles proves excellent cycle stability. Figure 5j demonstrates the comparison of cycling performances
of the np-Bi2Sb6 with the np-Bi4Sb4, np-Bi6Sb2, np-Bi, and np-Sb electrodes. The rate capability of
the np-Bi-Sb electrodes at different current densities are shown in Figure 5k. After 10,000 cycles, the
np-Bi2Sb6 electrode still retains a moderate discharge capacity of ~150 mAh g−1 (Figure 5l). The phase
evolution of the np-Bi4Sb4 electrode is investigated by the operando XRD technique during the initial
discharge−charge processes at 25 mA g−1 by contour and line plot (Figure 5m,n). At the beginning of
the discharge, the peaks at 28.0◦, 38.9◦, and 40.9◦ can be ascribed to the (Bi, Sb), then the appearance of
peaks at 18.9◦, 26.4◦, 32.5◦, 37.8◦, and 42.1◦ are indexed as the Na(Bi, Sb) formation, and the peaks at
18.9◦, 19.3◦, 20.6◦, 21.5◦, 25.3◦, 26.4◦, 33.6◦, 34.1◦, 38.6◦, and 39.8◦ are assigned to the Na3(Bi, Sb).
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Figure 5. Structural characterization and electrochemical performance analysis of intermetallic alloy
(np-Bi-Sb) as an anode in SIBs: (a–c) SEM images of the np-Bi2Sb6, np-Bi4Sb4, and np-Bi6Sb2 samples,
respectively showing typical three-dimensional bi-continuous ligament-channel with various size of
ligaments. (d) TEM image of the np-Bi4Sb4 features the nanoporous structure of np-Bi-Sb alloys. (e) The
high resolution TEM (HRTEM) image shows that the crystal size (~25 nm) of the np-Bi-Sb alloys are
approximately close to the ligament’s sizes. (f) The selected-area electron diffraction (SAED) pattern
of the np-Bi-Sb alloy further confirms the nanocrystalline structure of the selected region. (g) XRD
patterns of the np-Bi-Sb alloys are indexed to the single phase of BiSb alloy. (h) Cyclic voltammograms
(CV) of the np-Bi2Sb6 electrode at a scan rate of 0.1 mV s−1 over a potential window of 0.01−2.0 V (vs.
Na+/Na). (i) GCD curves of the np-Bi2Sb6 electrode in different cycles at a current density of 200 mA/g.
The overlap of the charge/discharge curves of the 1600th and 2000th cycles implies the excellent stability
during the long cycling. (j,k) Excellent cycling performance and rate capability of the np-Bi-Sb alloys,
respectively. (l) Cycling performance and coulombic efficiency of the np-Bi2Sb6 electrode at 1 A g−1

exhibit amazing cycling capability. A zoom-in image (inset) illustrates the cycling performance at
2 A g−1 when the discharge capacity can remain about 150 mAh g−1 from 5000 to 5300 cycles. (m–n)
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Contour plot and line plot of the operando XRD of the np-Bi-Sb alloys during the charge/discharge
processes reveals the sodiation/desodiation procedures of the alloy as the anode of the Na-ion batteries.
Reprinted with permission from [102]. Copyright 2018 American Chemical Society.

Table 2 lists the performance of several notable alloy-based anodes, which have been used as
anodes for Na-ion battery applications

Table 2. High performance of alloy-based anodes in Na-ion battery systems.

Type of Alloy-Based
Anode Electrolyte Chemistry Voltage

Range (V) Performance * Reference

Sn coated viral
nanoforests 1 M NaClO4 in EC/DEC (1:1) 0.01–1.5 405/150/50 [65]

Sn nanofibers 1 M NaClO4 in PC with 2% FEC 0.001–0.65 776.26/100/84.7 [103]

Sb/MWCNT
(Multi-walled carbon

nanotube)

1 M NaClO4 in PC (1:1) with 5/10%
FEC 0.01–2.5 ~382/120/200 [104]

Sb nanocrystals 1 M NaPF6 in EC/DMC (-) 0.02–1.5 ~550/100/660 [93]

Sb@C microspheres 1 M NaPF6 in EC/DEC (1:1) 0.01–3.00 ~584/100/200 [105]

Sb@TiO2 1 M NaClO4 in PC (1:1) with 5% FEC 0.01–3.00 541/100/100 [106]

Zn4Sb3 1 M NaClO4 in PC (1:1) with 5% FEC 0.01–2.0 290/200/414 [107]

FeSb2 1 M NaClO4 in PC with 5% FEC 0.01–1.2 540/130/36 [108]

SnSb@carbon nanocable 1 M NaClO4 in PC (1:1) with 5% FEC 0.005–1.5 360/100/100 [109]

Si/Ge nanorod 1 M NaPF6 in EC/DEC (1:1) 0.001–1.5
20 µAh

cm−2/200/10
µA cm−2

[67]

Bi@C microsphere 1 M NaClO4 in EC/PC (1:1) 0.01–2.0 123.5/100/100 [110]

Sn-Bi-Sb 1 M NaClO4 in PC (1:1) with 5% FEC 0.01–2.0 621/100/200 [111]

Sn4P3 1 M NaClO4 in EC/DEC (1:1) 0.01–1.5 ~700/100/100 [112]

SnP nanocrystals 5 M NaFSI in DME 0.005–1.5 600/200/100 [113]

Cu2P/C 1 M NaClO4 in EC/DEC (1:1) with 5%
FEC 0.01–1.5 430/100/200 [114]

* Specific capacity (mAh g−1)/number of cycles/current density (mA g−1). FEC = Fluoroethylene carbonate.

2.3. Metal Oxides

Because of their high theoretical capacities, metal oxides are considered promising candidates for
anodes in SIB batteries. The first known report of layered transition metal oxides for SIB was published
in the 1980s [115]. Within this family, Fe2O3 provides a theoretical capacity of ≈1007 mAh g−1—.
Furthermore, Fe2O3 is an environmentally friendly and low-cost species due to its abundance [116–119].
Likewise, another example of a transition metal oxides species is Fe3O4, which presented a specific
capacity of 522 mA h g−1 at 160 mA g−1 after 800 cycles [51]. In the work published by Zhao et al., in order
to overcome the low conductivity of Fe3O4 and volume changes during sodiation and desodiation,
the authors employed several techniques, such as a successive sol-gel process, the solvothermal
method, and calcination, for instance, to obtain the material called HCM-Fe3O4@void@N–C [51]. Then,
by providing a void space within the material, the authors found a way to overcome the volume
changes above mentioned. Apart from this, the nitrogen-doped carbon contributed to higher electronic
conductivity. Further details of this work are depicted in Figure 6. Here Figure 6a–c is the electron
microscope images demonstrating the mesoporous composite nanospheres. Figure 6d–g are the EDX
elemental maps demonstrating the constituent elements present uniformly. Figure 6h,k,m is the
schematic representation of the sodiation of the different spheres indicating the superiority of the
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Fe3O4@void@NC spheres. Figure 6i,j,l are the GCD and capacity retention performance of the spheres
as anodes in an SIB. Another attractive metal oxide for SIB anodes is the CuO, due to its high theoretical
capacity (674 mA h g−1) [120], low cost, and availability. In the work developed by Wang et al., CuO
quantum dots of ≈2 nm were prepared and embedded in carbon nanofibers by the electrospinning
deposition technique. The results show that the material called 2-CuO@C presented specific capacity
of 401 mA h g−1 at a current density of 500 mA g−1 after 500 cycles, with an initial specific capacity of
528 mAh g−1 at 100 mA g−1 [121]. Accordingly, as it can be seen, metal oxides are usually employed as
SIB anodes with carbon species, such as γ-Fe2O3@C, 3D composite that presented a capacity of 358
mA h g−1 after 1400 cycles at 2000 mA g−1, with Coulombic efficiency near 100% [122]. In addition,
MnCoNiOx@double-carbnon nanofibers presented a specific capacitance of 230 mA h g−1 at 100 mAg−1,
with capacity retention of 96% for over 500 cycles. This work, developed by Wu et al., reveals another
interesting result—a capacity retention of 89% after 6500 cycles (at 1000 mA g−1) with specific capacity
of 107 mAh g−1 [123].

In comparison, when it comes to non-transition metal oxides, Sb2O4@rGO, in the work developed
by Ramakrishnan et al., 500 cycles showed a reversible capacity of 626 mAh g−1 at 600 mA g−1 [124].
Additionally, for Sb2O4@rGO, the reactions that happen upon sodium accommodation are as follows:

Sb2O4 + 8 Na+ + 8 e−→ 2 Sb + 4 Na2O (1)

2 Sb + 6 Na+ + 6 e−→ 2 Na3Sb. (2)

Another relevant aspect is the contribution of the electrolyte for high performance sodium
ion batteries. In the work published by Li et al., rhombic TiO2 nanocrystals were synthesized and
electrochemically characterized for two different electrolytes, i.e., NaCF3SO3 in ethylene carbonate
and diethyl carbonate (EC/DEC), and NaCF3SO3 in diglyme. The results show that after 500 cycles at
100 mA g−1, the reversible capacity for the electrolytes with EC/DEC and diglyme were, respectively,
87 mA h g−1 and 165 mA h g−1 [125,126]. A tabular listing of some other prominent results for the
anodes discussed above is provided in Table 3 below.

Overall, metal oxides present high capacity values, when compared with hard carbon’s theoretical
capacity, low cost, nontoxicity, chemical stability, and also environmental friendly nature [127].
Nevertheless, the literature reports that these high capacity values are usually achieved at low current
densities [128]. This happens because of the low conductivity of the metal oxide species and structural
changes, which require several steps and energy for such reorganization to take place [127,128].
Furthermore, another concern when it comes to metal oxide anodes are the volume changes that occur
during sodium insertion and extraction, which may lead to an agglomeration of metal oxide particles
and even cracks or the pulverization of the active material causing loss of contact and an impedance
increase in the cell [129,130]. Those facts combined may affect the cell performance, causing capacity
and rate capability to decrease [131,132]. Regarding the future perspectives of metal oxide anodes,
aiming to provide capacities closer to the theoretical capacity values for metal oxides, strategies using
carbon materials and nanostructuring is expected to increase the mobility of Na+ ions in these anodes,
as well as the ability to accommodate volume expansion. Those aspects are crucial to the commercial
feasibility of SIB employing metal-oxides anodes.

Table 3. High performance of metal oxides anodes in Na-ion battery systems.

Type of Metal Oxide Anode Electrolyte Chemistry Voltage Range Performance * Reference

P2-Na2/3Co1/3Ti2/3O2
1M of NaClO4 in EC/DEC/3

wt.% FEC 4.0–2.0 64.9/400/1C a [133]

Tunnel-Na0.44MnO2 1M NaClO4 in PC 2–3.8 82/1000/0.42 C a [134]
Fe3O4 QD@C-GN 1M NaFP6 in EC/DMC 0–3.0 343/1000/2000 [135]

Co3O4@NC 1M NaClO4 in PC/PEC 0–3.0 175/1100/1000 [136]
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Table 3. Cont.

Type of Metal Oxide Anode Electrolyte Chemistry Voltage Range Performance * Reference

SnO2/3D graphene 1M NaPF6 in EC/DEC/10
wt.% FEC 0–2.8 223/350/80 [137]

T-Nb2O5/CNF 1M NaClO4 in PC/EC/5
wt.% PEC 0–2.8 150/5000/1000 [138]

Na2Ti6O13 nanorods 1M NaClO4 in PC and FEC 0–2.5 109/2800/1000 [139]
Sb2O3/Sb@Gr-CSN 1M NaClO4 in EC/DMC 0–2.5 487/275/100 [140]

V2O3/C 1M NaClO4 in DMC/EC 0–3.0 181/1000/2000 [141]
3-CCO@C 1M NaClO4 in DMC/EC 0–3.0 314/1000/1000 [142]

Inverse opal am-TiO2 1M NaPF6 in DEG-DME 0–3.0 86.7/500/500 [143]

Nickel-titanium oxide 1M NaPF6 in DMC/EC/5
wt.% FEC 0–2.5 491/200/50 [144]

M-Na4Ti5O12/CNT 1M NaClO4 in DMC/EC 0.01–3.0 84.4/500/100 [145]

Na2Ti2O5·H2O/MoS2-C 1M NaClO4 in DMC/EC/5
wt.% FEC 0–3.0 201.1/16,000/8000 [81]

* Specific capacity (mAh g−1)/number of cycles/current density (mA g−1). a C rate.
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Figure 6. Structural characterization and electrochemical performance analysis of metal oxide yolk-
shell structured HCM-Fe3O4@void@N–C nanospheres as an anode in SIBs: (a) field emission scanning 
electron microscope (FESEM) of the material, (b) transmission electron microscopy (TEM) of the 
material, (c) scanning transmission electron microscopy (STEM) of the material, (d–g) energy 
dispersive X-ray (EDX) elemental mappings of a HCM-Fe3O4@void@N–C nanosphere, (h) 
representation of the sodiation and desodiation processes of CC-Fe3O4 and their characteristic volume 
increases, (i) cyclic voltammetry curves from 1st to 4th cycles for voltage range from 0.01–3.0 V. It is 
worth noting that the first cycle shape differs from the other cycles because of side reactions and Solid 
Electrolyte Interphase (SEI) formation, (j) charge–discharge curves for different current densities of 
HCM-Fe3O4@void@N–C nanospheres, (k) representation of the sodiation and desodiation processes 
of HCM-Fe3O4, (l) specific capacity representation versus cycle number for current density of 160 

Figure 6. Structural characterization and electrochemical performance analysis of metal oxide yolk-shell
structured HCM-Fe3O4@void@N–C nanospheres as an anode in SIBs: (a) field emission scanning
electron microscope (FESEM) of the material, (b) transmission electron microscopy (TEM) of the
material, (c) scanning transmission electron microscopy (STEM) of the material, (d–g) energy dispersive
X-ray (EDX) elemental mappings of a HCM-Fe3O4@void@N–C nanosphere, (h) representation of the
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sodiation and desodiation processes of CC-Fe3O4 and their characteristic volume increases, (i) cyclic
voltammetry curves from 1st to 4th cycles for voltage range from 0.01–3.0 V. It is worth noting that the
first cycle shape differs from the other cycles because of side reactions and Solid Electrolyte Interphase
(SEI) formation, (j) charge–discharge curves for different current densities of HCM-Fe3O4@void@N–C
nanospheres, (k) representation of the sodiation and desodiation processes of HCM-Fe3O4, (l) specific
capacity representation versus cycle number for current density of 160 mAg−1 of the following materials:
(A) HCM-Fe3O4@void@N–C, (B) HCM-Fe3O4@void@C, (C) HCM-Fe3O4@C, (D) HCM-Fe3O4, and
(E) CC-Fe3O4 nanospheres, and (m) representation of the sodiation and desodiation processes of
HCM-Fe3O4@void@N–C nanospheres, showing the SEI film, which accommodates the volume
expansion characteristic of Fe3O4 species. The bars of (c–g) are 100 nm. Reprinted with permission
from [51]. Copyright 2019 Elsevier B.V. All rights reserved.

2.4. 2-D Materials

2.4.1. Graphene

In 2013, for the first time, reduced graphene oxide (rGO) as an anode was reported in SIB
anodes [146]. In this work, published by Wang et al., rGO was prepared by first oxidizing graphite
by a modified Hummers’ method, followed by a heat-treatment. The presented capacity results for
reversible Na storage in the rGO synthesized at 1.0 C (200 mA g−1) for the 2nd, 100th, and 250th cycles
were 177 mAh g−1, 110.3 mAh g−1, and 94.3 mAh g−1, respectively. Moreover, for over 1000 cycles,
the discharge capacity, at 0.2 C (40 mA g−1), was 141 mAh g−1, presenting, therefore, steady cycle
retention [146]. These results show the improvement of sodium insertion because of rGO, thereby
providing higher capacity values, even for higher current densities, when compared to other carbon
allotropes. This improvement was achieved due to the existence of defects that contribute towards an
increase of the graphene interlayer distance [146,147].

Over the years, graphene has gained the attention of researchers due to its unique characteristics,
such as large surface-area, high electronic and thermal conductivity, high elasticity, mechanical strength,
and chemical stability [148–151]. Thus, for the aspects mentioned herein, graphene is usually employed
as standalone anodes and conducting agent for electrodes of SIBs due to its ability to provide short
diffusion length for ions, leading to their faster diffusion, and also because of graphene’s large surface,
which provides more channels for ion insertion [86,152–154].

Zhang et al. synthesized binder-free porous graphene film (PGF) electrodes for SIB, with pore sizes
ranging from 38 to 450 nm [86]. For the electrochemical results, the work shows that the first reversible
capacity for the PGF-1 film was 193 mA h g−1 at 50 mA g−1 in the first cycle, while at 1000 mA g−1

(for the 500th and 1000th cycles) the specific capacities were 156 mAh g−1 and 111 mAh g−1, respectively.
Furthermore, a strategy to develop a high performance anode for SIBs is to employ doped-graphene.

In recently published work [155], co-doped graphene oxide nanosheets with heteroatoms were
employed. By adding a polymer containing nitrogen and sulfur, the monomer was adsorbed on the
surface of graphene oxide, following a polymerization reaction. The electrochemical results for the
SIB anode unveil a capacity retention of 82% after 800 cycles and, for a current density of 500 mAg−1,
a specific capacity of 237.2 mAh g−1 [155]. The results of this work have been provided in Figure 7 as a
representative. Here Figure 7a is the SEM image and 1b,c are the TEM images of the polymer/rGO
nanosheet composite. Figure 7d–f demonstrates the elemental and chemical characterization as seen in
the EDS elemental map and the XPS graph. Figure 7g–j represent the electrochemical performance of
the polymer/rGO composite as an anode in an SIB system.
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material, (d) energy dispersive X-ray (EDX) elemental mapping of the material indicating the 
homogeneous distribution of atoms N, and S co-doping the graphene sheets, (e) X-ray photoelectron 
spectroscopy (XPS) survey of the material corroborating the results obtained at EDX, (f) high 
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Figure 7. Characterization and electrochemical performance analysis of poly(2,5-dimercapto-1,3,4-
thiadiazole)(PDMcT)/reduced graphene oxide (RGO) (PDMcT/RGO) as an anode in SIBs: (a) scanning
electron microscopy (SEM) of the material, (b,c) transmission electron microscopy (TEM) of the material,
(d) energy dispersive X-ray (EDX) elemental mapping of the material indicating the homogeneous
distribution of atoms N, and S co-doping the graphene sheets, (e) X-ray photoelectron spectroscopy
(XPS) survey of the material corroborating the results obtained at EDX, (f) high resolution XPS of
C 1s showing the C-C, C-N, and C-S characteristic binding energies, (g) cyclic voltammetry curves
from 1st to 3rd cycles for voltage range from 0.01–3.0 V at scan rate of 0.1 mV s−1. In the 1st cycle,
at approximately 0.2 V, the reduction peak may be assigned to the solid-electrolyte interphase (SEI)
formation; additionally, at approximately 0 and 0.09 V, redox peaks may be assigned, respectively, to
Na+ insertion/extraction from graphene layers, (h) charge and discharge curves at current density of
50 mA g−1, (i) representation of the synthesis of the material PDMcT/RGO, and (j) specific capacity
representation versus cycle number for current density of 5000 mA g−1 showing the low drop in
capacity even after 5000 cycles; thus, remaining at 153.3 mAh g−1. Reprinted with permission from [155].
Copyright 2018, American Chemical Society.
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It is also important to highlight that, in the literature, graphene is commonly employed with
other materials aiming to enhance their desirable properties. This process can be illustrated by the
synthesis of SbPO4 and rGO, performed by Pan et al., through the solvothermal reaction of SbCl3 and
NH4H2PO4 with graphene oxide, followed by a reducing atmosphere annealing with Ar and H2 [156].
In this work, the layered monoclinic SbPO4 structure was deposited on RGO aiming to enhance the
electrochemical properties of the material. The results show a capacity of 100 mAh g−1 at 1000 mA g−1

and its stability up to 1000 cycles. Moreover, the energy density at 1.2 kW kg−1 was 99.8 Wh kg−1.
In summary, graphene is usually employed as a support material in SIB anodes, due to its fast

electron transport and mechanical properties [157–159]. Nevertheless, pristine graphene presents a low
value of reversible capacity for Na+ storage, which is the reason why graphene is usually employed
with another species [158]. Furthermore, as stated by Ling et al., puregraphite is energetically unstable
for intercalating Na+, and also for low concentrations, which is the reason why pristine graphene is
not employed uniquely as active material anode for SIBs [160–162]. One alternative is to introduce
topological defects aiming to increase the capacity and rate capability of graphene-based SIB anodes,
or to use graphene as support for other 2D materials, such as Transition metal dichalcogenides (TMDs)
and phosphorene (also reported herein) for example. Given the importance graphene has achieved
nowadays, this material is expected to continue to have a strong presence within energy storage
systems in the future, as a support material for high performance devices.

2.4.2. Phosphorene

Since 2014, Phosphorene, a single layer of black phosphorus, has recently emerged (since 2014) as
a beyond graphene technologically relevant material owing to its superior mechanical and electronic
properties, ease of fabrication through common low-cost exfoliation techniques. Applications of
phosphorene as high capacity anode material for SIB has also been investigated. [163–166].

Therefore, although phosphorene has similarities to graphene, such as being a 2D material obtained
through mechanical exfoliation of black phosphorous, graphene can be obtained through the exfoliation
of graphite and possesses its layered structure in elemental form, unlike TMDs. [164,167–170]. Some of
these properties include high carrier mobility (≈200–1000 cm2V−1s−1) and a direct band gap for one or
several multi-layers (0.3 eV–2 eV) [169,170]. It is also important to highlight that phosphorene is a
candidate for SIB anodes, as its interlayer spacing is 5.4 Å, which is greater than graphite (3.7 Å) [171,172].
As a result, the specific capacity of phosphorene for SIB is theoretically 2596 mAh g−1, almost seven
times hard carbon’s specific capacity [173,174]. Sun et al. in [175] developed a phosphorene-graphene
material that presented a specific capacity of 2440 mAh g−1 after 100 cycles at 50 mA g−1 (0.02 C), with
a capacity retention of 83%. In this work, graphene contributed to a faster charge transfer between its
layers, and improved mechanical properties, allowing the anisotropic expansion of the phosphorene
layers during cycling.

To summarize, phosphorene is a material of interest because of its high capacity values and
its applicability to several fields, such as optoelectronics, solar cells, and biomedicine. However,
the ways of obtaining this 2D material are still under investigation, as mechanical exfoliation and
liquid-phase exfoliation are typically employed. Regarding those techniques, mechanical exfoliation
presents a low yield, while liquid-phase exfoliation (ultralong sonication) is a high yield method, which
may induce defects on the material [176]. Additionally, electrochemical exfoliation has recently been
reported [173,177,178]. Therefore, even though phosphorene’s properties are believed to be superior
than graphene, showing the potential of this 2D material [176] for SIBs It is expected that phosphorene
will represent a material of interest for the future of high-performance SIBs once it can deliver over
2000 mAh g−1, thereby providing high energy densities for SIBs.

2.4.3. Transition Metal Dichalcogenides

Similar to phosphorene and graphene (2D materials), transition metal dichalcogenides—also
known as TMDs or TMDCs—may provide a two-dimensional layered structure with desirable
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applications for several research fields, such as energy storage, catalysis, lubrication, nanoelectronics,
and optoelectronics [179–181]. Their chemistry is versatile-40 different types of layered TMDs have
been identified, making TMDs a material that may be able to surpass graphene when it comes to 2D
materials [182–184].

One of the most commonly studied TMD materials is molybdenum disulfide (MoS2), whose
structure was reported for the first time in 1923, even though it is believed to have existed on earth
for over 2.9 billion years. Furthermore, one of the first works that reported MoS2’s layered structure
was published in 1986 [185,186]. Layered MoS2 was first reported an anode for SIBs in 2013 [187].
The reactions for sodiation, which are analogous to Li-based materials, are expressed by Equation (3).
Moreover, the conversion reaction is expressed by Equation (4) [188,189]. MoS2 composite materials
present high efficiency and capacity for acid functionalized MoS2 in graphene oxide [190]. This work,
published by David et al., presented a charge capacity of ≈230 mA h g−1 at 25 mA g−1 with efficiency
of ≈99%. Other examples of MoS2 with carbon allotropes, for SIB, are MoS2 nanosheets aligned with
carbon paper. This work concluded that the carbon assures the electronic conductivity of material [191];
and MoS2/graphene, synthesized with phosphomolybdic acid (PMA), L-cysteine (C3H7NO2S), and
graphene oxide, the latter being reduced by the H2S from the L-cysteine molecule [192]. The results
from electrode sample MG-3 showed that after 300 cycles, the retained capacities of Na+ storage
were equal to 254 mAh g−1 and 227 mAh g−1 at 80 mA g−1 and 320 mA g−1, respectively [192,193].
Importantly, there are works [188,194] that state that the sodiation peak that occurs at 1.4 V in cyclic
voltammograms (CV) happens due to the intercalation of sodium ions within MoS2 layers, following
the reaction presented by (3):

MoS2 + xNa+ + xe−←−→ NaxMoS2. (3)

On the other hand, the peak occurring at 0.7 V is characteristic of the reaction presented by (4):

NaxMoS2 + (4 − x)Na+ + (4 − x)e−←−→Mo + 2 Na2S. (4)

Likewise, one of the reported TMD materials for high performance SIBs is MoTe2, which can be
obtained through the spray pyrolysis technique from C–MoOx [193]. This work reports the performance
of C@MoTe2 and C/MoTe2 and enhanced rate capabilities are obtained when carbon is employed,
compared to bare MoTe2, mainly after ≈ 100 cycles [193].

In short, TMDs materials offer a wide variety of composition and physical and chemical properties.
When it comes to SIBs, the typical higher interlayer spacing of MoS2, for example (approximately
6.15 A), is greater than that of the widely known graphite (approximately 3.3 A), which is an advantage
over other material families with respect to expansion upon sodium insertion [195]. Furthermore,
these unique chemical and physical properties may provide desirable properties for rate capability,
such as the result presented in Figure 8, which includes the findings of Niu et al.’s work [196]. Here,
Figure 8a demonstrates the schematic for the synthesis of the TMD composite. Figure 8b–e are the SEM
and TEM images of the TMD nanocomposite demonstrating the characteristic morphology under high
resolution. Figure 8f–h represent the electrochemical performance of the cell i.e. GCD curves, capacity
retention and rate capability. Another point to consider in terms of future perspective and challenges
is that new techniques for improved synthesizing nanostructured TMDs are desirable. Moreover, there
is a need to develop low-cost and scalable exfoliation techniques that would allow synthesis of TMD
nanosheets with ontrolled properties.
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Doped carbon nanosheets as anode in SIBs: (a) schematics of the synthesis of MoSe2/N,P-rGO, (b,c) 
scanning electron microscopy (SEM) images of the nanosheets showing the voids achieved in the 
material, which provide a network capable of withstanding the volume changes and space for 
electrolyte access, (d) transmission electron microscopy (TEM) image of the material showing the 
MoSe2 uniformly deposited on carbon nanosheets, (e) high resolution transmission electron 
microscopy (HRTEM) image of the material with interlayer spacing of approximately 0.68 nm, (f) 
charge/discharge curves of MoSe2 pristine and MoSe2/N,P-rGO at 500 mA g−1, (g) cycling performance 
for current density at 500 mA g−1, and (h) comparison of the work published by Niu et al. and other 
works. Reprinted with permission from [196]. Copyright 2017 John Wiley and Sons. 
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Figure 8. Structural characterization and electrochemical performance analysis of MoSe2-covered
N,P-Doped carbon nanosheets as anode in SIBs: (a) schematics of the synthesis of MoSe2/N,P-rGO,
(b,c) scanning electron microscopy (SEM) images of the nanosheets showing the voids achieved in
the material, which provide a network capable of withstanding the volume changes and space for
electrolyte access, (d) transmission electron microscopy (TEM) image of the material showing the
MoSe2 uniformly deposited on carbon nanosheets, (e) high resolution transmission electron microscopy
(HRTEM) image of the material with interlayer spacing of approximately 0.68 nm, (f) charge/discharge
curves of MoSe2 pristine and MoSe2/N,P-rGO at 500 mA g−1, (g) cycling performance for current
density at 500 mA g−1, and (h) comparison of the work published by Niu et al. and other works.
Reprinted with permission from [196]. Copyright 2017 John Wiley and Sons.

2.4.4. MXenes

Transition metal carbides, carbonitrides, and nitrides (MXenes) are 2D materials with a general
formula of Mn+1XnTx, where M is a transition metal, X can be carbon and/or nitrogen, and T stands for
hydroxyl, oxygen, or fluorine. Thus, carbides provide a surface termination [25,197]. This family of
materials was discovered in 2011 from the exfoliation of MAX phase materials in hydrofluoric acid
(HF) [198]. MXenes are candidates for several applications due to their variety and properties [199,200].
Moreover, due to the fact that MXenes have inter-layer distances larger than graphite, they may enable
the intercalation and deintercalation of non-Li-ion batteries, such as SIBs. [200] Examples of MXenes
are Ti3C2, Ti3C2Tx, Ti2C, Ta4C3, TiNbC, (Ti0.5Nb0.5)2C, (V0.5Cr0.5)3C2, and Ti3CN [198,201,202].

One of the most studied species for SIB MXene anodes is Ti3C2Tx. Xie et al. showed that for the
first cycle discharge, this material presented a capacity of 370 mAh g−1 at 100 mA g−1. In contrast, after
120 cycles, the reversible capacity of Na+ was 80 mAh g−1 [203,204]. In [205], Zhao et al. studied the
electrochemical performance of MXene SIBs in 3D macroporous frameworks. By mixing MXene with
poly(methyl methacrylate) (PMMA) 3D and making free-standing films of MXene/PMMA, the authors
obtained pure MXene by heating the samples up to 450 ◦C, thereby removing the PMMA. Three kinds
of MXenes were synthesized: Ti3C2Tx, V2CTx, and Mo2CTx. At 0.25 ◦C, the values of the reversible
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specific capacity were ≈330 mAh g−1, ≈340 mAh g−1, and ≈370 mAh g−1, respectively. Moreover, the
coulombic efficiency after 1000 cycles was close to 100%, and the reversible capacities at 2.5 C were, for
Ti3C2Tx, V2CTx, and Mo2CTx, respectively, 295 mAh g−1, 310 mAh g−1, and 290 mAh g−1 [205].

Recently, Xie et al. published about a porous Ti3C2Tx electrode anode for SIBs [206], whose
synthesis was performed as presented in Figure 9a. In this work, sulfur addition (being dissolved
in ethlyenediamine (EDA)) and its removal after the precipitation of sulfur due to the addition of
hydrochloric acid (HCl), provided a porous surface made out of p-Ti3C2Tx nanosheets on the anode,
which enhanced its capacity as well as its rate capability. The p-Ti3C2Tx presented pore sizes from
1–20 nm and a surface area of 84.2 m2 g−1. Regarding the electrochemical results, this work reports
values for high current densities: for 1000 mA g−1, the specific capacitance achieved was 166 mAh g−1;
while at 10 A g−1 it was 124 mAh g−1, outperforming works previously published [47,207,208]. Figure 9
includes the important findings of Xie et al.’s work in detail [206]. Figure 9b shows the raman spectra
of the MXene before and after restacking, whereas Figure 9c–f are the SEM and TEM images of the
layered structure. Figure 9g,h represent the electrochemical performance of the MXene as an anode
in SIB.
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Figure 9. Structural characterization and electrochemical performance analysis of p-Ti3C2Tx as an
anode in SIBs: (a) schematic preparation steps of p-Ti3C2Tx, (b) Raman spectra of p-Ti3C2Tx (green
curve) and the pristine restacked Ti3C2Tx (red curve), (c,d) scanning electron microscopy (SEM) images
of p-Ti3C2Tx as-prepared, (e,f) transmission electron microscopy (TEM) of p-Ti3C2Tx as-prepared,
(g) charge–discharge curves of p-Ti3C2Tx 100 mAg−1, and (h) cycling performance at current density of
1 A g−1 showing the cycle stability. Reprinted with permission from [206]. Copyright 2018, American
Chemical Society.

Thus, MXenes are a promising family of anode materials for SIBs because of their variety, relative
stability in dry air, hydrophilicity, and high conductivity [207,209–211]. In contrast, the restacking of
MXene layers because of van der Waals forces, along with hydrogen bonds, hinders the accessibility of
ions to active sites on the materials, thereby decreasing its electrochemical performance [207]. Moreover,
mechanical methods for obtaining MXenes are generally not possible due to the strong bonds between
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layers, which are different from those of TMDs and graphite [197]. Finally, given the fact that MXenes
are considered a new family of materials, their properties are yet not fully understood by the scientific
community, which means that there are challenges and questions that need to be answered for their
wide-scale applicability, and developing methods and strategies for preventing MXene nanosheets
from restacking, thereby providing a path for ionic transport.

Table 4 lists the performance of several notable 2D materials which have been used as anodes for
Na-ion battery applications.

Table 4. High performance of 2D materials as anodes in Na-ion battery systems.

Type of 2D Materials
Anode Electrolyte Chemistry Voltage

Range (V) Performance * Reference

P/N-doped graphene 1M NaPF6 in EC/DEC - 809/350/1500 [212]
HRGO300 1M NaClO4 in EC/DMC/FEC 0–3.0 163/3000/2000 [213]

VSG2 ester-based 0–3.0 402/300/500 [214]
Nanoporous RP on rGO 1M NaClO4 in PC/5 wt.% FEC 0.01–2.0 775.3/1500/5120 [215]

SbPO4/rGO 1M NaClO4 in PC 0–1.5 100/1000/1000 [156]

Ti2Nb2O9 nanosheets 1M NaPF6 in diethylene glycol
dimethyl ether ~0.1–3.0 ~160/500/800 [216]

MoS2/S-doped graphene 1M NaPF6 in DEC/EC 0.005–3.0 309/500/1000 [217]

Mesoporous MoS2/C 1M NaClO4 in DMC/EC/5 wt.%
FEC 0.05–3.0 390/2500/1000 [218]

MoSe2@N, P-carbon
nanosheet 1M NaPF6 in DEC/EC/5 wt.% FE 0–3.0 168/1000/500 [196]

* Specific capacity (mAh g−1)/number of cycles/current density (mA g−1).

3. Cathodes

Cathodes are a very important aspect of SIBs and should be able to reversibly intercalate the
Na+ ions, preferably at voltages greater than 2 V [219]. Ideally a cathode should exhibit low volume
expansion upon intercalating Na+ ions and structural stability [219]. It is also essential that they can
be synthesized from low-cost and earth-abundant precursors and also be able to provide high specific
capacities and energy densities [1,22]. Some of the prominent high-performance cathodes currently
being studied for SIBs are discussed below in greater detail.

3.1. Layered Transition Metal Oxides (TMOs)

Layered TMOs have received significant attention and research as cathodes for LIBs and, therefore,
have been applied to SIBs, as well. The most common layered TMO is usually of the form NaMO2

(M = Mn, Fe, Co, Ni), which are notable because of their elevated redox potentials and energy
densities [19,22]. Consequently, one of the first type of layered metal oxides to be studied for SIBs were
of the type AMO2, where A = Li, Na and M is a transition metal, e.g., Mn, Fe, Co, etc. [22]. These
materials have the advantage of being relatively stable, easy to fabricate, and having a large body of
research knowledge already available due to their applications in LIBs for a number of years [220,221].
A study by Delmas et al., published in 1981, compared the performance of different structural variants
of NaxCoO2, the P3 and the O2 [222]. Another important study was by Shibata, who determined
the diffusion coefficient of Na+ ions into the NaxCoO2 lattice at room temperatures [223]. Since then,
Yabuuchi et al., have synthesized NaFeO2 as a cathode for SIB systems [224]. An important study in
this area was published by Komaba et al., who studied the performance of Na2/3[Fe1/2Mn1/2]O2 as a
cathode for SIBs [225,226].

The search for high energy cathode materials has led to the further development of more improved
and innovative cathode systems, such as O and the P type layered oxides, where the Na+ ion exists in
prismatic and octahedral configurations, respectively [19]. Also, depending upon the type of stacking,
they are further classified as O3 (ABCABC), P2 (ABBA), and P3 (ABBCCA) types [19,227].
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A layered quaternary O3 type material, Na(Mn0.25Fe0.25Co0.25Ni0.25)O2 has been demonstrated to
work as a cathode in SIBs by Li et al. [228]. An initial capacity of 180 mAh g−1 and an effective specific
energy density of 578 Wh kg−1 were obtained, which have been attributed to the excellent reversibility
of Na+ ions in the O3 layered structure. Zhou et al. have demonstrated that Co substitution enhances
the performance of the O3 type material, NaNi0.45−xMn0.25Ti0.3CoxO2 (NMTCox), with the optimum
x being 0.05 [229]. This cathode provides a specific capacity of 180 mAh g−1 at a current density of
10 mA g−1. Co enhances the performance by improving electronic conductivity and Na+ kinetics [229].
The results of Zhou et al.’s work are provided in Figure 10 below. Here, Figure 10a is a SEM image
showing the bead like morphology of the particles with a size range of approximately 1–2 µm, and
Figure 10b is an HRTEM image of the same. Figure 10c shows the XRD stack of the various NMTC
samples, Figure 10d–i is the elemental maps of the sample, showing a homogenous distribution.
Figure 10j is the schematic representation of the synthesis process, and Figure 10k,l is the CV and
cycling performance of the material as a positive electrode in SIBs.Materials 2019, 12, x FOR PEER REVIEW 27 of 52 
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Figure 10. Structural characterization and electrochemical performance analysis of
NaNi0.45−xMn0.25Ti0.3CoxO2 (NMTCox) cathode in SIBs. (a) SEM images of the NMTCo0.05 sample
demonstrating particle sizes of approximately 1–2 µm with a bead like morphology. (b) HRTEM image
showing the morphology of the microparticle in greater detail. (c) XRD pattern of NMT samples with
varying Co concentration (0, 0.05, 0.1) demonstrating the characteristic peaks, strong crystallinity and
structural evolution. (d–i) Elemental maps of the microparticles with the constituent elements labeled.
(j) Schematic representation of the steps in the synthesis process for the NMT samples. (k) Cyclic
voltammetry curves of the NMTCo0.05 sample at progressively increasing scan rates (0.2–0.8 mV s−1)
with the characteristic redox peaks clearly visible. (l) Capacity retention and coulombic efficiency plots
of the NMT cathodes over 180 cycles. Copyright 2019, American Chemical Society.
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A P2 type cathode for SIB applications has been studied by Yabuuchi et al. [226], who synthesized
Nax[Fe0.5Mn0.5]O2 using a simple solid state reaction from its precursors (Na2O2, Fe2O3, and Mn2O3).
A maximum specific capacity of 190 mAh g−1 at 2.75 V vs. Na/Na+, and an energy density as high as
520 mWh g−1, comparable to LiFePO4, was obtained. The authors have attributed the beneficial results
to the accessibility of the Fe3+/Fe4+ redox system by intercalating Na+ ions. Further, this cathode
provides the added advantage of utilizing elements (Fe, Mn) that are abundant in the earth and are,
therefore, cost efficient [226]. A high performance P2 type layered Na0.5[Ni0.23Fe0.13Mn0.63]O2 has
been studied by Hasa et al. [230]. Here, too, the electrode was synthesized by a solid state reaction
from its precursors and was able to deliver a 200 mAh g−1 at a current density of 15 mA g−1 with a
coulombic efficiency of almost 100%. The stability of the layered structure was deemed responsible for
the superior performance [230].

Honeycomb layered Na3Ni2−xMgxSbO6 compounds have been analyzed by You and coworkers.
The electrodes were synthesized from their precursors by simple solid state reactions and a maximum
capacity of 115 mAh g−1 was obtained for the compound with x = 1 [231]. All the cathodes show
almost 100% coulombic efficiencies and capacity retentions greater than 70%, even after 200 cycles [231].
A complex phase transition from P3 to O1 during the Na+ ion intercalation process and the rearranging
of the structure to improve kinetics and stability help to account to for the enhanced performance [231].

Layered TMOs have several advantages. They were one of the first cathodes, e.g., one of the first
layered NaMnO2 products to be evaluated for application in SIBs, and, therefore, there is a significant
body of knowledge available for varying synthesis procedures, especially those related to manipulating
the interlayer spacings [19]. An important advantage of these oxides is that they use relatively low cost
metals, such as Mn, Fe, Ni, as their constituents [232,233]. These oxides also are able to withstand large
strains and demonstrate considerable structural integrity [234].

Despite the above-mentioned performances and advantages, these compounds demonstrate some
drawbacks as well. For example, their sensitivity to air and low electronic conductivity is an important
issue [19]. Stability is sometimes another issue, with some of the electrodes demonstrating steady
capacity decays, especially at high current rates. This is another aspect that needs improvement [219].
Many of these oxides, especially the Mn incorporated ones, tend to undergo a structural distortion—the
Jahn–Teller effect that hinders a long cycle life [235].

It is expected that layered TMOs will continue to play a significant role as cathode materials for
SIBs. Their easily procurable raw materials, multiple and varying synthesis methods, and different
obtainable crystal structures will continue to play an important role in their favor [236]. Several
techniques have been developed to overcome the Jahn–Teller distortion, substitution by Mg to suppress
the polarization is one of the techniques that have been applied with some success [237]. Also being
studied are vanadium based oxides, as the open framework provided by these cathodes allows ions to
intercalate easily without much friction or hindrance within the structure, thereby helping to achieve
greater stability and reversibility [238].

3.2. Polyanionic Compounds

Polyanionic materials provide a novel and diverse group of materials that have found
widespread applications as high performance cathodes for SIBs [1]. Various different poly-anionic
species, e.g., (PO4)3−, (SO4)2−, (P2O7)4−, provide open framework structures that relatively enhance
intercalation [1,227].

Sodium Superionic Conductors (NASICON) are a special class of polyanionic compounds that
have 3D structures and large tunnels for the fast conduction of Na+ ions [19,227]. A classical NASICON
compound, Na3V2(PO4)3, has a VO6 octahedra and PO4 tetrahedra sharing a corner, thereby creating a
3D V2P3O12 backbone, as well as multiple Na+ ion interstitial sites [239]. Consequently, NASICONs
have demonstrated promise as cathodes for SIBs.
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3.2.1. Phosphates

NaFePO4 have been synthesized and studied as an analogue, keeping the more popular and
established LiFePO4 electrode in mind, which is generally used for LIBs. The initial synthesis
of electrochemically active LiFePO4 was performed by low temperature Li/Na ion exchange from
LiFePO4 [240]. However, the NaFePO4 produced by this technique possess weak kinetics. An early
work by Lu et al. proposed that for NaxFePO4, the solid solution phase was preferable for x > 2/3,
whereas phase separation into FePO4 and Na2/3FePO4 occurs at x < 2/3 [241]. Further important work in
this area was done by Boucher et al., who first revealed the structure of Na2/3FePO4 using transmission
electron microscopy (TEM) and synchrotron x-ray diffraction techniques [242]. A more recent, but
pioneering, work in this area was done by Kim et al., who showed that maricite, an electrochemically
inactive phase of NaFePO4, is electrochemically active when it is made of nanoparticles. A reversible
capacity of 142 mAh g−1 was obtained, with 95% capacity retention over 200 cycles of operation [243].
More discussion of some of the important works in this area is provided in the paragraphs below.

Sun et al. have studied NaFePO4 as a reversible cathode material in SIBs [244]. An olivine
electrode was synthesized using a galvanostatic reduction process and was able to provide a capacity
of 125 mAh g−1 at a working voltage of 2.7 V with a current density of 7.5 mA g−1. Structural stability
was maintained over 50 cycles of operation, and the authors have attributed this to the rather strong
P–O polyanion bonds, which help to preserve the olivine structure [244]. Li et al. have studied hollow
amorphous NaFePO4 nanospheres as positive electrodes in SIBs [245]. The spheres were prepared
using a “hard template method” using iron (II) stearate, NaH2PO4, and sodium oleate as precursors.
A maximum of 152 mAh g−1 was obtained at a 1 C current density with more than 95% capacity
retention over 300 cycles of operation [245]. The amorphous nature prevents lattice stresses and
provides a non-disruptive conductive pathway for the sodium ions, which, as per the authors, enables
superior electrochemical performance [245].

NaFePO4 has also been used as a composite and/or a hybrid to obtain enhanced performance.
A polythiophene (PTh) encapsulated NaFePO4 as a cathode in SIBs has been analyzed by Ali and
coworkers [246]. The NaFePO4 olivine was synthesized by delithiating LiFePO4, followed by in-situ
polymerization and the addition of NaI [246]. A specific capacity of 142 mAh g−1 was obtained at
a current density of 10 mA g−1 within a voltage range of 2.2–4.0 V and with a capacity retention of
94% over 100 cycles of operation. The addition of the PTh layer enhanced performance by improving
conductivity and enabling better stress relieving of the composite [246]. Along similar lines, Fang
et al. synthesized a NaFePO4/C microsphere hybrid by forming LiFePO4 using lithium acetate,
Fe(NO3)3·9H2O, NH4H2PO4, and citric acid as precursors, followed by electrochemical delithiation
and subsequent sodiation in a 1 mol l−1 Na2SO4 solution [247]. The olivine cathode was able to provide
a specific discharge capacity of 111 mAh g−1 with a capacity retention of 90% of ~95% after 240 cycles
of operation, at a current density of 0.2C [247]. The authors have been able to identify a two-stage
phase transition of NaFePO4 during the Na+ ion intercalation-deintercalation process [247]. Figure 11
demonstrates the important findings of Fang et al.’s work in greater detail, in which Figure 11a,b
features SEM and TEM images, which demonstrate the morphology in greater detail. Figure 10c
represents the XRD patterns of the various phosphate phases, and Figure 11d–i shows the elemental
maps and elemental composition of the different component elements. Figure 11j features a schematic
representation of the electrochemically mediated displacement reaction used to synthesize the NaFePO4

sample, and Figure 11k–m shows the representations of the electrochemical performances of the sample
positive electrode.
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Figure 11. The structural characterization and electrochemical performance analysis of NaFePO4/C
composite as a cathode in SIBs. (a) SEM images of the NaFePO4/C composites demonstrating a
rather smooth spherical morphology. (b) TEM image showing the morphology of the microsphere
composite in greater detail. (c) XRD pattern of LiFePO4 powder precursor, the delithiated FePO4

sample and the NaFePO4 sample demonstrating the characteristic peaks. (d–h) Elemental maps of
the microsphere composite exhibiting the constituent elements and a rather uniform distribution.
(j) Schematic representation of the electrochemical displacement reaction that results in the formation of
NaFePO4 from LiFePO4. (k) Galvanostatic charging-discharging curves of the half-cell with NaFePO4/C
cathode at various rates. (l) CV of the NaFePO4/C cathode system vs. Na/Na+ showing the characteristic
redox peaks. (m) Capacity retention of the PB composite cathode for both the charge and discharge
cycles. Copyright 2015, American Chemical Society.

3.2.2. NASICON Compounds and Fluorophosphates

Hong and Goodenough first proposed the tunnel structure for Na+ diffusion in 3D
Na1+xZr2P3−xSixO12 [248]. Van Alpen proposed a more accurate formula for NASICON for the
first time in 1981, and the first non-stoichiometric single crystal rhombohedral NASICON compound,
Na3.1Zr1.78Si1.24P1.76O12, was developed in 1983 [249,250]. Most of the early work focused on
synthesizing NASICON electrodes by high temperature solid state reactions [251]. An important
development was the synthesis of NASICON from the solutions of their precursors using sol-gel
chemistry, and Engell developed several different NASICON compounds using the respective metal
alkoxides in about 1983 [252]. However, the first experimental report for the application of NAISCON
in energy storage devices was by Delmas et al., who studied NaTi2(PO4)3 as early as 1987 [253]. Since
then, NASICON type compounds have been extensively studied and some of the important studies
highlighting the applicability of NASICON as positive electrodes in SIBs are provided below.

Kang and coworkers studied a Na3V2(PO4)3/C composite as a cathode in SIBs [254]. The cathode
was synthesized using a polyol mediated pyro-synthetic method from its precursors. The authors



Materials 2019, 12, 1952 30 of 52

were able to obtain about 117 mAh g−1 at 0.01 C and 65 mAh g−1 (56% of theoretical capacity) was
obtained at a high current density of 2.67 C. The porosity of the nanoparticles and the introduction of
C helped to improve the electrochemical performance [254]. Electrospun Na3V2(PO4)3/C nanofibers
were studied as SIB cathodes by Liu et al. [255]. The precursors were NaH2PO4, NH4VO3, citric acid,
and polyethylene oxide (PEO), which were electrospun, followed by carbonization (in Ar at 500 ◦C)
and vacuum annealing. 94 mAh g−1 was obtained at a current density of 2 C and showed very good
stability over 66 cycles of operation [255]. The enhanced performance of NASICON has been attributed
to its stability and the uniform contact of the fibers of the composite [255].

A 3D graphene decorated NaTi2(PO4)3 (NTO@rGO) was studied as a cathode in SIBs by Fang
et al. [256]. Reversible capacities as high as 138 mAh g−1 at 0.1 C and a capacity retention of 77%
over 1000 cycles were obtained, attributable to the 3D structure and improvement of conductivity by
graphene addition [256]. Gao et al. examined NASICON structured Na3MnZr(PO4)3 for applications
as positive electrodes in SIBs [257]. The material was prepared using a sol-gel technique and provided
a specific discharge capacity of 105 mAh g−1 at a current rate of 0.1 C (which was almost equal
to the theoretical capacity of 107 mAh g−1), which the authors have attributed to the reversible
intercalation/deintercalation of Na+ ions into the NASICON lattice [257]. However, at higher C rates,
performance decreased due to Jahn–Teller distortion and oxidation of the electrolyte [257].

Liu et al. studied a core shell structured fluorophosphate nanocomposite, Na3V2(PO4)2F3@C,
(NVPF@C) as a cathode in SIBs [258]. A reversible specific capacity of 125 mAh g−1 was obtained at a
current density of 0.5 C, 84 mAh g−1 at high current densities, such as 50 C, and the material showed a
65% capacity retention, even after 5000 cycles. This high performance and stability could be related to
the confinement of the NVPF particles in the mesoporous structure [258]. The important results of
Liu et al.’s work are summarized in Figure 12 below. Here, Figure 12a,b is the SEM and TEM images,
respectively, of the composite bead, which shows characteristic morphology. Figure 12c shows the
XRD patterns of the core shell sample compared to that of the just carbon coated sample. Figure 12d
represents the HRTEM FFT image of the core shell sample, and Figure 12e–k shows the elemental
maps. Figure 12i schematically represents the synthesis procedure and Figure 12m–o demonstrates the
electrochemical analysis of the material as a positive electrode in SIBs.

However, the presence of these large polyanionic groups reduces net energy density, and
NASICON compounds need carbon or graphene support to improve conductivity and kinetics. Thus,
greater work needs to be done to enhance their effectiveness.

Polyanionic materials, especially NASICONs, have attracted significant attention due to their
large networks and variable tunnel structures. They are able to easily allow insertion and deinsertion
of Na+ ions and are relatively structurally stable, thereby allowing for a long cycle life [259]. Notably,
NASICONs exist in an assortment of structures, from orthorhombic Na3Ti2(PO4)3, to rhombohedral,
to the monoclinic Na3V2(PO4)3 [260].

However, low electronic conductivity is one of the primary hindrances to realizing their full
potential. Surface functionalization with carbon and making nanoparticles seemed to improve the
performance in this case [19,261]. Nitrogen doping has been also demonstrated to improve overall
electrochemical performance, but it has been observed that N doped materials are particularly sensitive
to moisture, which reduces their effectiveness [262]. The use of vanadium ions in the NASICON
structure has also raised toxicity and environmental concerns [263].

The path forward for NASICONs lies in integrating them with high conductivity materials,
such as composites with graphene or carbon nanotubes, thereby making nanostructures to improve
conductivity and reduce structural defects during synthesis [264,265]. With the advent of sol-gel based
techniques for NASICON synthesis, greater control can be had over the structural parameters, and this
promises an important path forward [266].
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Figure 12. Structural characterization and electrochemical performance analysis of NaFePO4/C
composite as a cathode in SIBs. (a) SEM images of the Na3V2(PO4)2F3@C (NVPF/C) composites
exhibiting bead like morphology. (b) TEM image showing the morphology demonstrating the
“worm-like” mesoporous structure. (c) XRD pattern of NVPF sample with the core-double shell
structure (NVPF@Cd) in comparison with the NVPF sample with just simple carbon coating (NVPF@C),
demonstrating the characteristic peaks. (d) FFT image of the NVPF@Cd sample clearly demonstrating
the carbon coating in the nanocomposite. (e–h) Elemental maps of the NVPF@Cd composite depicting
the constituent elements uniformly distributed. (j) Schematic representation of the synthesis of the
NVPF@Cd nanocomposite from its precursors. (k) Galvanostatic charging-discharging curves of
the half-cell with NVPF/Cd cathode for various cycles. (l) Rate performance demonstration of the
nanocomposite electrode showing its performance at varying C rates. (m) Capacity retention of
the NVPF@Cd composite and its corresponding coulombic efficiency. Copyright 2016, American
Chemical Society.

3.3. Prussian Blue

Prussian blue (PB), chemically, is a compound with a mixed valency of iron, generally in the
+2 and +3 oxidation states. Fe4[Fe(CN)6]3·nH2O is the most general formula of an unmodified PB
compound [267]. The crystal’s structure is usually cubic, with iron atoms alternating at the face
centered position associated with C–N pairs and the Fe3+ and Fe2+ being surrounded by nitrogen and
carbon environments, respectively; this compound can be chemically referred to as a hexacyanoferrate
(HCF). There are zeolitic water molecules that are generally contained in some of the octahedral vacant
interstitial spaces. Essentially, due to its mixed-valence and open framework structure, PB can be
modified by other atoms like Mn, Zn, Ni, Co substitutionally for Fe, and these compounds are then
designated as prussian blue analogues (PBA). These PBAs provide channels for alkali ion diffusion,
and the choice of the transition metal substituting for Fe can enhance the intercalating ionic mobility
further by reducing the diffusion barrier. These interesting properties have resulted in significant
interest in PBs and PBAs as cathode materials for SIBs.
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PB and PBAs were known in historical times, especially for their applications as pigments [268].
For their application in energy storage devices, they were first studied as Li+ ion carries in aprotic
media [269]. However, a capacity loss of about 30%–40% was observed after just 10 cycles, resulting in
further research on their structure and properties [267,269]. The first significant result using PBAs as a
cathode for SIBs was published by Wessels et al., who showed a relatively stable performance of copper
hexacyanoferrate electrodes in aqueous media for as many as 40,000 cycles [270]. Another important
milestone in the development of PB electrodes is the fabrication of low and high quality PBAs by
You et al., which demonstrated the role of inherent structural defects and how careful synthesis can
improve overall stability and cycle life performance [271]. There has been significantly more research
on PBAs since then, and the discussion below focuses on some of the important results.

Lu et al. studied a PB system as a cathode in SIBs [272]. They prepared PB analogues with the
general formula, KMFe(CN)6 (M = Mn, Fe, Co, Ni, Zn), at room temperature using a substitutional
reaction with a salt solution of the “M” constituent [272]. A discharge capacity of more than
100 mAh g−1 was obtained at a C/20 discharge rate with high capacity retention (>95%) after 30 cycles
of operation [272]. However, coulombic efficiencies were low (~60%–65%); these low efficiencies
have been attributed to interstitial water in the PB analogues [272]. Similarly, You et al. studied
“high-quality” (HQ) PB crystals as cathodes in SIBs [271]. Their HQ PB sample had the stoichiometry of
Na0.61Fe[Fe(CN)6]0.94 and was prepared by reacting a Na4Fe(CN)6 precursor with 37% HCl. A specific
capacity of 170 mAh g−1 and a coulombic efficiency of ~100% were obtained after 150 cycles of
operation [271]. Li et al. analyzed a sodium rich prussian blue framework, Na1+xFeFe(CN)6, as a
cathode in an SIB system [273]. The PB framework was prepared in a facile, one-step synthesis process
using Na4Fe(CN)6 and NaCl as the precursor. A maximum of 103 mAh g−1 was obtained at a current
density of 20 mA g−1, with a capacity retention of 97% over 400 cycles [273]. The authors have proposed
a low crystalline water content and low vacancies as being responsible for the high stability [273].
A mesoporous PB analogue, KNiFe(CN)6, synthesized by a template-free technique, was analyzed by
Yue et al. [274]. A reversible specific capacity of 65 mAh g−1 at a low current density of 10 mA g−1 was
obtained with a good rate capability, which, according to the authors, was due to the crystallinity and
porosity of the sample [274]. A citrate controlled reaction mechanism was used by Wu and coworkers
to synthesize a low-defect PB analogue using CoCl2, Na3C6H5O7, and Na4Fe(CN)6 as precursors [275].
A specific capacity of ~150 mAh g−1 and 90% capacity retention were obtained over 200 cycles [275].
Results from Wu’s work are demonstrated in Figure 13. Figure 13a,b shows the SEM images of the
prussian blue cubes at low and high magnification, whereas Figure 13c represents the XRD pattern of
the PB sample. Elemental maps of the sample are demonstrated in Figure 13d–i, while Figure 13j is the
schematic representation of the PB cube. Figure 13k–m shows the electrochemical analysis of the cell.

The large vacant spaces and open network based 3D structure makes PBs interesting and attractive
cathode materials [271]. The effective choice of a transition metal during its synthesis helps in stabilizing
its cubic structure further [276]. Because of the presence of these vacant open spaces, they can easily
intercalate large alkali ions, such as Na+, K+ without much difficulty, thereby satisfying one of the key
criteria of SIB cathodes, i.e., their ability to smoothly and reversibly intercalate the bulky Na+ ion [277].
A large number of PB analogues have been synthesized, especially within the last decade [278,279].

These advantages notwithstanding, PB suffers from several important shortcomings. Primary
among these is the presence of significant amounts of interstitial or zeolitic water. It has been estimated
that interstitial water is more than 15 wt.%, and this significantly hinders the long term cycle life by
occupying electrochemically active sites [280]. Secondly, it has been found that, for the Fe incorporated
PBs (which are also the most common), only the C coordinated Fe sites are electro-active, indicating
that half of the vacant lattice spaces are essentially unused [274,281]. However, later research, with the
help of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS) analysis, have also demonstrated that the Cu or the Co edge is also electrochemically active
if the compound is CuHCF or CoHCF [282,283]. Results have also shown that the co-precipitation
techniques of synthesizing PBs result in approximately 30% of the lattice vacancies being unavailable
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due to structural defects and distortion (wrapping). Also, it can be observed that the performance of
some of the PBAs are pH dependent (e.g., CuHCF), which limits its performance [284].
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Figure 13. Structural characterization and electrochemical performance analysis of Prussian blue (PB)
as a cathode in SIBs. (a,b) SEM images at low and high magnification of the sodium rich PB crystals
depicting an uniform cubical morphology. (c) XRD pattern of the synthesized PB sample demonstrating
high degree of crystallinity. (d–i) Elemental mapping of the PB sample demonstrating the different
constituent elements with uniform distribution. (j) Schematic representation of the PB crystal showing
the FCC (face centered cubic) lattice structure, with the Na atoms occupying the interstitial red sports.
(k) Galvanostatic charging-discharging curves of the half-cell with PB cathode. (l) CV of the PB
cathode system vs. Na/Na+ showing the characteristic redox peaks (m) Capacity retention of the PB
cathode compared with a control, which is a more defect-filled PB structure. Copyright 2016, American
Chemical Society.

A significant amount of research is focusing on PBs to be able to overcome these problems.
defect free, mesoporous, and other high-surface area Pb analogues are being synthesized to improve
their electrochemical activity [285]. Zeolitic water elimination has been achieved by Goodenough by
synthesizing rhombohedral PB analogue, having only 0.08 moles of H2O rather than the usual cubic
structure [286]. Overall, it is understood that all the various PB frameworks may not be perfectly
suitable cathodes for SIBs. PB analogues have provided some interesting outcomes when Zn2+ is used
as the intercalating ion instead of alkali ions [287]. The use of surface functionalized PB analogues
and applications in low cost aqueous systems are some of the areas in which PB cathodes look to find
future applications [288].
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3.4. Organic Materials

The research into organic electrodes for SIBs goes back approximately 30 years. Carbonyls based
on the C=O bond have been the predominant electrodes that have found applications in SIBs [289].
However, some of the carbonyls exhibit insulating behavior, which renders them ineffective and has
spurred the necessity for further research into other organic compounds as positive electrodes for
SIBs [290,291]. Quinone compounds are some of the most popular and earliest materials that have
been studied as cathodes for SIBs [292]. Following quinones, several other classes of compounds
have been studied, such as polyimide and composites of organic molecules, e.g., aniline/o-nitroaniline
co-polymers, as studied by Zhao et al. [293,294]. There has been further research in this area, and some
prominent studies are discussed below.

A low cost polymeric cathode material, p-dopable polytriphenylamine (PTPAn), has been studied
in SIBs by Deng et al. [295]. When coupled with an n-type poly(anthraquinonyl sulfide) (PAQS) anode,
this all-organic SIB delivered a maximum reversible capacity of 132 mAh g−1 at a 1 C current rate and
a specific energy of 55 Wh kg−1 [295]. The electrodes were also able to retain 85% of their specific
capacity over 500 cycles and demonstrated a coulombic efficiency of ~99% [295]. Yao et al. analyzed the
feasibility of indigo carmine as a positive electrode material in SIBs [296]. An optimum specific capacity
of 100 mAh g−1 was obtained at a voltage of 1.8 V vs. Na+/Na for the material. Approximately 80% of
the initial capacity was retained after 40 cycles of operation at a current density of 10 mA g−1 [296].

Polyimides (PIs) derived from aromatic carbonyl precursors as cathode materials in SIBs were
analyzed by Wang and coworkers [297]. The PIs obtained from Perylene-3, 4, 9, 10-tetracarboxylic
acid-dianhydride (PTCDA) performed the best, with specific power and energy capacities of 20.99 kW
kg−1 and 285 Wh kg−1, along with a capacity retention of 87.5% of the initial capacity over 5000 cycles
of operation [297]. Along similar lines, Luo et al. studied commercially obtained PTCDA directly as a
cathode material in SIBs [298]. They were able to obtain a reversible capacity of 145 mAh g−1 along
with the ability to provide 91 mAh g−1 at a very high current of 1000 mA g−1 and a stable cycling
performance [298]. PTCDA was also used as the precursor material to obtain PI, which was then
hybridized with MWCNTs for application as cathodes in SIBs, by Manuel et al. [299]. A maximum
discharge capacity of 125 mAh g−1 was obtained at a 0.1 C rate, along with 100% capacity retention
and 100% coulombic efficiency after 70 cycles of operation [299]. The results of this work have been
provided in Figure 14. In this, Figure 14a,b shows the SEM image of the 3D network of the PI/MWCNT
composite and Figure 14c shows their XRD pattern. The arrangement of the composite is shown
schematically in Figure 14d. Figure 14e–g represents the electrochemical performance of the composite.

Organic electrodes have the advantage of being composed of relatively inexpensive
precursors [300,301]. Organic electrodes synthesized from quinone and pteridine generally exhibit
high capacities [302]. Organometallic polymers demonstrate high rate capacities and kinetics, whereas
polyimide electrodes provide high stability (approximately 500 cycles) [303]. However, many organic
electrodes suffer from low conductivity and poor coulombic efficiencies. Dissolution in the electrolyte
is another area of concern for organic electrodes [219].

Future work in organic electrodes should aim to design the molecule to incorporate a combination
of the advantages of its various components, essentially creating a composite. For example, the
theoretical capacity of quinone can be fully realized by developing a composite of it with polyimide,
thereby taking advantage of the latter’s long term stability [219,304]. The conductive coating and
surface functionalization (with polyaniline) of low conducting polymers is another area that is being
explored to enhance the performance of these materials [305]. Considering the relatively cheap cost of
precursors, organic electrodes have the ability to be an important class of cathode materials for SIBs.

A tabular listing of some other prominent results for the cathodes discussed above is provided in
Table 5 below.
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morphology of the PI/MWCNT fibers. (b) TEM image exhibiting the fiber network in greater detail.
(c) XRD pattern of the PI/MWCNT fiber composite in comparison with its precursors with the
characteristic peaks being visible. (d) Schematic reaction map depicting the synthesis of the PI/MWCNT
nanocomposite. (e) Galvanostatic charge–discharge graphs of the PI/MWCNT composite as cathode in
the SIB. (f) Capacity retention for the composite cathode for both charge and discharge cycles. (g) Rate
performance of the PI/MWCNT cathode demonstrating almost all capacity retention when the rate is
switched back to lower values. Copyright 2018, American Chemical Society.

Table 5. High performance cathodes for SIBs.

Type of Cathode Electrolyte Chemistry Voltage
Range (V) Performance * Reference

Layered TMOs

Na0.44MnO2 1M NaClO4 in EC:DEC (1:1) 2.0–3.8 80/2000/0.1 C b [306]
Na0.67[Mn0.65Co0.2Ni0.15]O2 1M NaPF6 in EC:DEC (1:1) 2.0–4.4 129/50/20 [307]

NaMnTi0.1Ni0.1O2 1M NaClO4 in PEC 1.5–4.2 186/500/0.1 C b [308]
NaxAl0.1Mn0.9O2 1M NaPF6 in PEC 2.0–3.8 160/100/0.1 C b [309]

Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 1M NaClO4 in PEC:FEC (1:1) 1.75–4.3 177/200/0.1 C b [310]

Phosphates

Mesoporous amorphous FePO4 1M NaPF6 in EC:DEC (1:1) 1.5–3.8 151/160/20 [311]
Amorphous FePO4/CNT 1M NaClO4 in EC:DMC (1:1) 2.25–3.75 66/300/50 [312]

NaFePO4 NaTFSI/BMP–TFSI (IL) 2.0–3.75 120/100/0.05 C b [313]
NaFePO4 1M NaPF6 in EC:DMC (1:1) 1.5–4.0 150/200/0.1 C b [240]

Na2Fe2P2O7 1M NaClO4 in PC 2.0–4.0 90/30/0.1 C b [314]

NASICON and
Fluorophosphates

Na3V2(PO4)3 1M NaClO4 in PC 2.5–3.8 66.5/50/1 C b [259]
C coated Na3V2(PO4)3 1M NaPF6 in EC:DMC (1:1) 2.5–4.0 113/8000/2 C b [315]

Graphene supported Na3V2(PO4)3 1M NaClO4 in PC 2.5–3.8 90/100/1 C b [316]
Fe2(MoO4)3 1M NaClO4 in EC:DMC (1:1) 1.5–3.5 94/100/1 C b [317]

Na3V2O2(PO4)2F 1M NaClO4 in FEC 2.5–4.3 100/1000/20 C b [318]
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Table 5. Cont.

Type of Cathode Electrolyte Chemistry Voltage
Range (V) Performance * Reference

PB

Na4Fe(CN)6 1M NaClO4 in EC/DEC (1:1) 2.0–4.2 100/70/5 [319]
Na2NiCo1−xFe(CN)6 1M NaPF6 in EC/DEC (1:1) 2.0–4.2 124/100/50 [320]

NaxCoFe(CN)6 1M Na2SO4 (pH = 7) 0.5–2.0 100/200/600 [285]
K0.33FeFe(CN)6/rGO 1M NaClO4 in EC/DEC (1:1) 2.0–3.8 160/1000/0.5 C b [321]

Na0.647Fe[Fe(CN)6]0.93.2.6H2O/C 1M NaPF6 in EC/DEC (1:1) 2.0–4.0 130/200/50 [279]

Organic

Polyimide (PI) 1M NaPF6 in PC 1.5–3.0 180/50/50 [322]
Anthraquinone based PI 1M NaPF6 in DME:DOL (1:1) 1.5–3.5 179/150/50 [323]

Poly(benzoquinonyl sulfide)
(PBQS) 1M NaTFSI/DOL DME 1.5–4.0 268/1000/50 [324]

Disodium rhodizonate 1M NaClO4 in PC 0.0–3.1 498/50/50 [325]
Juglone/rGO 1M NaClO4 in EC:DMC (1:1) 0.0–2.5 760/100/100 [290]

* Specific capacity (mAh g−1)/number of cycles/current density (mA g−1). b C rate.

4. Conclusions

SIBs are considered to be a highly promising alternative to LIBs. However, in order for that goal
to be achievable in the near future, electrode materials must be tailored to provide high energy and
power densities. Further the electrode materials must also prove durable and provide a significantly
long cycle life, especially since SIBs are being considered for grid scale storage, where reliability and
longevity are two of the most important parameters.

It is here that these high-performance materials play a very important role. On the anode side,
novel 2D materials like TMDs and layered materials like MXenes have the ability to provide large surface
areas and enhanced electronic conductivity, as well as access to a greater number of electrochemical
sites. Likewise, considering the cathodes, novel materials like NASICON and polyanionic compounds,
PB analogues, etc., are currently at the forefront of SIB technology. These materials provide large open
framework structures, thereby allowing easy intercalation of Na+ ions and less structural degradation
during the intercalation/deintercalation process.

However, considerable challenges still exist in all these cases. Layered materials tend to restack
after several cycles, which necessitates using support materials within the layers, essentially making
the synthesis complicated. Also, the polyanionic compounds tend to suffer from low electronic
conductivity, which also makes a graphene/CNT coating necessary.

Regardless of these challenges, greater research in this area will help to elucidate and improve the
understanding of the electrochemical mechanisms involved. This will go a long way in adopting SIBs
for commercial purposes and greatly enhancing their feasibility.
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