
materials

Article

Hybrid Circuit of Memristor and Complementary
Metal-Oxide-Semiconductor for Defect-Tolerant
Spatial Pooling with Boost-Factor Adjustment

Tien Van Nguyen , Khoa Van Pham and Kyeong-Sik Min *

School of Electrical Engineering, Kookmin University, Seoul 02707, Korea
* Correspondence: mks@kookmin.ac.kr; Tel.: +82-2-910-4634

Received: 17 June 2019; Accepted: 29 June 2019; Published: 1 July 2019
����������
�������

Abstract: Hierarchical Temporal Memory (HTM) has been known as a software framework to
model the brain’s neocortical operation. However, mimicking the brain’s neocortical operation
by not software but hardware is more desirable, because the hardware can not only describe the
neocortical operation, but can also employ the brain’s architectural advantages. To develop a hybrid
circuit of memristor and Complementary Metal-Oxide-Semiconductor (CMOS) for realizing HTM’s
spatial pooler (SP) by hardware, memristor defects such as stuck-at-faults and variations should
be considered. For solving the defect problem, we first show that the boost-factor adjustment can
make HTM’s SP defect-tolerant, because the false activation of defective columns are suppressed.
Second, we propose a memristor-CMOS hybrid circuit with the boost-factor adjustment to realize this
defect-tolerant SP by hardware. The proposed circuit does not rely on the conventional defect-aware
mapping scheme, which cannot avoid the false activation of defective columns. For the Modified
subset of National Institute of Standards and Technology (MNIST) vectors, the boost-factor adjusted
crossbar with defects = 10% shows a rate loss of only ~0.6%, compared to the ideal crossbar with
defects = 0%. On the contrary, the defect-aware mapping without the boost-factor adjustment
demonstrates a significant rate loss of ~21.0%. The energy overhead of the boost-factor adjustment is
only ~0.05% of the programming energy of memristor synapse crossbar.

Keywords: memristor-CMOS hybrid circuit; defect-tolerant spatial pooling; boost-factor adjustment;
memristor crossbar; neuromorphic hardware

1. Introduction

The human brain’s neocortex covers the brain’s surficial area, which is known to carry out the
most intelligence functions. The thickness of neocortex has been observed as thin as 2.5 mm, where six
layers are stacked one-by-one [1–3]. The six neocortical layers seem to be columnar, in which the
complicated vertical and horizontal synaptic connections are intertwined among neurons to form the
3-dimensional neuronal architecture [4,5]. The neocortical neurons collectively respond to human’s
sensory information from retina, cochlea, and olfactory organ [6]. The collective activation of neocortical
neurons are trained over and over with respect to time, by changing the synaptic connection’s strength
according to the sensory stimuli. The neuronal activation and synaptic plasticity can be thought of as
a fundamental aspect of human perception and cognition, which are computed in a different way from
the conventional Von Neumann machines.

As a software framework, Hierarchical Temporal Memory (HTM) has been developed to model
the cognitive functions of neocortex [7–11]. By doing so, HTM can recognize and interpret various
spatiotemporal patterns, mimicking how the human brain’s neocortex understands human’s sensory
stimuli. The software framework of HTM is divided into two functional blocks: Spatial Pooler (SP)

Materials 2019, 12, 2122; doi:10.3390/ma12132122 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-2710-768X
https://orcid.org/0000-0002-6129-5856
https://orcid.org/0000-0002-1518-7037
http://www.mdpi.com/1996-1944/12/13/2122?type=check_update&version=1
http://dx.doi.org/10.3390/ma12132122
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2122 2 of 17

and Temporal Memory (TM). The role of SP is receiving and learning the sensory information. In SP,
the sensory information is transformed into the collective activation of neocortical neurons. From the
biological experiments, the neocortical neurons have been observed to be activated sparsely, not densely,
in response to human sensory stimuli. The sparse activation of neocortical neurons is mathematically
described as Sparse Distributed Representation (SDR) in HTM [1]. After SP learning the spatial features
of the sensory stimuli, TM responds to the temporal sequences of SDR patterns generated from SP.
By learning the temporal sequences of SDR patterns, TM can perform recognition and prediction
for them.

Figure 1a shows a conceptual diagram of SP operation, where the input-space neurons are mapped
to the SP neurons [8]. Here, the input-space and SP neurons refer to the neurons of sensory organ and
neocortex, respectively. The sensory stimuli generated from the input-space neurons are connected
with the neocortical neurons, as indicated in Figure 1a. The lines between the input and the SP spaces
represent the synaptic connections. Synaptic weights of the connections are trained according to
Hebbian learning rule in HTM [8]. If an SP neuron becomes active, in response to an input-space
stimulus, the synaptic weights belonging to this neuron are strengthened, and weakened otherwise [8].
The circle zone in the SP space represents a local inhibition area, within which only few neurons are
allowed to be active. In HTM, the size of inhibition zone in the SP space can be decided to control
the sparsity of neuronal activation. It has been known that the percentage of neuronal activation is as
sparse as 2% on average in the brain’s neocortex. This low sparsity of neuronal activation may have
something to do with high energy-efficiency of neocortical cognitive operation.

Materials 2019, 9, x FOR PEER REVIEW 2 of 17 

 

the sensory information is transformed into the collective activation of neocortical neurons. From the 
biological experiments, the neocortical neurons have been observed to be activated sparsely, not 
densely, in response to human sensory stimuli. The sparse activation of neocortical neurons is 
mathematically described as Sparse Distributed Representation (SDR) in HTM [1]. After SP learning 
the spatial features of the sensory stimuli, TM responds to the temporal sequences of SDR patterns 
generated from SP. By learning the temporal sequences of SDR patterns, TM can perform recognition 
and prediction for them. 

Figure 1a shows a conceptual diagram of SP operation, where the input-space neurons are 
mapped to the SP neurons [8]. Here, the input-space and SP neurons refer to the neurons of sensory 
organ and neocortex, respectively. The sensory stimuli generated from the input-space neurons are 
connected with the neocortical neurons, as indicated in Figure 1a. The lines between the input and 
the SP spaces represent the synaptic connections. Synaptic weights of the connections are trained 
according to Hebbian learning rule in HTM [8]. If an SP neuron becomes active, in response to an 
input-space stimulus, the synaptic weights belonging to this neuron are strengthened, and weakened 
otherwise [8]. The circle zone in the SP space represents a local inhibition area, within which only few 
neurons are allowed to be active. In HTM, the size of inhibition zone in the SP space can be decided 
to control the sparsity of neuronal activation. It has been known that the percentage of neuronal 
activation is as sparse as 2% on average in the brain’s neocortex. This low sparsity of neuronal 
activation may have something to do with high energy-efficiency of neocortical cognitive operation. 

 
Figure 1. (a) The conceptual diagram of Spatial Pooler (SP) operation, where the input-space neurons 
are mapped to the SP neurons; and (b) the comparison of the ideal crossbar without defects and the 
real crossbar with defects. LRS and HRS mean Low Resistance State and High Resistance State, 
respectively. 

In the previous publications, we developed hybrid CMOS-memristor circuits for implementing 
HTM, which was developed as the software framework originally, as mentioned earlier [12,13]. 
Memristors have been studied intensively for many years for their potential in neuromorphic 
hardware, since the first experimental demonstration [14,15]. This is because the memristive 
behaviors seem very similar with the experimental synaptic plasticity observed from biological 

Figure 1. (a) The conceptual diagram of Spatial Pooler (SP) operation, where the input-space neurons
are mapped to the SP neurons; and (b) the comparison of the ideal crossbar without defects and the real
crossbar with defects. LRS and HRS mean Low Resistance State and High Resistance State, respectively.

In the previous publications, we developed hybrid CMOS-memristor circuits for implementing
HTM, which was developed as the software framework originally, as mentioned earlier [12,13].
Memristors have been studied intensively for many years for their potential in neuromorphic hardware,



Materials 2019, 12, 2122 3 of 17

since the first experimental demonstration [14,15]. This is because the memristive behaviors seem
very similar with the experimental synaptic plasticity observed from biological neurons. From the
biological experiments, the synaptic connections have been observed to be strengthened or weakened
dynamically by electrical spiking signals applied to them [16].

Moreover, memristors can be fabricated to build 3-dimensional crossbar architecture using the
CMOS-compatible Back-End-Of-Line (BEOL) process [17,18]. The 3-dimensional connectivity of
memristor-synapses is very similar to the anatomical structure of the biological neocortex. In terms
of cognitive functions, the memristor crossbar can perform vector-matrix multiplications in parallel,
which can be considered very important in implementing energy-efficient computing like human
brain’s cognition, unlike the state-of-the-art Von Neumann based computers [19,20].

One important thing to consider in the memristor crossbar is defects, as shown in Figure 1b. In the
real memristor crossbar, there are stuck-defects, such as stuck-at-0, stuck-at-1, etc. [21]. In addition,
variation-related defects can also be considered, where each memristor can have different LRS and
HRS values due to process variations [22]. Here, LRS and HRS mean Low Resistance State and
High Resistance State, respectively. Figure 1b compares the ideal crossbar (without defects) and
the real one (with defects). The solid and open red circles with stars represent stuck-at-LRS and
stuck-at-HRS defects, respectively. For the memristor defects such as stuck-at-faults and variations,
these defects may be caused from the random nature of filamentary current path which can be formed
or erased by the applied current and voltage to the memristor. The filamentary current path created
or erased during the memristor programming can have statistical distributions like FLASH memory.
Various statistical distributions by device-to-device, wafer-to-wafer, lot-to-lot, and process-to-process
lead to the variations in memristance and stuck-at-faults [21].

To minimize a loss of recognition rate due to these memristor defects, we can consider the
defect-tolerance scheme based on the conventional defect-aware mapping [21]. To explain the
previous defect mapping scheme, the following logic function is assumed, f = X1X2 + X2X3 + X3X1 +

/X1/X2/X3 is implemented in the crossbar [21].
In the logic function, /X1 means the inversion of X1. Figure 2a shows the real memristor crossbar

(with defects). Here, I1, I2, etc. represent input columns. O1, O2, etc. are output rows. The gray
circle indicates a good memristor cell, which can be programmed with HRS or LRS. The solid and
open red circles represent stuck-at-1 and stuck-at-0 defects, respectively. Figure 2b shows the direct
mapping without considering the defect map. P1, P2, P3, and P4 indicate the first, second, third, and
fourth partial products in the target logic function. P1 calculates X1X2. However, P2 calculates X1X2X3,
not X2X3 defined in the logic function, because of the stuck-at-1 fault on the crossing point between X1

and P2. P4 also calculates the wrong partial product. The stuck-at-0 fault is found at the crossing point
between /X2 and P4. By doing so, P4 calculates /X1/X3 instead of the target product of /X1/X2/X3.



Materials 2019, 12, 2122 4 of 17
Materials 2019, 9, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. (a) The real crossbar with defects; (b) the direct mapping of the logic function without 
considering the defect map; (c) the defect-aware mapping of the logic function with considering the 
defect type and location; (d) the flowchart of crossbar training using the conventional defect-aware 
mapping [21]; and (e) the proposed flowchart of the defect-tolerant crossbar training without using 
the defect map. 

Figure 2c shows the defect-aware mapping, where the defects can be used in implementing the 
logic function according to the defect type and location. To do so, the crossbar’s rows in Figure 2c are 
reordered to consider the defect type and location in calculating the partial products. For example, 
the first row in Figure 2c is assigned to P3, not P1. P1 is assigned to the second row to calculate X1X2. 
The stuck-at-1 fault on the second row can be used in calculating P1 = X1X2. Similarly, the stuck-at-1 
fault on P4 can be employed to calculate P4 = /X1/X2/X3. Moreover, the stuck-at-0 faults on P2 and P4 do 
not cause a wrong result for the calculation of partial products of P2 and P4. As shown in Figure 2c, 
the defects can be employed in implementing the target logic function according to the defect type 
and location. However, the defect-aware mapping scheme demands very complicated circuits, such 
as memory, processor, controller, etc., to be implemented in hardware. 

Figure 2d shows the flowchart of crossbar training using the conventional defect-aware 
mapping. After fabricating the memristor crossbar, the defect map should be obtained by measuring 
the crossbar. As a post-fabrication configuration, the trained synaptic weighs can be transferred to 
the crossbar using the defect-aware mapping, as explained in Figure 2c. To do so, however, the 
complicated digital circuits, such as memory, controller, processor, etc., are needed for implementing 
the defect-aware mapping in hardware, as mentioned earlier. 

Not using the defect-aware mapping, in this paper, we propose a simple memristor-CMOS 
hybrid circuit of defect-tolerant spatial-pooling, which does not need the complicated circuits of 
memory, controller, processor, etc., as shown in Figure 2e, where, unlike in Figure 2d, the crossbar’s 
defect map is not used. For developing the hybrid circuit of memristor-CMOS, we first show that the 
spatial-pooling based on Hebbian learning can be defect-tolerant, owing to the boost-factor 
adjustment, in Section 2. Additionally, we propose a new memristor-CMOS hybrid circuit, where the 

O1

O2

O3

O4

P1

P2

P3

P4

I1 I2 I3 I4 I5 I6
P3

P1

P4

P2

Real crossbar with defects Direct mapping without considering defects Defect-aware mapping

Fabrication of memristor crossbar

Defect-aware crossbar mapping and 
training

Test/diagnosis -> (defect map)

On-line test/diagnosis -> 
(transient defect map)

Defect-aware crossbar mapping and 
training

Fabrication

Post-fabrication 
configuration
(stauck faults, 
variations, etc)

In-field configuration 
(transient faults)

Fabrication of 
memristor crossbar

Defect-tolerant 
crossbar training 

without defect map

Fabrication

Post-fabrication
 & in-field 

configuration

(d) (e)

stuck-at-0
fault

stuck-at-1
fault good cell

(b) (c)(a)

Logic function f=X1X2+X2X3+X3X1+/X1/X2/X3

X1 X2 X3 /X1 /X2 /X3 X1 X2 X3 /X1 /X2 /X3

Figure 2. (a) The real crossbar with defects; (b) the direct mapping of the logic function without considering
the defect map; (c) the defect-aware mapping of the logic function with considering the defect type
and location; (d) the flowchart of crossbar training using the conventional defect-aware mapping [21];
and (e) the proposed flowchart of the defect-tolerant crossbar training without using the defect map.

Figure 2c shows the defect-aware mapping, where the defects can be used in implementing the
logic function according to the defect type and location. To do so, the crossbar’s rows in Figure 2c are
reordered to consider the defect type and location in calculating the partial products. For example,
the first row in Figure 2c is assigned to P3, not P1. P1 is assigned to the second row to calculate X1X2.
The stuck-at-1 fault on the second row can be used in calculating P1 = X1X2. Similarly, the stuck-at-1
fault on P4 can be employed to calculate P4 = /X1/X2/X3. Moreover, the stuck-at-0 faults on P2 and P4

do not cause a wrong result for the calculation of partial products of P2 and P4. As shown in Figure 2c,
the defects can be employed in implementing the target logic function according to the defect type and
location. However, the defect-aware mapping scheme demands very complicated circuits, such as
memory, processor, controller, etc., to be implemented in hardware.

Figure 2d shows the flowchart of crossbar training using the conventional defect-aware mapping.
After fabricating the memristor crossbar, the defect map should be obtained by measuring the crossbar.
As a post-fabrication configuration, the trained synaptic weighs can be transferred to the crossbar
using the defect-aware mapping, as explained in Figure 2c. To do so, however, the complicated digital
circuits, such as memory, controller, processor, etc., are needed for implementing the defect-aware
mapping in hardware, as mentioned earlier.

Not using the defect-aware mapping, in this paper, we propose a simple memristor-CMOS hybrid
circuit of defect-tolerant spatial-pooling, which does not need the complicated circuits of memory,
controller, processor, etc., as shown in Figure 2e, where, unlike in Figure 2d, the crossbar’s defect
map is not used. For developing the hybrid circuit of memristor-CMOS, we first show that the
spatial-pooling based on Hebbian learning can be defect-tolerant, owing to the boost-factor adjustment,
in Section 2. Additionally, we propose a new memristor-CMOS hybrid circuit, where the winner-take-all
circuit is implemented not using capacitors occupying large area. In Section 3, the proposed hybrid
circuit is verified to be able to recognize well Modified subset of National Institute of Standards
and Technology (MNIST) hand-written digits, in spite of memristor defects such as stuck-at-faults,



Materials 2019, 12, 2122 5 of 17

variations, etc. In Section 4, we discuss and compare the following three cases: (1) Spatial-pooling
without both the boost-factor adjustment and the defect-aware mapping, (2) spatial-pooling with the
defect-aware mapping, and (3) spatial pooling with the boost-factor adjustment, in terms of hardware
implementation, energy consumption, and recognition rate. Finally, in Section 5, we summarize
this paper.

2. Materials and Methods

To develop a memristor-CMOS hybrid circuit for realizing HTM’s SP function by hardware, memristor
defects such as stuck-at-faults and variations should be considered. To consider the memristor defects in
developing the hybrid circuit of the SP function, we explain the memristor fabrication and its behavioral
model in the following sub-section of ‘a. Materials’. Then, we describe the boost-factor adjustment in
HTM’s SP operation can make it defect-tolerant, because the false activation of defective columns in the
crossbar are suppressed, in the sub-section of ‘b. Methods (scheme)’. In the sub-section of ‘c. Method
(circuit)’, we propose the memristor-CMOS hybrid circuit by explaining its schematic and operation in detail.
The hybrid circuit with the boost-factor adjustment is discussed and compared with the previous techniques
without the boost-factor adjustment, later in this paper. The simulation result and comparison indicates that
the memristor-CMOS hybrid circuit with the boost-factor adjustment can improve the recognition rate by
more than ~20%, than the previous defect-map-based technique. This hybrid circuit can be very useful
for energy-efficient computing in future IoT systems, where many IoT sensors are connected to a cloud of
centralized data processing, as explained later.

a. Materials

Figure 3a shows a cross-sectional view of the fabricated memristor in this paper. The fabricated
memristor has a film structure made of a Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [23].
A microscope picture of the measured device is shown in Figure 3b, where the top electrode area is
100 µm × 100 µm [24]. The top and bottom electrodes were formed by Platinum (Pt) and SrTiO3, in the
measured device, respectively [23].

Figure 3c shows current–voltage relationships of the fabricated memristor and the Verilog-A model,
respectively [23]. The measurement was performed by Keithley-4200 (Semiconductor Characterization
System, Tektronix, Inc., Beaverton, OR, USA) [23]. Here, the HRS/LRS ratio in Figure 3c was observed
as large as 100. The black and red lines in Figure 3c represent the behavioral model of memristors and
the measured data, respectively. The behavioral model described by Verilog-A in Figure 3c was used
in the circuit simulation of the memristor-CMOS hybrid circuit in this paper.Materials 2019, 9, x FOR PEER REVIEW 6 of 17 

 

 
Figure 3. (a) The cross-sectional view of the measured memristor [23]; (b) the microscope picture of 
the measured memristor [24]; and (c) the memristor’s current–voltage relationships of the 
measurement and Verilog-A model [23]. 

b. Methods (scheme): boost-factor adjustment scheme for defect-tolerant spatial-pooling 

The spatial-pooling in HTM software framework is composed of initialization, overlap 
computation, inhibition, and learning, as shown in Figure 4a [8,12]. After the initialization step (Phase 
1), three steps: Overlap computation (Phase 2), inhibition (Phase 3), and learning (Phase 4), are 
repeated sequentially [8,12]. In Phase 1, random sets of inputs are selected from the input space, as 
indicated in Figure 1a. The number of random sets of inputs per training vector is the same with the 
number of crossbar’s columns. Each input in this random set can be connected to an output neuron 
in the SP via a synapse [8,12]. In Phase 2, an amount of overlap of each output neuron with the chosen 
set of inputs from the input space is calculated [8,12] The amount of overlap of each neuron in the SP 
can be calculated with the number of the connected synapses with the active inputs, multiplied by 
each column’s boost factor. In Phase 3, we decide which columns can be winners within the inhibition 
radius [8,12]. By doing so, the sparsity regarding the percentage of activation in the neocortical 
neurons can be controlled to not exceed a certain limit. In the case of the human brain’s neocortex, 
only 2% of neocortical neurons have been observed to be activated in response to human sensory 
stimuli. In Phase 4, Hebbian learning is performed to strengthen and weaken synaptic connections 
[8,12]. For the winners chosen in Phase 3, the synaptic permanence values for the active inputs are 
increased by p+. For the inactivate inputs, the permanence values are decreased by p-. p+ and p- 
represent the increment and decrement of synaptic permanence, respectively. The permanence value 
is allowed to vary between 0 and 1. If it reaches 1 or 0, the synaptic weight is changed to LRS or HRS, 
respectively. 

Figure 3. (a) The cross-sectional view of the measured memristor [23]; (b) the microscope picture of the
measured memristor [24]; and (c) the memristor’s current–voltage relationships of the measurement
and Verilog-A model [23].



Materials 2019, 12, 2122 6 of 17

b. Methods (scheme): boost-factor adjustment scheme for defect-tolerant spatial-pooling

The spatial-pooling in HTM software framework is composed of initialization, overlap computation,
inhibition, and learning, as shown in Figure 4a [8,12]. After the initialization step (Phase 1), three steps:
Overlap computation (Phase 2), inhibition (Phase 3), and learning (Phase 4), are repeated sequentially [8,12].
In Phase 1, random sets of inputs are selected from the input space, as indicated in Figure 1a. The number
of random sets of inputs per training vector is the same with the number of crossbar’s columns. Each input
in this random set can be connected to an output neuron in the SP via a synapse [8,12]. In Phase 2,
an amount of overlap of each output neuron with the chosen set of inputs from the input space is
calculated [8,12] The amount of overlap of each neuron in the SP can be calculated with the number of the
connected synapses with the active inputs, multiplied by each column’s boost factor. In Phase 3, we decide
which columns can be winners within the inhibition radius [8,12]. By doing so, the sparsity regarding the
percentage of activation in the neocortical neurons can be controlled to not exceed a certain limit. In the
case of the human brain’s neocortex, only 2% of neocortical neurons have been observed to be activated in
response to human sensory stimuli. In Phase 4, Hebbian learning is performed to strengthen and weaken
synaptic connections [8,12]. For the winners chosen in Phase 3, the synaptic permanence values for the
active inputs are increased by p+. For the inactivate inputs, the permanence values are decreased by p-.
p+ and p- represent the increment and decrement of synaptic permanence, respectively. The permanence
value is allowed to vary between 0 and 1. If it reaches 1 or 0, the synaptic weight is changed to LRS or
HRS, respectively.Materials 2019, 9, x FOR PEER REVIEW 7 of 17 

 

 
Figure 4. (a) The spatial-pooling algorithm composed of initialization, overlap computation, 
inhibition, and learning [8,12]; and (b) the defect map of a memristor crossbar with 10% random 
defects. Here the numbers of rows and columns of the crossbar are 400 and 256, respectively. The 
random defects are stuck-at-LRS and stuck-HRS defects. 

One more parameter needed to be updated after the activation of each neuron is a boost factor. 
The boost factor can be defined with the following inverse relationship with the activity ratio [8]: 𝑏௜ = 𝑒ିఉሺ௔೔ିழ௔೔,೙೐೔೒೓್೚ೝவሻ (1) 

Here, bi means the boost factor of column, i. β is a positive parameter that controls the strength 
of the adaptation effect. ai is the activity ratio of column i, and < ai, neighbor > means the average activity 
ratio of the column’s neighborhood. For given M test vectors, the activity ratio of column, i, can be 
calculated with 

𝑎௜ = 1𝑀෍൫𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛ሺ𝑐𝑜𝑙𝑢𝑚𝑛, 𝑖ሻ൯.ெ
௝ୀଵ  

(2) 

Here, ai is the activity ratio of column i. M is the number of test vectors. The activation function 
defined with ‘activation(column, i)’ in Equation (2) becomes one, if the column, i, is activated. If the 
column is not activated, the activation function should be zero. For a neuron activated very 
frequently, its boost factor should be adjusted to be very small to lower the probability of activation. 
On the contrary, if a neuron is chosen very rarely, its boost factor should be increased. As explained 
just earlier, by adjusting each column’s boost factor according to each column’s activity ratio, the 
number of activations can be distributed more evenly for all columns in the crossbar. 

We now discuss how each column’s activity ratio can be affected by memristor defects. Figure 
4b shows a defect map of 400 x 256 memristor crossbar. Here, we assume random defects = 10% in 
the crossbar. The random defects can be stuck-at-HRS and stuck-at-LRS. Because the HRS defects do 
not cause erroneous activation of neurons, we focus on the LRS defects here. 

In Figure 5a, the number of defects per column is ranked from the largest to the smallest. The 
number of columns in the crossbar is assumed to be 256 in Figure 5a. Each column is assumed to have 
400 cells. Among the 400 cells per column, the most defective column has almost ~90 defects. The 
smallest number of defects per column is ~0. Figure 5b and c compare the simulated boost factors of 
the crossbars without and with the boost-factor adjustment, respectively. In Figure 5b, all 256 
columns have the same boost factor, fixed by 50. On the contrary, in Figure 5c, each column’s boost 
factor is adjusted between 0 and 100, according to each column’s activity ratio. 

Figure 4. (a) The spatial-pooling algorithm composed of initialization, overlap computation, inhibition,
and learning [8,12]; and (b) the defect map of a memristor crossbar with 10% random defects. Here the
numbers of rows and columns of the crossbar are 400 and 256, respectively. The random defects are
stuck-at-LRS and stuck-HRS defects.

One more parameter needed to be updated after the activation of each neuron is a boost factor.
The boost factor can be defined with the following inverse relationship with the activity ratio [8]:

bi = e−β(ai−〈ai,neighbor〉) (1)

Here, bi means the boost factor of column, i. β is a positive parameter that controls the strength of
the adaptation effect. ai is the activity ratio of column i, and < ai, neighbor > means the average activity



Materials 2019, 12, 2122 7 of 17

ratio of the column’s neighborhood. For given M test vectors, the activity ratio of column, i, can be
calculated with

ai =
1
M

M∑
j=1

(activation(column, i)). (2)

Here, ai is the activity ratio of column i. M is the number of test vectors. The activation function
defined with ‘activation(column, i)’ in Equation (2) becomes one, if the column, i, is activated. If the
column is not activated, the activation function should be zero. For a neuron activated very frequently,
its boost factor should be adjusted to be very small to lower the probability of activation. On the
contrary, if a neuron is chosen very rarely, its boost factor should be increased. As explained just
earlier, by adjusting each column’s boost factor according to each column’s activity ratio, the number
of activations can be distributed more evenly for all columns in the crossbar.

We now discuss how each column’s activity ratio can be affected by memristor defects.
Figure 4b shows a defect map of 400 × 256 memristor crossbar. Here, we assume random defects = 10%
in the crossbar. The random defects can be stuck-at-HRS and stuck-at-LRS. Because the HRS defects do
not cause erroneous activation of neurons, we focus on the LRS defects here.

In Figure 5a, the number of defects per column is ranked from the largest to the smallest.
The number of columns in the crossbar is assumed to be 256 in Figure 5a. Each column is assumed to
have 400 cells. Among the 400 cells per column, the most defective column has almost ~90 defects.
The smallest number of defects per column is ~0. Figure 5b and c compare the simulated boost factors of
the crossbars without and with the boost-factor adjustment, respectively. In Figure 5b, all 256 columns
have the same boost factor, fixed by 50. On the contrary, in Figure 5c, each column’s boost factor is
adjusted between 0 and 100, according to each column’s activity ratio.

Figure 5d and e compare the activity ratios of the crossbars without and with the boost-factor
adjustment. Here, each column’s activity ratio is shown on the y-axis with respect to the ranked column
number according to the number of defects. Figure 5d clearly indicates that a large number of defects
in a defective column causes frequent activation of the column. The small number of defects results in
the rare activation of the column. The frequent activation due to the defective column is very likely to
be false and should be suppressed not to happen. Figure 5e shows that the frequent activation of the
defective columns can be suppressed, by decreasing the boost factor of the defective columns lower
than the neighbors. By doing so, we can reduce the false activation of the defective columns. Thus,
the recognition rate loss due to the defective columns can be minimized by the boost-factor adjustment.

In Figure 5f, the crossbar’s entropy is compared without and with the boost-factor adjustment.
The entropy of the crossbar with N columns is calculated with Equation (3) [8].

Entropy =
N∑

i=1

[
−ai log2 ai − (1− ai) log2(1− ai)

]
(3)

In Equation (3), ‘Entropy’ means the calculated amount of entropy. N is the number of columns in
the crossbar. ai is the activity ratio of column i. ‘log’ means the logarithmic function. Figure 5f indicates
that the crossbar with the boost-factor adjustment shows much larger entropy than the crossbar without
the boost-factor adjustment. The better entropy can result in a better recognition rate, as shown later in
this paper.



Materials 2019, 12, 2122 8 of 17

Materials 2019, 9, x FOR PEER REVIEW 8 of 17 

 

Figure 5d and e compare the activity ratios of the crossbars without and with the boost-factor 
adjustment. Here, each column’s activity ratio is shown on the y-axis with respect to the ranked 
column number according to the number of defects. Figure 5d clearly indicates that a large number 
of defects in a defective column causes frequent activation of the column. The small number of defects 
results in the rare activation of the column. The frequent activation due to the defective column is 
very likely to be false and should be suppressed not to happen. Figure 5e shows that the frequent 
activation of the defective columns can be suppressed, by decreasing the boost factor of the defective 
columns lower than the neighbors. By doing so, we can reduce the false activation of the defective 
columns. Thus, the recognition rate loss due to the defective columns can be minimized by the boost-
factor adjustment.  

In Figure 5f, the crossbar’s entropy is compared without and with the boost-factor adjustment. 
The entropy of the crossbar with N columns is calculated with Equation (3) [8]. 

Entropy =෍ሾ−𝑎௜ logଶ 𝑎௜ − ሺ1 − 𝑎௜ሻ logଶሺ1 − 𝑎௜ሻሿே
௜ୀଵ  

(3) 

 

In Equation (3), ‘Entropy’ means the calculated amount of entropy. N is the number of columns 
in the crossbar. ai is the activity ratio of column i. ‘log’ means the logarithmic function. Figure 5f 
indicates that the crossbar with the boost-factor adjustment shows much larger entropy than the 
crossbar without the boost-factor adjustment. The better entropy can result in a better recognition 
rate, as shown later in this paper. 

 

Figure 5. (a) The number of defects per column ranked from largest (left) to smallest (right); (b) the 
simulated boost factor of the crossbar without the boost-factor adjustment; (c) the simulated boost 
factor of the crossbar with the boost-factor adjustment; (d) the simulated activity ratio of the crossbar 
without the boost-factor adjustment; (e) the simulated activity ratio of the crossbar with the boost-
factor adjustment; and (f) the comparison of crossbar entropy without and with the boost-factor 
adjustment. 

c. Methods (circuit): memristor-CMOS hybrid circuit of defect-tolerant spatial pooling 

Figure 6a shows a schematic of the memristor-CMOS hybrid circuit of defect-tolerant spatial 
pooling, where each column’s boost factor can be adjusted to make each column’s activity ratio more 

(a)

(b) (c)

(e)(d)

(f)

50 100 150 200 250
0

20
40
60
80

100

50 100 150 200 250
10-3
10-2
10-1
100

50 100 150 200 250
10-3
10-2
10-1
100

50 100 150 200 250
0

20
40
60
80

100

50 100 150 200 250
0

20
40
60
80

100

 

 

 

With boost-factor adjustmentWithout boost-factor adjustment

Ac
tiv

ity
 ra

tio
(a

.u
)

Ac
tiv

ity
 ra

tio
(a

.u
)

Bo
os

t f
ac

to
r(a

.u
)

Without boost-factor adjustment With boost-actor adjustment

Bo
os

t f
ac

to
r(a

.u
)

Ranked column # 

More 
defects

Ranked column # Less 
defects  

More 
defects Ranked column # Less 

defects
 
 

More 
defects Ranked column # Less 

defects 

 

N
um

be
r o

f d
ef

ec
ts

pe
r c

ol
um

n
 

More
 defects

Less 
defects

Less 
defectsRanked column # More 

defects

0.00
0.05
0.10
0.15

With boost-factor
 adjustment

 

En
tro

py
 (b

its
)

Without boost-factor 
adjustment

Figure 5. (a) The number of defects per column ranked from largest (left) to smallest (right); (b) the simulated
boost factor of the crossbar without the boost-factor adjustment; (c) the simulated boost factor of the crossbar
with the boost-factor adjustment; (d) the simulated activity ratio of the crossbar without the boost-factor
adjustment; (e) the simulated activity ratio of the crossbar with the boost-factor adjustment; and (f) the
comparison of crossbar entropy without and with the boost-factor adjustment.

c. Methods (circuit): memristor-CMOS hybrid circuit of defect-tolerant spatial pooling

Figure 6a shows a schematic of the memristor-CMOS hybrid circuit of defect-tolerant spatial
pooling, where each column’s boost factor can be adjusted to make each column’s activity ratio
more even. The memristor crossbar is composed of 400 rows and 256 columns for recognizing the
MNIST hand-written digits. The 400 rows can receive 20 × 20 input pixels of each MNIST test vector.
The 256 columns correspond to the 256 output neurons of the SP. In Figure 6a, X0 and X1 are the first and
second row, respectively. g0,0 means memristor’s conductance of row #0 and column #0. Similarly, g1,0

means memristor’s conductance of row, #1, and column, #0. I0 and I1 represent the currents of columns,
#0 and #1, respectively. I0 and I1 enter the current–voltage converters of B0 and B1, respectively,
where each column’s boost factor can be adjusted according to each column’s activity ratio. Here, V0

and V1 are the converted voltages of columns #0 and #1, respectively. The converted voltages, V0 and
V1, enter the comparators of C0 and C1, respectively, where V0 and V1 are compared with VREF. VREF is
obtained from the maximum output voltage among the neighbors using the diode-connected MOSFETs
of M0, M1, etc. If we assume the diode ‘ON’ voltage is very small, VREF can be very similar with the
maximum voltage among all the output voltages such as V0, V1, etc. If V0 or V1 is very close to VREF,
then column #0 or column #1 will be activated as a winner, inhibiting the neighboring columns from
being activated. One thing to note here is that the VREF for selecting the winner columns is obtained
dynamically by extracting the largest output voltage among the neighbors. If a new input vector is
applied to the crossbar, the output voltages are changed, too. Thus, we can obtain a new maximum
voltage for the new input vector dynamically. Comparing each column’s output voltage with the new
maximum, we can choose the next winner columns that are very close to the new maximum voltage.
Y0 and Y1 refer to the output SDR bits for columns #0 and #1, respectively.

The circuit proposed in this paper does not use any capacitor for realizing the winner-take-all function,
as shown in Figure 6a. This is different from the previous publications [12,20], where the capacitor was
used to integrate the column current over time to accumulate the charge. The accumulated charge can



Materials 2019, 12, 2122 9 of 17

be represented by the capacitor’s voltage. If one column’s voltage reaches a certain level at the earliest
time, then that column is chosen as the winner [12,20]. Instead of capacitors occupying a very large area,
the diode-connected MOSFETs are used here to obtain the maximum voltage among all output voltages,
as shown in Figure 6a. The winning column can be chosen by comparing each column’s output voltage
with the maximum voltage extracted from the diode-connected MOSFETs. The diode-connected MOSFETs
in Figure 6a can occupy a much smaller area than the capacitors used in the previous publications [12,20].

One problem with the winner-take-all circuit using the diode-connected MOSFETs in Figure 6a
is that the winner may be multiple, not single, in some cases. To investigate the number of winning
columns per input vector, the statistical sparsity distribution is compared between the previous
winner-take-all and the proposed circuit in Figure 6a. To do so, the average and variance of sparsity
distribution are calculated for the previous winner-take-all and the proposed circuit in Figure 6a.
The average sparsity of the previous winner-take-all and the proposed circuit in Figure 6a, are 2.2% and
2.3%, respectively. The calculated variance values are 0.09 and 0.11, respectively. The small difference
in variance between the previous and proposed indicates that the winner-take-all can be implemented
with the diode-connected MOSFETs and voltage comparators, not using the capacitors occupying
a very large area.

Figure 6b shows a detailed schematic of the current-to-voltage converter, B0, with the boost-factor
adjustment. OP1 and OP2 are OP amplifiers. The column current, I0, goes though R1. The node
voltage, N1, becomes–I0 × R1. The converted voltage from I0 is given to R2. Thereby, the current
though R2 goes to Mb,0 and is finally converted to V0. V0 is the output voltage of the current–voltage
converter. Here, we used R1 = 5 kΩ and R2 = 100 MΩ, respectively. For the boost-factor adjustment,
Mb,0 should be changed according to the activity ratio of column #0, with respect to the activity ratios
of the neighbors. S1, S2, and S3 are the switches controlled by SW0. SW0 is applied by the boost-factor
adjustment controller. VP means the memristor programming pulse. VP is applied to Mb,0, through S1

and S2, to change the memristor’s conductance. VP is applied to the boost-factor memristor for the
boost-factor adjustment, when SW0 is high. On the contrary, when SW0 is low, S3 becomes ‘ON’ and
V0 is compared with the other output voltages such as V1, V2, etc.

Figure 6c shows the operational diagram of the proposed memristor-CMOS hybrid circuit
illustrated in Figure 6a,b. As indicated in Figure 6c, the crossbar performs the overlap calculation,
in which the input voltage is multiplied with the memristor’s conductance. Then, each column’s
current can be calculated by summating all the cell currents belonging to the column. The column
current enters the current-to-voltage converter. The converted voltage from each column is delivered to
the winner-take-all, where the winning column is chosen. Based on the winning column, the learning
controller adjusts each column’s boost factor and the permanence values of the cells belonging to the
column, according to Hebbian rule. The steps indicated in the operational diagram in Figure 6c are
repeated again, when a new input vector is applied to the crossbar.



Materials 2019, 12, 2122 10 of 17

Materials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

Figure 6c shows the operational diagram of the proposed memristor-CMOS hybrid circuit 
illustrated in Figures 6a and b. As indicated in Figure 6c, the crossbar performs the overlap 
calculation, in which the input voltage is multiplied with the memristor’s conductance. Then, each 
column’s current can be calculated by summating all the cell currents belonging to the column. The 
column current enters the current-to-voltage converter. The converted voltage from each column is 
delivered to the winner-take-all, where the winning column is chosen. Based on the winning column, 
the learning controller adjusts each column’s boost factor and the permanence values of the cells 
belonging to the column, according to Hebbian rule. The steps indicated in the operational diagram 
in Figure 6c are repeated again, when a new input vector is applied to the crossbar. 

 
Figure 6. (a) The detailed schematic of the memristor-CMOS (Complementary Metal-Oxide-
Semiconductor) hybrid circuit of defect-tolerant spatial pooling. The hybrid circuit is composed of the 
memristor crossbar, the current–to-voltage (I–to-V) converters with the boost-factor adjustment, and 
the winner-take-all circuit with the diode-connected Metal-Oxide-Semiconductor Field-Effect 
Transistors (MOSFETs) and comparators; (b) the detailed schematic of the voltage-converter circuit 
with the boost-factor adjustment; and (c) the operational diagram of the memristor-CMOS hybrid 
circuit. 

The simulated waveforms in Figure 7 demonstrate the operation of the proposed memristor-
CMOS hybrid circuit with the boost-factor adjustment. Here, the circuit simulation was performed 
using CADENCE SPECTRE (Cadence Design Systems, Inc., San Jose, CA, USA) and SAMSUNG 0.13-
µm circuit simulation parameters [25]. The mathematical equations of the Verilog-A model of 
memristors used in the circuit simulation were explained in-detail in a previous publication [23]. In 
the simulation, we assumed the memristor crossbar of SP with 400 rows and 256 columns. The 
number of synaptic memristors per column is 25 among 400 cells. It means the 25 cells can be 
activated at the maximum among 400 cells per column in the crossbar. The increment and decrement 

X399

LRS

HRS

I-V converter

Comparator

(a)

(b)

Mb,0 S2

S3
SW0

I0 

R1

B0

S1

I255

B1B0

I0
V0

X0

X1

Xj

I1

V0 V1

R2

Y0 Y1

g0,0

g1,0

M0 M1

C0 C1

M255

C255

Y255

VREF

SDR

OP1

OP2

VP

I-V converter
with boost-factor adjustment

N1

N2

Winner-take-
all circuit

Crossbar for overlap calculation 

Overlap calculation by crossbar

Current-to-voltage conversion

Inhibition by winner-take-all

Learning by changing boost-
factor and permanence

(c)

Figure 6. (a) The detailed schematic of the memristor-CMOS (Complementary Metal-Oxide-Semiconductor)
hybrid circuit of defect-tolerant spatial pooling. The hybrid circuit is composed of the memristor crossbar,
the current–to-voltage (I–to-V) converters with the boost-factor adjustment, and the winner-take-all
circuit with the diode-connected Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and
comparators; (b) the detailed schematic of the voltage-converter circuit with the boost-factor adjustment;
and (c) the operational diagram of the memristor-CMOS hybrid circuit.

The simulated waveforms in Figure 7 demonstrate the operation of the proposed memristor-CMOS
hybrid circuit with the boost-factor adjustment. Here, the circuit simulation was performed using
CADENCE SPECTRE (Cadence Design Systems, Inc., San Jose, CA, USA) and SAMSUNG 0.13-µm
circuit simulation parameters [25]. The mathematical equations of the Verilog-A model of memristors
used in the circuit simulation were explained in-detail in a previous publication [23]. In the simulation,
we assumed the memristor crossbar of SP with 400 rows and 256 columns. The number of synaptic
memristors per column is 25 among 400 cells. It means the 25 cells can be activated at the maximum
among 400 cells per column in the crossbar. The increment and decrement of permanence are +0.01
and −0.01, respectively. The initial permanence values are assumed to be random between 0 and 1.
The minimum amount of overlap between the input-space and spatial-pooler space can start from
zero. The amount of overlap can be calculated by multiplying the input voltages with the memristor
synaptic weights. The size of inhibition circuit zone is 64 columns in the crossbar. The number of
winning columns is allowed not to exceed 2 among 64 columns. Thereby, the sparsity in Figure 6a can
be controlled within 2%, as the brain’s neocortex does.

In Figure 7, during the crossbar training time, each column’s activity ratio is calculated by counting
the number of activation of each column. If column #0 becomes activated, Y0 becomes high. Similarly,



Materials 2019, 12, 2122 11 of 17

if column #1 becomes activated, Y1 is high. After the crossbar training time, the boost factor can be
adjusted according to each column’s activity ratio, as described in Equation (1). The more frequent
activation of column #0 leads to decrease the boost factor more. The less frequent activation of column
#1 reduces the boost factor little, as shown in Figure 7. For adjusting the boost factors of columns #0
and #1, the pulse widths of SW0 and SW1, respectively, are modulated. Mb,0 can be decreased more
than Mb,1 by many programming pulses of VP, because SW0 is high for a longer time than SW1. On the
contrary, Mb,1 is changed little, due to the fact that SW1 is high only for a very short time. The pulse
modulation of SW0 and SW1 can be controlled very easily by counting the number of activations of
each column during the crossbar training time.

Materials 2019, 9, x FOR PEER REVIEW 11 of 17 

 

of permanence are +0.01 and −0.01, respectively. The initial permanence values are assumed to be 
random between 0 and 1. The minimum amount of overlap between the input-space and spatial-
pooler space can start from zero. The amount of overlap can be calculated by multiplying the input 
voltages with the memristor synaptic weights. The size of inhibition circuit zone is 64 columns in the 
crossbar. The number of winning columns is allowed not to exceed 2 among 64 columns. Thereby, 
the sparsity in Figure 6a can be controlled within 2%, as the brain’s neocortex does. 

In Figure 7, during the crossbar training time, each column’s activity ratio is calculated by 
counting the number of activation of each column. If column #0 becomes activated, Y0 becomes high. 
Similarly, if column #1 becomes activated, Y1 is high. After the crossbar training time, the boost factor 
can be adjusted according to each column’s activity ratio, as described in Equation (1). The more 
frequent activation of column #0 leads to decrease the boost factor more. The less frequent activation 
of column #1 reduces the boost factor little, as shown in Figure 7. For adjusting the boost factors of 
columns #0 and #1, the pulse widths of SW0 and SW1, respectively, are modulated. Mb,0 can be 
decreased more than Mb,1 by many programming pulses of VP, because SW0 is high for a longer time 
than SW1. On the contrary, Mb,1 is changed little, due to the fact that SW1 is high only for a very short 
time. The pulse modulation of SW0 and SW1 can be controlled very easily by counting the number of 
activations of each column during the crossbar training time. 

 

Figure 7. The simulated waveforms of the proposed memristor-CMOS hybrid circuit with the boost-
factor adjustment. 

3. Simulation results 

For calculating the recognition rate, we tested MNIST vectors [26,27] with the proposed 
memristor-CMOS hybrid circuit. To reflect the real crossbar with non-ideal effects, we considered 
source resistance, neuron resistance, wire resistance, etc., in the recognition-rate simulation [22]. 
Figure 8a shows a schematic of memristor crossbar that includes these non-ideal parasitic effects. 
Here, RS and RN represent source resistance and neuron resistance, respectively [2]. RW represents 
wire resistance from metal layers. In the non-ideal crossbar, RN and RS are assumed to be 0.27% of 
HRS and 0.067% of HRS, respectively [22]. RW is assumed to be ~1Ω per cell in this paper. These RS 
and RN, which are 0.27% of HRS and 0.067% of HRS, respectively, are the worst-case values of the 
source and neuron resistance observed from the fabricated real crossbars [22]. In Figure 8a, V0, V1, 
and Vn represent the input voltages. I0, I1, and Im represent the column currents.  

We now explain the crossbar architecture for recognizing the MNIST vectors. Here, the number 
of rows in the crossbar should be 400, which should be the same with the number of input voltages. 
Each MNIST vector is composed of 20 × 20 = 400 pixels. Thus, the number of input voltages is 400 for 

 
 

 

10 20 30 40 50 600

Crossbar
Training time

Boost-factor
Adjusting time

Y0

Y1

SW0

SW1

Vp

Mb,0

Mb,1

Time(a.u)

Figure 7. The simulated waveforms of the proposed memristor-CMOS hybrid circuit with the
boost-factor adjustment.

3. Simulation Results

For calculating the recognition rate, we tested MNIST vectors [26,27] with the proposed memristor-
CMOS hybrid circuit. To reflect the real crossbar with non-ideal effects, we considered source resistance,
neuron resistance, wire resistance, etc., in the recognition-rate simulation [22]. Figure 8a shows a schematic
of memristor crossbar that includes these non-ideal parasitic effects. Here, RS and RN represent source
resistance and neuron resistance, respectively [2]. RW represents wire resistance from metal layers. In the
non-ideal crossbar, RN and RS are assumed to be 0.27% of HRS and 0.067% of HRS, respectively [22]. RW is
assumed to be ~1Ω per cell in this paper. These RS and RN, which are 0.27% of HRS and 0.067% of HRS,
respectively, are the worst-case values of the source and neuron resistance observed from the fabricated
real crossbars [22]. In Figure 8a, V0, V1, and Vn represent the input voltages. I0, I1, and Im represent the
column currents.

We now explain the crossbar architecture for recognizing the MNIST vectors. Here, the number
of rows in the crossbar should be 400, which should be the same with the number of input voltages.
Each MNIST vector is composed of 20 × 20 = 400 pixels. Thus, the number of input voltages is
400 for recognizing the MNIST vector. For the number of columns of the SP crossbar, 256, 1024,
and 4096 columns are used in Figure 8b, c, and d, respectively. It is known that having more SP
columns can result in a better recognition rate [12]. This is because each SP column can store a specific
feature of tested vectors. If the number of SP columns becomes larger, then more features can be
stored in the columns. Thereby, the recognition rate for the tested images can be improved with
increasing the number of SP columns. The number of SP columns = 256 is the same condition for the
memristor-implemented Convolutional Neural Network, where the testing image has 20 × 20 pixels,



Materials 2019, 12, 2122 12 of 17

the kernel size is 5 × 5, and the number of kernels = 1. Similarly, the number of SP columns = 1024
is the same condition of Convolutional Neural Network, with 20 × 20 image, 5 × 5 kernel, and the
number of kernels = 4. The number of SP columns = 4096 is the same condition of Convolutional
Neural Network, with 20 × 20 image, 5 × 5 kernel, and the number of kernels = 16. In this simulation,
we did not simulate the crossbars with SP columns more than 4096, because we do not use the number
of kernels more than 16 for recognizing the MNSIT vectors, in Convolutional Neural Network.

Materials 2019, 9, x FOR PEER REVIEW 12 of 17 

 

recognizing the MNIST vector. For the number of columns of the SP crossbar, 256, 1024, and 4096 
columns are used in Figure 8b, c, and d, respectively. It is known that having more SP columns can 
result in a better recognition rate [12]. This is because each SP column can store a specific feature of 
tested vectors. If the number of SP columns becomes larger, then more features can be stored in the 
columns. Thereby, the recognition rate for the tested images can be improved with increasing the 
number of SP columns. The number of SP columns = 256 is the same condition for the memristor-
implemented Convolutional Neural Network, where the testing image has 20 x 20 pixels, the kernel 
size is 5 x 5, and the number of kernels = 1. Similarly, the number of SP columns = 1024 is the same 
condition of Convolutional Neural Network, with 20 x 20 image, 5 x 5 kernel, and the number of 
kernels = 4. The number of SP columns = 4096 is the same condition of Convolutional Neural 
Network, with 20 x 20 image, 5 x 5 kernel, and the number of kernels = 16. In this simulation, we did 
not simulate the crossbars with SP columns more than 4096, because we do not use the number of 
kernels more than 16 for recognizing the MNSIT vectors, in Convolutional Neural Network. 

 
Figure 8. (a) The memristor crossbar with the non-ideal effects of RS, RN, and RW. Here RS = 0.27%*HRS 
and RN = 0.067%*HRS.; (b) the MNIST recognition rate of the non-ideal crossbar with 256 SP columns. 
Here, SP means Spatial Pooler. The percentage σ of memristance variation of HRS and LRS is assumed 
to be 0% in Figure 8.; (c) the MNIST recognition rate of the non-ideal crossbar with 1024 SP columns. 
Here the percentage σ of memristance variation of HRS and LRS is 0%; and (d) the MNIST recognition 
rate of the non-ideal crossbar with 4096 SP columns. The percentage σ of memristance variation in 
HRS and LRS is assumed 0%. 

Figure 8b shows MNIST recognition rate of the memristor crossbar with SP columns = 256. Here, 
the percentage of defects in the crossbar is changed from 0% to 20%. The percentage σ of memristance 
variation of HRS and LRS is assumed to be zero. For the percentage of defects = 0%, the crossbars 
without and with the boost-factor adjustment show the recognition rates of 77.3% and 77.6%, 
respectively. When the percentage of defects is very small, the boost-factor adjustment affects the 
recognition rate very little. However, if the percentage increases, the boost-factor adjustment plays 

(a) (b)

(c) (d)

RN

RS

LRS

V0

V1

Vn

RS

RS Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

Rw

...

...

...

RN RN RN

HRS

...

Rw Rw Rw

RwRw Rw

Rw Rw Rw Rw

I0 I1 Im
RN = 0.067%*HRSRS = 0.27%*HRS

0 5 10 15 20
0

20

40

60

80

100

# of SP columns = 256

 Without boost-factor adjustment
 With boost-factor adjustment

R
ec

og
ni

tio
n 

ra
te

 (%
)

Percentage of defects in crossbar (%)

cc

0 5 10 15 20
0

20

40

60

80

100

Percentage of defects in crossbar (%)

 Without boost-factor adjustment
 With boost-factor adjustment

# of SP columns = 1024

R
ec

og
ni

tio
n 

ra
te

 (%
)

0 5 10 15 20
0

20

40

60

80

100

Percentage of defects in crossbar (%)

 Without boost-factor adjustment
 With boost-factor adjustment

# of SP columns = 4096

R
ec

og
ni

tio
n 

ra
te

 (%
)

Figure 8. (a) The memristor crossbar with the non-ideal effects of RS, RN, and RW. Here RS = 0.27%*HRS
and RN = 0.067%*HRS.; (b) the MNIST recognition rate of the non-ideal crossbar with 256 SP columns.
Here, SP means Spatial Pooler. The percentage σ of memristance variation of HRS and LRS is assumed
to be 0% in Figure 8.; (c) the MNIST recognition rate of the non-ideal crossbar with 1024 SP columns.
Here the percentage σ of memristance variation of HRS and LRS is 0%; and (d) the MNIST recognition
rate of the non-ideal crossbar with 4096 SP columns. The percentage σ of memristance variation in
HRS and LRS is assumed 0%.

Figure 8b shows MNIST recognition rate of the memristor crossbar with SP columns = 256.
Here, the percentage of defects in the crossbar is changed from 0% to 20%. The percentage σ of
memristance variation of HRS and LRS is assumed to be zero. For the percentage of defects = 0%,
the crossbars without and with the boost-factor adjustment show the recognition rates of 77.3% and
77.6%, respectively. When the percentage of defects is very small, the boost-factor adjustment affects
the recognition rate very little. However, if the percentage increases, the boost-factor adjustment plays
an important role to keep the recognition rate as high as the rate of defects = 0%, as shown in Figure 8b.
For the defects = 20%, the boost-factor adjustment can show the recognition rate better by as much as
30.6%, compared to the crossbar without the boost-factor adjustment.

Figure 8c is for the SP columns = 1024. As mentioned earlier, the crossbar with the SP columns =

1024 recognizes MNIST vectors better than the SP columns = 256. For the percentage of defects = 0%,



Materials 2019, 12, 2122 13 of 17

the recognition rates of 256 and 1024 SP columns are 77.6% and 92.5%, respectively. As indicated in
Figure 8b, the boost-factor adjustment in Figure 8c can maintain this good recognition rate, even though
the percentage of defects is increased to 20%. For the percentage = 20%, the gap of recognition rates
without and with the boost-factor adjustment is as much as 35.9%.

Figure 8d is for the SP columns = 4096. If the percentage of defects is 0%, the recognition rate of the
crossbar is as high as 96.2%. In spite of the percentage of defects = 20%, the boost-factor adjustment can
keep the rate as high as 94%, whereas the crossbar without the boost-factor adjustment is as low as 78%.

Figure 9a shows the statistical distributions of HRS and LRS, where the percentageσof memristance
variation is assumed to be 30%. Figure 9 b, c, and d are for the SP columns = 256, 1024, and 4096,
respectively. As indicated in Figure 9, the more SP columns can result in the better recognition rate.
In Figure 9b, the percentage of defects is changed from 0% to 20%. For the percentage of defects = 0%,
the boost-factor adjustment affects the recognition rate very little. However, if the percentage of
defects is increased to 20%, the boost-factor adjustment can improve the recognition rate significantly
compared to the crossbar without the boost-factor adjustment. Similarly, in Figure 9c with the SP
columns = 1024, the recognition rates without and with the boost-factor adjustment are 54% and 87%,
respectively, when the defects = 20%. In Figure 9d with the SP columns = 4096, the recognition rates
without and with the boost-factor adjustment are 74% and 93.9%, respectively, when the defects = 20%.

Materials 2019, 9, x FOR PEER REVIEW 13 of 17 

 

an important role to keep the recognition rate as high as the rate of defects=0%, as shown in Figure 
8b. For the defects = 20%, the boost-factor adjustment can show the recognition rate better by as much 
as 30.6%, compared to the crossbar without the boost-factor adjustment. 

Figure 8c is for the SP columns = 1024. As mentioned earlier, the crossbar with the SP columns = 
1024 recognizes MNIST vectors better than the SP columns = 256. For the percentage of defects=0%, 
the recognition rates of 256 and 1024 SP columns are 77.6% and 92.5%, respectively. As indicated in 
Figure 8b, the boost-factor adjustment in Figure 8c can maintain this good recognition rate, even 
though the percentage of defects is increased to 20%. For the percentage = 20%, the gap of recognition 
rates without and with the boost-factor adjustment is as much as 35.9%. 

Figure 8d is for the SP columns = 4096. If the percentage of defects is 0%, the recognition rate of 
the crossbar is as high as 96.2%. In spite of the percentage of defects = 20%, the boost-factor adjustment 
can keep the rate as high as 94%, whereas the crossbar without the boost-factor adjustment is as low 
as 78%. 

Figure 9a shows the statistical distributions of HRS and LRS, where the percentage σ of 
memristance variation is assumed to be 30%. Figure 9 b, c, and d are for the SP columns = 256, 1024, 
and 4096, respectively. As indicated in Figure 9, the more SP columns can result in the better 
recognition rate. In Figure 9b, the percentage of defects is changed from 0% to 20%. For the percentage 
of defects = 0%, the boost-factor adjustment affects the recognition rate very little. However, if the 
percentage of defects is increased to 20%, the boost-factor adjustment can improve the recognition 
rate significantly compared to the crossbar without the boost-factor adjustment. Similarly, in Figure 
9c with the SP columns = 1024, the recognition rates without and with the boost-factor adjustment 
are 54% and 87%, respectively, when the defects = 20%. In Figure 9d with the SP columns = 4096, the 
recognition rates without and with the boost-factor adjustment are 74% and 93.9%, respectively, 
when the defects = 20%. 

 
Figure 9. (a) The statistical distributions of LRS and HRS with the percentage σ of memristance 
variation = 30% in the simulation; (b) the MNIST recognition rate of the non-ideal crossbar with 256 
SP columns and the percentage σ of memristance variation = 30%. Here, SP means Spatial Pooler.; (c) 
the MNIST recognition rate of the non-ideal crossbar with 1024 SP columns and the percentage σ of 

(a) (b)

(c)
(d)

0 1x108 2x108
0.0

5.0x10-9

1.0x10-8

1.5x10-8

2.0x10-8

HRS = 100MΩ
σ = 30%

 

Pr
ob

ab
ilit

y 
de

ns
ity

Memristance (Ω)
0 1x106 2x106

0.0

5.0x10-7

1.0x10-6

1.5x10-6

2.0x10-6

 

Pr
ob

ab
ilit

y 
de

ns
ity

Memristance (Ω)

LRS = 1MΩ
σ = 30%

0 5 10 15 20
0

20

40

60

80

100

Percentage of defects in crossbar (%)

 Without boost-factor adjustment
 With boost-factor adjustment

# of SP columns = 256

R
ec

og
ni

tio
n 

ra
te

 (%
)

0 5 10 15 20
0

20

40

60

80

100

Percentage of defects in crossbar (%)

 Without boost-factor adjustment
 With boost-factor adjustment

# of SP columns = 1024

R
ec

og
ni

tio
n 

ra
te

 (%
)

0 5 10 15 20
0

20

40

60

80

100

Percentage of defects in crossbar (%)

 Without boost-factor adjustment
 With boost-factor adjustment

# of columns = 4096

R
ec

og
ni

tio
n 

ra
te

 (%
)

Figure 9. (a) The statistical distributions of LRS and HRS with the percentage σ of memristance variation
= 30% in the simulation; (b) the MNIST recognition rate of the non-ideal crossbar with 256 SP columns
and the percentage σ of memristance variation = 30%. Here, SP means Spatial Pooler.; (c) the MNIST
recognition rate of the non-ideal crossbar with 1024 SP columns and the percentage σ of memristance
variation = 30%; and (d) the MNIST recognition rate of the non-ideal crossbar with 4096 SP columns
and the percentage σ of memristance variation = 30%.



Materials 2019, 12, 2122 14 of 17

4. Discussion

In this session, to understand the benefit of the proposed circuit exactly, we discuss and compare the
following three SP schemes in Table 1: (1) Spatial-pooling without both the boost-factor adjustment and
the defect-aware mapping, (2) spatial-pooling with the defect-aware mapping, and (3) spatial-pooling
with the boost-factor adjustment.

Table 1. Comparison of possibility of hardware implementation, energy consumption for the crossbar
programming, and MNIST recognition rate for the three SP schemes. Here, SP means Spatial Pooler.
Energy consumption is calculated during the training time of 10,000 MNIST vectors.

Possibility for Hardware
Implementation

Energy Consumption of the
Crossbar Programming

(SP Column = 256)

MNIST Recognition Rate

# of SP
Columns

Rate (%)
Defects = 0%

Rate (%)
Defects = 10%

(1) Spatial-pooling
without the boost-factor

adjustment and the
defect-aware mapping

Able to be implemented
with hardware

3.9 mJ for the crossbar programming

256 77.3 55.6

1024 92 65.4

4096 95.7 81.1

(2) Spatial-pooling
with the

defect-aware mapping

The defect-aware mapping in
Figure 2d demands the very

complicated hardware of memory,
processor, controller, etc.

3.9mJ for the crossbar programming
256 77.3 56.3

1024 92 66.5

4096 95.7 82.4

(3) Spatial- pooling
with the

boost-factor adjustment

Able to be implemented
with hardware

3.9 mJ for the crossbar programming,
+2uJ for the boost-factor adjustment
(Energy overhead due to boost-factor

adjustment: ~0.05%)

256 77.6 77

1024 92.5 91.8

4096 96.2 95.4

First, we discuss the possibility of hardware implementation in Table 1. As mentioned earlier,
(1) and (3) can be implemented in hardware. However, the defect-aware mapping of (2), as indicated
in Figure 2d, demands very complicated circuits such as memory, processor, controller, etc.

Second, the energy consumptions of the crossbar programming are compared among (1), (2),
and (3) in Table 1. The amount of programming energy is simulated during the training time of
10,000 MNIST vectors (1) and (2) consume 3.9 mJ for programming the crossbar with HRS and LRS,
according to Hebbian learning rule, as explained in Figure 4a. The energy overhead due to the
boost-factor adjustment is less than ~0.05% of the crossbar programming energy. This is because each
column has only one memristor for the boost-factor adjustment, compared to 400 cells per column for
Hebbian learning.

For the recognition rate, in Table 1 (1), without the boost-factor adjustment and defect-aware
mapping, shows MNIST recognition rates of 77.3% and 55.6%, when the defects = 0% and 10%,
respectively. Similarly, (2), with only the defect-aware mapping, shows the rates of 77.3% and 56.3%,
when the defects = 0% and 10%, respectively. Without the boost-factor adjustment, the defective
columns necessarily become activated frequently. The frequent activation of defective columns
degrades the recognition rate significantly, as shown in (2) in Table 1. On the contrary, (3) with the
boost-factor adjustment shows the rates of 77.6% and 77%, when the defects = 0% and 10%, respectively.
It has very little loss of the recognition rate, in spite of the defects = 10%. The gap between the defects
= 0% and 10% is negligibly small for the crossbar with the boost-factor adjustment.

We now discuss the relationship of this work to the previous works performed in HTM hardware
realization. Actually, as a previous works of this paper, we developed the memristor crossbar circuits
for performing the SP and TM operations of HTM, respectively [12,13]. However, in the previous works,
we did not consider the memristor defects, which should be taken into account in the real memristor
crossbar having defects of stuck-at-faults and variations. Thus, the SP hardware implemented with
the real defective memristor crossbar can be an essential part of future HTM’s hardware system.
Additionally, as a further work, we try to fabricate the crossbar having more than 100 memristors
and combine the fabricated crossbar with the CMOS circuit to verify the SP operation by hardware,
for testing the MNSIT vectors.

Finally, we discuss possible applications of the memristor-CMOS hybrid circuit of HTM’s hardware.
As Internet of Things (IoT) sensors become more popular in human life and environment, an amount



Materials 2019, 12, 2122 15 of 17

of data generated from the sensors becomes enormous [28–30]. To handle this huge amount of data
from the physical world, we can think of the integration of IoT sensors and memristor-CMOS hybrid
circuit into one chip [31,32]. By doing so, the unstructured data from the sensors can be pre-processed
and interpreted near the sensors by the integrated memristor-CMOS hybrid circuit of HTM hardware.
If we deliver all the data generated from the IoT sensors to the cloud, without any pre-processing of
the unstructured data near the IoT sensors, an amount of computing energy demanded at the cloud
may be huge [33]. Thus, the memristor-CMOS hybrid circuit that can perform the pre-processing of
the unstructured data from the IoT sensors can be very useful for energy-efficient computing in future.

5. Conclusions

The SP of HTM has been known as the software framework to model human brain’s neocortical
operation such as recognition, cognition, etc. However, mimicking the brain’s neocortical operation
by hardware rather than software is more desirable, because the hardware not only describes the
neocortical operation, but also employs the brain’s architectural advantages such as high energy
efficiency, extreme parallel-computation, etc.

To realize HTM’s SP by hardware, in this paper, we developed the memristor-CMOS hybrid circuit.
One thing important for hardware implementation is that memristor defects such as stuck-at-faults,
memristance variations, etc., should be considered in developing the memristor-CMOS hybrid circuit
of SP.

For considering memristor defects in hardware implementation, first, we showed that the
boost-factor adjustment can make HTM’s SP defect-tolerant, because the false activation of defective
columns can be suppressed. Second, we proposed the memristor-CMOS hybrid circuit with the
boost-factor adjustment for realizing the defect-tolerant spatial-pooling in hardware. The proposed
circuit does not rely on the conventional defect-aware mapping scheme, which cannot avoid the false
activation of defective columns in spatial-pooling. For the MNIST data-set, the boost-factor adjusted
crossbar with the defects = 10% was verified to have a rate loss as low as ~0.6%, compared to the ideal
crossbar with the defects = 0%. On the contrary, the defect-aware mapping without the boost-factor
adjustment demonstrated a significant rate loss, as much as ~21.0%. The energy overhead of the
boost-factor adjustment was estimated to be as little as ~0.05% of the programming energy of the
memristor synapse crossbar.

Author Contributions: All authors have contributed to the submitted manuscript. K.-S.M. defined the research
topic. T.V.N. and K.V.P. performed the simulation and measurement. K.-S.M. wrote the manuscript. All authors
read and approved the submitted manuscript.

Funding: The work was financially supported by NRF-2015R1A5A7037615, MOTIE/KEIT (10052653), ETRI grant
(18ZB1800), and Samsung Electronics under Project Number SRFC-IT1701-07.

Acknowledgments: The CAD tools were supported by IC Design Education Center (IDEC), Daejeon, Korea.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Hawkins, J.; Blakeslee, S. On intelligence: How a New Understanding of the Brain Will Lead to the Creation of Truly
Intelligent Machines; Henry Holt & Company: New York, NY, USA, 2004.

2. Horton, J.C.; Adams, D.L. The cortical column: A structure without a function. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 2005, 360, 837–862. [CrossRef] [PubMed]

3. Thomson, A. Neocortical layer 6, a review. Front. Neuroanat. 2010, 4, 13. [CrossRef] [PubMed]
4. Hensch, T.; Stryker, M. Columnar architecture sculpted by GABA circuits in developing cat visual cortex.

Science 2004, 303, 1678–1681. [CrossRef] [PubMed]
5. Muir, D.R.; Cook, M. Anatomical constraints on lateral competition in columnar cortical architectures.

Neural Comput. 2014, 26, 1624–1666. [CrossRef] [PubMed]
6. Douglas, R.J.; Martin, K.A.C.; Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1989, 1,

480–488. [CrossRef]

http://dx.doi.org/10.1098/rstb.2005.1623
http://www.ncbi.nlm.nih.gov/pubmed/15937015
http://dx.doi.org/10.3389/fnana.2010.00013
http://www.ncbi.nlm.nih.gov/pubmed/20556241
http://dx.doi.org/10.1126/science.1091031
http://www.ncbi.nlm.nih.gov/pubmed/15017001
http://dx.doi.org/10.1162/NECO_a_00613
http://www.ncbi.nlm.nih.gov/pubmed/24877732
http://dx.doi.org/10.1162/neco.1989.1.4.480


Materials 2019, 12, 2122 16 of 17

7. Hawkins, J.; Ahmad, S.; Dubinsky, D. Hierarchical Temporal Memory including HTM Cortical Learning Algorithms;
Tech. Rep.; Numenta, Inc.: Palo Alto, CA, USA, 2011.

8. Cui, Y.; Ahmad, C.; Hawkins, J. The HTM spatial pooler—A neocortical algorithm for online sparse
distributed coding. bioRxiv 2016, bioRxiv:085035. Available online: https://doi.org/10.1101/085035 (accessed
on 2 November 2016). [CrossRef]

9. Ahmad, S.; Hawkins, J. Properties of sparse distributed representations and their application to hierarchical
temporal memory. arXiv 2015, arXiv:1503.07469.

10. Ahmad, S.; Hawkins, J. How do neurons operate on sparse distributed representations? A mathematical
theory of sparsity, neurons and active dendrites. arXiv 2016, arXiv:1601.00720.

11. Cui, Y.; Ahmad, C.; Hawkins, J. Continuous online sequence learning with an unsupervised neural network
model. arXiv 2015, arXiv:1512.05463. [CrossRef]

12. Truong, S.N.; Pham, K.V.; Min, K.S. Spatial-pooling memristor crossbar converting sensory information to
sparse distributed representation of cortical neurons. IEEE Trans. Nanotechnol. 2018, 17, 482–491. [CrossRef]

13. Nguyen, T.; Pham, K.; Min, K.S. Memristor-CMOS Hybrid Circuit for Temporal-Pooling of Sensory and
Hippocampal Responses of Cortical Neurons. Materials 2019, 12, 875. [CrossRef] [PubMed]

14. Chua, L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
15. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453,

80–83. [CrossRef] [PubMed]
16. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse

in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [CrossRef] [PubMed]
17. Kügeler, C.; Meier, M.; Rosezin, R.; Gilles, S.; Waser, R. High-density 3D memory architecture based on the

resistive switching effect. Solid State Electron. 2009, 53, 1287–1292. [CrossRef]
18. Shulaker, M.M.; Wu, T.F.; Pal, A.; Zhao, L.; Nishi, Y.; Saraswat, K.; Wong, H.-S.P.; Mitra, S. Monolithic 3D

integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In Proceedings of
the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 638–641.

19. Truong, S.N.; Shin, S.H.; Byeon, S.D.; Song, J.S.; Min, K.S. New twin crossbar architecture of binary memristors
for low-power image recognition with discrete cosine transform. IEEE Trans. Nanotechnol. 2015, 14, 1104–1111.
[CrossRef]

20. Truong, S.N.; Ham, S.J.; Min, K.S. Neuromorphic crossbar circuit with nanoscale filamentary-switching
binary memristors for speech recognition. Nanoscale Res. Lett. 2014, 9, 1–9. [CrossRef]

21. Tunali, M.A.O. A survey of fault-tolerance algorithms for reconfigurable nano-crossbar arrays. ACM Comput. Surv.
2017, 50, 79:1–79:35. [CrossRef]

22. Chakraborty, I.; Roy, D.; Roy, K. Technology Aware Training in Memristive Neuromorphic Systems based on
non-ideal Synaptic Crossbars. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 335–344. [CrossRef]

23. Truong, S.; Pham, K.; Yang, W.; Shin, S.; Pedrotti, K.; Min, K.S. New pulse amplitude modulation for fine
tuning of memristor synapses. Microelectron. J. 2016, 55, 162–168. [CrossRef]

24. Pham, K.; Tran, S.; Nguyen, T.; Min, K.-S. Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based
Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems. Micromachines 2019, 10, 141.
[CrossRef] [PubMed]

25. Virtuoso Spectre Circuit Simulator User Guide; Cadence Design System Inc.: San Jose, CA, USA, 2011.
26. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
27. Deng, L. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag.

2012, 29, 141–142. [CrossRef]
28. Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016,

54, 22–29. [CrossRef]
29. Gusev, M.; Dustdar, S. Going back to the roots ×2014; the evolution of edge computing, an IoT perspective.

IEEE Internet Comput. 2018, 22, 5–15. [CrossRef]
30. Gopika, P.; Mario, D.F.; Tarik, T. Edge computing for the internet of things: A case study. IEEE Internet Things

2018, 5, 1275–1284.
31. Abunahla, H.; Mohammad, B.; Mahmoud, L.; Darweesh, M.; Alhawari, M.; Jaoude, M.; Hitt, G. Memsens:

Memristor-based radiation sensor. IEEE Sens. J. 2018, 18, 3198–3205. [CrossRef]

https://doi.org/10.1101/085035
http://dx.doi.org/10.3389/fncom.2017.00111
http://dx.doi.org/10.1162/NECO_a_00893
http://dx.doi.org/10.1109/TNANO.2018.2815624
http://dx.doi.org/10.3390/ma12060875
http://www.ncbi.nlm.nih.gov/pubmed/30875957
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1038/nature06932
http://www.ncbi.nlm.nih.gov/pubmed/18451858
http://dx.doi.org/10.1021/nl904092h
http://www.ncbi.nlm.nih.gov/pubmed/20192230
http://dx.doi.org/10.1016/j.sse.2009.09.034
http://dx.doi.org/10.1109/TNANO.2015.2473666
http://dx.doi.org/10.1186/1556-276X-9-629
http://dx.doi.org/10.1145/3125641
http://dx.doi.org/10.1109/TETCI.2018.2829919
http://dx.doi.org/10.1016/j.mejo.2016.07.010
http://dx.doi.org/10.3390/mi10020141
http://www.ncbi.nlm.nih.gov/pubmed/30791655
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/MSP.2012.2211477
http://dx.doi.org/10.1109/MCOM.2016.1600492CM
http://dx.doi.org/10.1109/MIC.2018.022021657
http://dx.doi.org/10.1109/JSEN.2018.2808285


Materials 2019, 12, 2122 17 of 17

32. Krestinskaya, O.; James, A.; Chua, L. Neuro-memristive Circuits for Edge Computing: A review. arXiv 2018,
arXiv:1807.00962.

33. Plastiras, G.; Terzi, M.; Kyrkou, C.; Theocharidcs, T. Edge intelligence: Challenges and opportunities of
near-sensor machine learning applications. In Proceedings of the 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), Milan, Italy, 10–12 July 2018; pp. 1–7.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Simulation Results 
	Discussion 
	Conclusions 
	References

