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Abstract: The purpose of the work was to propose analytical model considering double confinements
(provided by both transverse reinforcements and a wide flange steel section), which was verified
by the nonlinear finite element analysis considering concrete-damaged plasticity. The scope of the
effort and the procedures to achieve the aim of this study included the identification of the concrete
confinements provided by both transverse reinforcements and a wide flange steel section based on
the elasto-plastic model in tension for both rebar/steel sections and elasto-buckling for rebars in
compression. The influence of rebar buckling in the compression zone on flexural moment strength
was also investigated with and without considering confining effects offered by steel sections. The
analytical approach predicted a post-yield behavior of composite beams based on the confining
effect offered by both the shear reinforcement and wide steel flange sections. However, for beams
without axial loads, the compressive zones with high and partial confinements for concrete sections
at the yield and maximum load limit state were limited when compressive buckling failure was not
considered, preventing the confining factors from significantly influencing the flexural load resisting
capacity. An accurate flexural capacity of composite beams can be obtained when rebar was modeled
with buckling in the compression zone.

Keywords: double confining effects; steel beams encased by structural concrete; moment–curvature
relationships; post-yield deflection; non-linear finite element analysis

1. Introduction

1.1. Literature Review

The use of concrete-encased steel beams requires an understanding of the individual merits
of the two materials. Many tests have been performed to explore the post-yield behavior of the
steel columns encased in structural concrete [1–6]. An analytical model that predicts the behavior of
steel–concrete composite and hybrid structures were also developed by [7] in which the mechanical
behavior of composite beams was described, under no restrictive assumptions on the connection and
interaction. Stresses, strains, and displacements due to loads that induce elastic or inelastic behavior in
the connection were predicted. The general analytical solution for the elastic three-layered plate with
any interlayer (utterly compliant to relatively stiff) was also provided by [8]. Some of the structural
applications where steel beams were confined by transverse reinforcements were presented by [9].

One of the studies of concrete-encased steel beams was carried out by [10], who predicted
the axial compressive capacity of composite stub columns. More importantly, the emphasis of the
previously mentioned modeling established the stress–strain relations for concrete confined by lateral
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reinforcement and by various structural steel sections of the composite columns. Strain compatibility
analysis is used by the American Institute of Steel Construction [11,12] to design steel beams encased in
structural concrete. Therein, four design procedures were suggested to predict the flexural strength of
steel–concrete hybrid members. Researchers [13] presented a ‘modified strain compatibility approach’
for a broad range of yield and load limit states to calculate an accurate neutral axis, leading to the
prediction of a nominal flexural capacity of the composite beams, which was not introduced in
AISC 360-10 [11]. However, these approaches do not consider the confining effect provided by steel
sections when predicting the nominal flexural capacity, leading to an inaccurate estimation of the
actual compressive stress block. Analytical investigations of the inelastic behavior (particularly for
understanding the concrete confinement effect by steel flanges encased in the concrete) are generally
absent from the literature. Mander confinement models were used to model confined concrete by
transverse reinforcements in this study. An additional confining effect provided by the wide flange
of the steel section was divided into two zones, highly confined and partially confined regions, to
calibrate the flexural strength with test data.

1.2. Motivations and Objectives in This Study; Methodology for the Prediction of Nonlinear Structural
Behavior of Steel–Concrete Composite Beams

The main goal of the present study was to analytically predict the post-yield moment–curvature
relationships based on the double confining effects, which were subsequently compared with
experimental results and nonlinear finite element analysis. This study focused on the strain
compatibility-based simplified method. The material properties and stress–strain relationships
included elasto-hardening and elasto-buckling of rebar steels to predict the post-yield behavior of the
concrete-encased steel beams.

Confinement factors for steel and concrete materials were identified by exploring the influence
of wide flange of steel sections on the concrete confinement. The concrete zone confined by the
steel flange was simplified to model confinement factors, Kh and Kp, which were then validated
by the test data and numerical results using non-linear finite element analysis considering concrete
plasticity. In this model, rebars were assumed to buckle and lose their strength due to local buckling
in the compression zone when the concrete cover reaches the peak strength. Buckling of rebar in
the compression zone contributes to the formation of a hinge length and has an influence on the
post-yield behavior. Simplified analytical equations based on strain compatibility were then proposed
to estimate the equilibrium neutral axis depth and flexural moment strength. Mathematical expressions
derived for the rapid evaluation of the flexural strength of the composite beams were implemented
in Matlab for automated estimation of the post-yield behavior of the composite beams. The flexural
load-carrying capacity and post-yield behavior were finally examined at the yield limit (the limit of
elastic behavior and the beginning of plasticity), the maximum load limit state (the limit state at which
the maximum loads are supported), and ultimate load limit state (the limit state at which the strength
of the structures is terminated). The confining factors did not significantly influence the flexural load
resisting capacity calculated based on strain compatibility. This was because the compressive zones at
the yield and maximum load limit state were small, as shown in highly confined zones with concrete
stress–strain profiles. However, a decrease in moment strengths was observed when rebars buckled
during compression. Rebar buckling in the compression zone is not frequently considered in the
flexural analysis of beams.

2. Materials and Methods

2.1. Analytical Model of Concrete Confined by a Wide-Flange Steel Section

2.1.1. A Confinement Effect Caused by the Structural Steel Sections

This study considered the confinement effect on concrete caused by lateral reinforcement and
structural steel. It was assumed that parabolic arching of the area of the effectively confined concrete
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core occurred between the reinforcing bars in the cross section [14,15]. Similarly, researchers [10]
assumed parabolic arching for concrete confined by the steel beam section, as presented in Figure 1a.
The concrete encased steel section can be divided into three regions: (1) An unconfined concrete
region outside the parabolic arch formed by the longitudinal bars, (2) a highly confined region inside
the arch formed by the steel section, and (3) a partially confined region outside the highly confined
concrete region and inside the parabolic arch formed by the longitudinal bars. In this study, these
zones were simplified by four zones divided by straight lines, as shown in Figure 1b, in which concrete
stress–strain distributions were demonstrated at the yield limit state.
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Figure 1. Four simplified zones with concrete stress–strain profiles. (a) Concrete confined by stirrups
and a steel section (parabolic arching formed by the longitudinal bars and structural steel section [10]);
(b) strains, stresses, and corresponding force components at the maximum limit state.

In this study, arching similar to that suggested by [4,5] was adopted to form the concrete region
confined by the structural steel section. Researchers [10] defined the concrete strengths as fc = Kp fco

and fcc = Kh fco in Equations (1) and (2), respectively, where Kp and Kh were defined as confinement
factors for partially and highly confined concrete, respectively. Concrete stress–strain relationships
representing the four zones, shown in Figure 2, were used in the proposed analytical models.

fcc = Kp fco (1)

fcc = Kh fco (2)
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Mander approach).

2.1.2. Local Buckling of the Longitudinal Bars and the Structural Steel

Researchers [16] suggested a constitutive model of longitudinal reinforcing rebars in the
compression zone. In this study, this model was slightly modified by considering the confined
concrete effect. The compressive rebar strength began to degrade to 20% of its yield strength from
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the maximum concrete strain (εc,max), corresponding to the maximum confined concrete compressive
strength (fcc), while maintaining a constant value after the longitudinal rebars under compression
reached the concrete strain (εcu). It was assumed that the spalling of the concrete cover caused the rebars
to buckle and lose their strength. Figure 3 shows the local buckling of the longitudinal reinforcing
rebars, which occurred after the partially confined concrete was crushed. The elasto-plastic constitutive
model of longitudinal reinforcing steels in the tension zone was used to model the composite members
subjected to a flexural bending moment. The constitutive relationship considering buckling was used
for reinforcing steels only as it was observed in the experimental investigation, while no noticeable
bucking of the steel section encased in concrete was found as shown in Figure 3. The elasto-plastic
constitutive relationship was used for the compression and tension zone of the steel section.
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2.2. Analytical Model of Confinement by Transverse Reinforcements and Wide Flange Steel Sections

2.2.1. Strain Compatibility-Based Model

The steel beam encased in structural concrete considered with nomenclature describing the section
is shown in Figure 1 and Appendix A. The neutral axes satisfying the equilibrium for yield limit states
and maximum load limit state of the section are shown in Figure 1b based on four simplified zones
with concrete stress–strain profiles. The analytical expressions for obtaining the neutral axis were
derived at the limit state including the yield limit, maximum load, and ultimate load limit state. The
steel flanges yielded at yield limit state. The maximum load limit state was the point when the nominal
flexural strength was at the maximum value, while the ultimate flexural strength was obtained when
the substantial contribution of the concrete was lost. The strain compatibility-based prediction of the
precast composite beams was verified by the finite element analysis (FEA) study.

2.2.2. At the Maximum Load Limit State

The concrete compressive forces for the four zones, including the unconfined concrete (green
region), confined concrete (cyan region), partially confined concrete (yellow region), and highly
confined concrete (orange region), are shown in Equations (3)–(11). Here, c1 is the neutral axis of the
section at the maximum limit state. The mean stress factors α and centroid factors γ are derived in
Equations (A1)–(A7) and (A8)–(A14) in Appendix A, respectively. The depths of the compressive
concrete blocks are indicated by c2, c3, and c4, representing the zones confined by the steel section
shown in Figure 1b. The relationships between the compressive concrete blocks and the neutral axis
(c1) are also established in Equations (3)–(11). The Mander confining curve was used in these equations.



Materials 2019, 12, 2302 6 of 22

For the unconfined concrete based on the Mander curve (green region of Figure 1), compressive forces
due to the concrete block are given by:

Cc11 = α1 × c11 × B1 × f ′c , (3)

Cc12 = 0.5× c12 × B1 × ( f ′c + fεcm1), (4)

C′c11 = −α′1 × c21 × B2 × f ′c, (5)

C′c12 = −0.5× c22 × B2 ×
(

f ′c + fεcm1

)
. (6)

For confined concrete based on the Mander curves (cyan region of Figure 1),

Cc2 = α2 × c2 × B2 × f ′cc, (7)

C′c2 = −α′2 × c3 × B3 × f ′cc. (8)

For partially confined concrete based on the Mander curves (yellow region of Figure 1),

Cc3 = α3 × c3 × B3 ×Kp × f ′cc, (9)

C′c3 = −α′3 × c4 × B4 ×Kp × f ′cc. (10)

For the highly confined concrete, based on the Mander approach (orange region of Figure 1),

Cc4 = α4 × c4 × B4 ×Kh × f ′cc, (11)

where the depths of each compressive concrete block were obtained based on knowledge of the neutral
axis, c1. The compressive concrete blocks c2, c3, c4, the mean stress factors αi, and the centroid factors
γi are shown in the Appendix A.

The equilibrium equations are given in Equations (12) and (13), where the neutral axis, c1,
is calculated.

Faxial(zero when there is no axial loads) + Cc + FRcompression + Fsteelcompression = FRtension + Fsteeltenstion (12)

or
Faxial = FRtension + Fsteeltenstion −Cc − FRcompression − Fsteelcompression (13)

where the internal forces contributed by the structural components of the section are shown as follows:

FRtension = Ar1 × fyR (14)

Fsteeltenstion = (As1 + As2 + 0.5As3) × fyS (15)

where As1 = b f × t f 1, As2 =
(
ds + h− c1 − t f 1

)
× tw, As3 =

(
ds + h− c1 − t f 1

)
× tw.

Equation (15) can be rewritten as below,

Fsteeltenstion =
(
b f × t f 1 +

(
ds + h− c1 − t f 1

)
× tw + 0.5

(
ds + h− c1 − t f 1

)
× tw

)
× fyS (16)

Cc = α1 × c11 × B1 × f ′c + 0.5× c12 × B1 ×
(

f ′c + fεcm1

)
α′1 × c21 × B2 × f ′c

−0.5c22 × B2 ×
(

f ′c + fεcm2

)
+ α2 × c2 × B2 × f ′cc

−α′2 × c3 × B3 × f ′cc + α3 × c3 × B3 ×Kp × f ′cc
−α′3 × c4 × B4 ×Kp × f ′cc + α4 × c4 × B4 ×Kh × f ′cc

(17)

FRcompression = Ar2 × Er × εs1 ×
c1 − d2

ds + h− c1
(18)
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where the tensile strain of εs1 at steel flange was obtained as 0.0055.

Fsteelcompression = 0.5×As4 × Es × εs1 ×
c1−(ds+t f 2)

ds+h−c1

+As5 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1
,

(19)

where As4 =
[
c1 −

(
ds + t f 2

)]
× tw, As5 = b f × t f 2.

Equation (19) can be rewritten as below,

Fsteelcompression = 0.5×
[
c1 −

(
ds + t f 2

)]
× tw × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

+

b f × t f 2 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1

(20)

Equation (13) can be expressed as follows:

Faxial = FRtension + Fsteeltenstion −Cc − FRcompression − Fsteelcompression ={
Ar1 × fyR

}
+

{
(As1 + As2 + 0.5As3) × fyS

}
−

{
α1 × c11 × B1 × f ′c+

0.5× c12 × B1 ×
(

f ′c + fεcm1

)
− α′1 × c21 × B2 × f ′c − 0.5c22 × B2 ×

(
f ′c + fεcm2

)
+α2 × c2 × B2 × f ′cc − α

′
2 × c3 × B3 × f ′cc + α3 × c3 × B3 ×Kp × f ′cc−

α′3 × c4 × B4 ×Kp × f ′cc + α4 × c4 × B4 ×Kh × f ′cc

}
−

{
Ar2 × Er × εs1 ×

c1−d2
ds+h−c1

}
−

{
0.5×As4 × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

+ As5 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1

}
={

Ar1 × fyR
}
+

{(
b f × t f 1 +

(
ds + h− c1 − t f 1

)
× tw + 0.5

(
ds + h− c1 − t f 1

)
× tw

)
× fyS

}
−

{
α1 × c11 × B1 × f ′c + 0.5× c12 × B1 ×

(
f ′c + fεcm1

)
− α′1 × c21 × B2 × f ′c

−0.5c22 × B2 ×
(

f ′c + fεcm2

)
+ α2 × c2 × B2 × f ′cc−

α′2 × c3 × B3 × f ′cc + α3 × c3 × B3 ×Kp × f ′cc − α
′
3 × c4 × B4 ×Kp × f ′cc+

α4 × c4 × B4 ×Kh × f ′cc

}
−

{
Ar2 × Er × εs1 ×

c1−d2
ds+h−c1

}
−{

0.5×
[
c1 −

(
ds + t f 2

)]
× tw × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

+ b f × t f 2 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1

}

(21)

The nominal moment strength at the yield limit state was then obtained using Equation (22)

Mnominal = MR/centroid + Msteel/centroid −MConc/centroid, (22)

where the flexural moment capacities provided by the structural components (with respect to the
centroid) are shown as follows:

MR/centroid = Ar1 × fyR × (d1 − dc)−Ar2 × Er × εs1 ×
c1 − d2

ds + h− c1
× (d2 − dc) (23)

Msteel/centroid =
(
As1 × fyS × (ds1 − dc)

)
+

(
As2 × fyS × (ds2 − dc)

)
+

(
0.5As3 × fyS × (ds3 − dc)

)
−0.5As4 × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

× (ds4 − dc)

−As5 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1
× (ds5 − dc)

(24)

or
Msteel/centroid =

(
b f × t f 1 × fyS × (ds1 − dc)

)
+

((
ds + h− c1 − t f 1

)
× tw × fyS × (ds2 − dc)

)
+

(
0.5

(
ds + h− c1 − t f 1

)
× tw × fyS × (ds3 − dc)

)
−0.5

[
c1 −

(
ds + t f 2

)]
× tw × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

× (ds4 − dc)

−b f × t f 2 × Es × εs1 ×
c1−(ds+0.5t f 2)

ds+h−c1
× (ds5 − dc)

(25)
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MConc/centroid =
[
α1 × c11 × B1 × f ′c × (γ1 × c11 + c12 − dc)

+0.5× c12 × B1 × ( f ′c + fεcm1) × (0.5c12 − dc)

−α′1 × c21 × B2 × f ′c ×
(
γ′1 × c21 + c22 + x1 − dc

)
−0.5c22 × B2 ×

(
f ′c + fεcm2

)
× (0.5c22 + x1 − dc)

]
+

[
α2 × c2 × B2 × f ′cc × (γ2 × c2 + x1 − dc)

−α′2 × c3 × B3 × f ′cc ×
(
γ′2 × c3 + x2 − dc

)]
+

[
α3 × c3 × B3 ×Kp × f ′cc × (γ3 × c3 + x2 − dc)

−α′3 × c4 × B4 ×Kp × f ′cc ×
(
γ′3 × c4 + x3 − dc

)
]

+
[
α4 × c4 × B4 ×Kh × f ′cc × (γ4 × c4 + x3 − dc)

]

(26)

where the lever arms for the moment calculations are given as follows:

ds1 = ds + h− 0.5t f 1

ds2 = 0.5(ds + h− c1) ×
(
1 +

εyS
εs1

)
− 0.5t f 1 + c1

ds3 = 2
3 ×

εyS
εs1

(ds + h− c1) + c1

ds4 = 1
3

(
c1 + 2ds + 2t f 2

)
ds5 = ds + 0.5t f 2.

Equation (22) can be rewritten as follows:

Mnominal = MR/centroid + Msteel/centroid −MConc/centroid

=
{
Ar1 × fyR × (d1 − dc) −Ar2 × Er × εs1 ×

c1−d2
ds+h−c1

× (d2 − dc)
}
+{(

b f × t f 1 × fyS ×
(
ds + h− 0.5t f 1 − dc

))
+((

ds + h− c1 − t f 1

)
× tw × fyS ×

(
0.5(ds + h− c1) ×

(
1 +

εyS
εs1

)
− 0.5t f 1 + c1 − dc

))
+

(
0.5

(
ds + h− c1 − t f 1

)
× tw × fyS ×

(
2
3 ×

εyS
εs1

(ds + h− c1) + c1 − dc
))

−0.5
[
c1 −

(
ds + t f 2

)]
× tw × Es × εs1 ×

c1−(ds+t f 2)
ds+h−c1

×

(
1
3

(
c1 + 2ds + 2t f 2

)
− dc

)
−b f × t f 2 × Es × εs1 ×

c1−(ds+0.5t f 2)
ds+h−c1

×

(
ds + 0.5t f 2 − dc

)}
−

{(
α1 × c11 × B1 × f ′c × (γ1 × c11 + c12 − dc) + 0.5× c12 × B1 × ( f ′c + fεcm1)×

×(0.5c12 − dc) − α′1 × c21 × B2 × f ′c ×
(
γ′1 × c21 + c22 + x1 − dc

)
− 0.5c22 × B2 ×

(
f ′c + fεcm2

)
×(0.5c22 + x1 − dc)) +

(
α2 × c2 × B2 × f ′cc × (γ2 × c2 + x1 − dc) − α′2 × c3 × B3 × f ′cc

×

(
γ′2 × c3 + x2 − dc

)
) +

(
α3 × c3 + x3 × B3 ×Kp × f ′cc × (γ3 × c3 + x2 − dc)

−α′3 × c4 × B4 ×Kp × f ′cc ×
(
γ′3 × c4 + x3 − dc

)
) +

(
α4 × c4 × B4 ×Kh × f ′cc × (γ4 × c4 + x3 − dc)

)
}

(27)

2.2.3. Validation of Analytical Model Based on Non-Linear Finite Element Analysis

The steel section (H-250 × 250 × 9 × 14) with a yield strength of 350 MPa and reinforcing steels
(4-HD25) with yield strengths of 550 MPa were used in the analysis. Both have a Young’s modulus of
200,000 MPa. The concrete encasing steel section and rebars had compressive and tensile strengths of
21 MPa and 2.1 MPa, respectively, both with a Young’s modulus of 21,538 MPa. The yield strengths of
the H-steel, reinforcing bars, and the concrete compressive strength were obtained from test samples.
In Figure 1b, the compressive concrete strains at extreme fiber and at steel flange were found as 0.00384
and 0.00038, respectively, at maximum limit state. Figure 4 shows the computing algorithm used
to estimate the neutral axis and the corresponding nominal moment capacity of the steel–concrete
composite beam section when axial loads are not applied. The algorithm automatically calculates
neutral axes for a total of 1200 strains at extreme fiber of the upper section, which corresponded to
the same numbers of strains at the lower extreme fiber, performing 1,440,000 iterations to locate the
neutral axis of the entire cross sections of the composite beams from top to bottom. The neutral axes
of the composite sections were efficiently and accurately identified by finding a location satisfying
equilibrium equations. The algorithm also calculated parameters required to design composite beams
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including the nominal moment capacity, based on the section configurations and material properties.
Results were verified using nonlinear finite element analysis considering concrete plasticity, as can
be seen in Results and Discussion which summarizes the nominal moment capacities at the yield,
maximum load, and ultimate load limit state, showing the influence of the confined concrete effect
caused by the steel section for the various confining factors, including Kh and Kp.
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2.3. Finite Element Analysis of the Composite Beams

2.3.1. Material Properties and Parameters

In the FEA model, concrete damaged plasticity model for the behavior of concrete and the
elasto-plasticity model for rebar and steel sections were considered. The stress–strain relationships for
these materials are shown in Figure 5.
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(c) steel material model.

Researchers [18] suggested the use of a dilation angle of 30◦ for reinforced concrete beams.
The dilatation angle ψ employed in the calibration of the FE model was introduced based on the
non-associated Druker–Prager formulation, and it can be expressed as follows:

G(σ) =

√
(εσt0tanψ)2 + q2

− ptanψ. (28)

Here, εdenotes the eccentricity, which was set as 0.1. The importance of eccentricity in Equation (28)
was to provide the rate at which the asymptote for the plastic potential function was evaluated, while
the term σt0 represents the uniaxial tensile stress. The FEA parameters for the concrete material used
to model damaged plasticity included fbo/fco, K, and viscosity, which were defined to be 1.16, 0.6667,
and 0.001, respectively.

2.3.2. Element Descriptions

The elements of type C3D8R were chosen to represent the structural behavior of the steel–concrete
composite beams, as shown in Figure 6. A fine mesh of 4 mm was assigned at the beam fixed end,
while the remaining part of the beams was discretized with a coarse mesh of 10 mm. There were
268,061 total elements recorded in the FE model.
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2.3.3. Modeling of Reinforcing Bars and H-Steels for Composite Beams

The definition of interactions between the reinforcing bars, steel sections, and the concrete is an
important issue for modeling steel–concrete composite beams. Previous studies adopted the embedded
method to model the bond behavior between the concrete and reinforcements [19–23]. This method
allows ABAQUS users to place the embedded elements (reinforcing bars and steel sections) into the
host elements (concrete). ABAQUS tracks the embedded elements, which are then constrained by
the response of the host elements. The translational DOFs of the nodes are eliminated in cases when
the embedded elements lie within the host region; these nodes are referred to as embedded nodes.
The translational movements of embedded elements are controlled by the host elements. Although
embedding reinforcing bars into the concrete can be an easy and straightforward task, this method
cannot properly simulate the real behavior of elements lying within the host elements. It is almost
impossible for reinforcing bars to experience the necking failure mechanism when they are embedded
into the concrete. In the present study, reinforcing bars and H-steels were tied to the concrete surface
using the tie contact model, which is available in ABAQUS. The overall FEA model is shown in
Figure 7a whereas the two surfaces, i.e., master and slave surfaces, were selected as illustrated in
Figure 7b. The surfaces of the H-steels and reinforcing bars were defined as master surfaces, while the
concrete surface was designated as a slave surface. The assigned tie constraint method fuses together
the master and slave surfaces so that relative motion between the two surfaces cannot occur. The
rotations between contacts, however, were permitted with buckling of the embedded elements.
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Figure 7. Finite element analysis (FEA) model for verification: (a) Overall model with load application;
(b) definition of interactions: H-steel, reinforcing bars, and concrete.

A rigid body object (JIG) was used with the dimensions 300 mm × 500 mm to transfer the
concentrated load to the specimen, preventing the local failure of a single node in the FEA model, and
relieving stress concentration. The FEA results were compared with test data to verify the reliability
of the proposed tie modeling technique. It was found that the FE models constructed using the
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proposed modeling technique accurately predicted the post-yield behavior of the tested steel–concrete
composite beam.

The stress status maximum and ultimate limit state were demonstrated in the Figure 8. The
deflections and the compression region of the specimen were also shown at those limit states. The
compression region (illustrated by red color) and the tension regions are separated by the neutral axes
(indicated by the yellow color) along the length of the beam. At the maximum and ultimate limit state,
the strokes are of 18.7 mm and 131 mm and the neural axes of 194 mm and 236 mm were calculated
based on the tie model, respectively.
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In Figure 9, the relationships of the strains of beam elements (concrete, rebar, and steel) and the
displacements are demonstrated. The strains corresponding to concrete at compressive extreme fiber
(location (1)), rebar in compression (location (2)), rebar in tension (location (3)), steel at compressive
flange (location (4)), and steel at tensile flange were indicated by the Legends 1 to 5. All strains
increased rapidly up to the maximum limit state with a displacement of 18.7 mm, then increased
slowly, except for the rebar in tension. At maximum limit state, the concrete at extreme fiber attained
a strain of 0.0026 whereas rebar in compression, steel at the compressive flange, steel at the tensile
flange, and rebar in tension reached the strains of 0.00186, 0.00093, 0.00179, and 0.00284, respectively.
In this limit state, the re-bars and the H-steel shaped flange in tension started to yield with the strains
of 0.00284 and 0.00179 (re-bar yield strain εyR = fyR/Es = 550/200000 = 0.00275; steel yield strain
εyS = fyS/Es = 350/200000 = 0.00175). Thereafter, the strains of rebar in compression and steel at the
compressive flange reached the maximum of 0.0025 and 0.0011 at the stroke of 27 mm; they kept these
values until the ultimate load limit state with a stroke of 131 mm creating the long flat top regions. The
concrete strain and the steel strain in the tensile flange increased gradually from 0.0026 (the maximum
limit state) to 0.011 (ultimate load limit state) and from 0.00179 (the maximum limit state) to 0.005
(ultimate load limit state), respectively. Besides, the rebar strain in tension attained the maximum
strain of 0.0128 at the stroke of 62.9 mm, after which strains gradually decreased to the strain of 0.0122
at the end of the test (stroke of 131 mm).
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2.3.4. Non-Linear Finite Element Analysis Based on Concrete Plasticity

The authors obtained test data of Figure 10 in the previous study [24] and found numerical data
that matched the test data via finite element analysis based on the tie model established between the
two separate surfaces. A numerical investigation of the proposed frames using finite element analysis
(FEA) based on concrete plasticity was carried to explore the nonlinear structural behavior of the
section. The FEA parameters identified to best describe the test data were obtained from the earlier
study of the authors [25]. The numerical model of composite beams at fixed base was established to
explore the post-yield deflection of composite beams. The surfaces between the concrete and rebars,
and between concrete and the steel section were considered to be tied. The tie model ensured perfect
structural bonds, allowing no relative motion between the materials, whereas buckling or necking of
the rebars was allowed. In these tie models, the rotations were released. Once the FEA model with
rotational effect was calibrated with the test data as shown in Figure 10a, the foundation was removed
from the model by performing another non-linear finite element analysis as shown in Figure 10b,
which was undisturbed by the rotational components due to the foundation. The numerical model of
composite beams at fixed base was then established to explore the post-yield deflection of composite
beams. In Figure 10b, the load–displacement relationships represented by Legend 2 were obtained
based on the fixed base. It was obvious that they differ from those observed from the test data because
test data contained rotational components. The flexural strength of the sections represented by Legends
4 to 6 were compared using various constitutive relationships of rebar and steel sections. The strength
represented by Legend 6 was predicted by the model with elasto-buckling constitutive relationships
for the rebar sections in compression, which slightly underestimated the flexural strength. However,
the strength shown in Legend 4 was slightly overestimated when the elasto-hardening rebars and
steel section were used. The closest comparison with test data was obtained by the curve represented
by Legend 5, where elasto-plastic rebars and the steel section were used. The load–displacement
relationship made by Legend 7 was obtained when the concrete was modeled based on the confined
Mander constitutive equations. The flexural strengths of the curves corresponding to Legends of 2 and
3 were predicted to be quite large in the region where the test data were descending. In these curves,
the rebar and steel sections were modeled to be embedded in concrete and buckling or necking of the
rebars and steel section was not allowed. The tie model demonstrated a better correlation with the test
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than the estimates produced using the embedded model. The flexural strength of the curve represented
by Legend 2 was obtained with a base, while the other specimens did not have bases. The unconfined
Kent–Park constitutive curves, shown with Legends 4 to 6, were extended to a strain of 0.01.
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3. Results and Discussion

3.1. Verification of the Analytical Model with Finite Element Analysis Results

The post-yield behavior of the precast composite beams was obtained based on the iterated
strain compatibility approach using Equations (3)–(27). The analytically calculated flexural strengths
(indicated Legends 1a to 1d of Figure 11a) was compared with the results of the FEA study (indicated
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Legends 2 to 4 of Figure 11a) at yield, maximum load, and ultimate load limit states in Figure 11a,b.
The shallow beam influence of the confined concrete effect by the steel section for the various confining
factors (Kh and Kp) was also shown with moment–strain relationships represented by Legends 2, 3, and
4 in Figure 11a. The moment–strain relationship (refer to Legend 4 in Figure 11a) of the shallow beam
based on an analytical model with confining factors of Kh with 2.0 and Kp with 1.5 were compared with
FEA data (refer to Legend 1a in Figure 11a for the deep beam with a L/d ratio of 3.9) by errors of 6.58%
(indicated by red dots) and 7.45% (indicated by black dots) at the yield and maximum load limit state,
respectively. One of reasons for the difference was the deep beam effect. A significant amount of the
load was carried to the supports by a compression force combining the load and the reaction in deep
beams, resulting in significant shear deformations compared to pure flexure caused by a non-linear
strain distribution. The stress distribution is not linear even in the elastic stage, and the shape of the
concrete compressive stress block may not be parabolic at the ultimate limit state. Greater differences
were observed for the maximum load limit state than in the yield limit state for deep beams with a L/d
ratio of 3.9, indicating that the influence of the plasticity of concrete on the post-yield deformation of
the composite beams at the maximum load limit state was more significant than that at the yield limit
state. The difference between analytical and numerical models at the maximum load limit state was
part of the reason for ignoring the plastic rotation due to the inelastic energy dissipation in Equations
(3)–(28) and (A1)–(A8). The analytical estimation of curvatures in sections based on strain compatibility
did not consider inelastic energy dissipation. An accurate prediction of the post-yield deformation
of the composite beams at a maximum load limit state must account for the plastic rotations of the
sections between cracks, reflecting the inelastic energy dissipation associated with diagonal concrete
cracks. The stiffening effect of concrete tension between cracks and plastic strains occurring in the steel
section should be included as well. However, the flexural capacity obtained by an analytical model
with confining factors of Kh (2.0) and Kp (1.5) (refer to Legend 4 in Figure 2; Figure 11a) was closer to
that predicted by the numerical moment–strain relationship (refer to Legend 1d in Figure 11a) for the 9
m shallow beam with a L/d ratio of 20. These differences reduced to 4.68% and 2.93% at yield and
the maximum load limit state, respectively. It is worth noting that the moment–strain relationship
represented by Legend 2 demonstrates a greater discrepancy when the confining effect offered by steel
sections was not included in the analysis in which Kh and Kp was implemented as 1.
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by the numerical moment–strain relationship (refer to Legend 1d in Figure 11a) for the 9 m shallow 
beam with a L/d ratio of 20. These differences reduced to 4.68% and 2.93% at yield and the maximum 
load limit state, respectively. It is worth noting that the moment–strain relationship represented by 
Legend 2 demonstrates a greater discrepancy when the confining effect offered by steel sections was 
not included in the analysis in which Kh and Kp was implemented as 1. 
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Figure 11. Parameters influencing the flexural strength of the steel section encased in structural concrete;
finite element analysis compared with test data; moment–compressive concrete strain relationship
based on tie models with fixed base (with base vs. without base): (a) Moment–compressive concrete
strain relationship; (b) moment–compressive concrete strain relationship with buckling for rebar in
compression; (c) moment–tensile steel strain relationship.

3.2. Influence of Buckling Effect of Reinforcing Steels on the Flexural Strength

In Figure 11b,c, the influence of the buckling effect of reinforcing steels in compression on the
flexural strength of the composite section was explored for varied compressive concrete strain and
tensile steel strain, respectively. Figure 11c demonstrates a moment–steel strain relationship of all
the analyses shown in Figure 11a,b. The flexural strength of the composite section with buckling of
reinforcing steels in compression decreased more rapidly than one that did not consider buckling of
reinforcing steels in compression without considering the confinement effect provided by the steel
section encased in concrete.
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Legends 4, 5, and 6 of Figure 11c show the rapid degradation of the flexural strength of the
composite section with buckling of reinforcing steels in compression. However, the decrease of
flexural strength in the composite beams considering confining effects offered by the steel section
became retarded when ignoring compressive buckling failure as shown in Legends 1, 2, and 3. When
compressive buckling failure was not considered, the compressive concrete area with highly and
partially confined zones at the yield and maximum load limit state were small, preventing the confining
factors from significantly influencing the flexural load resisting capacity. Rebars should be modeled
with buckling in the compression zone to accurately predict flexural capacity of composite beams.
Table 1 summarizes moments at the maximum load and design load limit states, which were identified
from Figure 11a,b. The design load limit state is defined at a concrete strain corresponding to 0.003.

Table 1. Flexural capacities at the maximum load and design load limit states.

Kp Kh

Maximum
Load/Concrete

Strain

Maximum
Moment/Concrete

Strain

Design Load
(Concrete Strain

= 0.003)

Design Moment
(Concrete Strain

= 0.003)

Elasto-Plastic (Steel + Rebar) in Both Tension and Compression, Confined Mander Curve, Figure 11a

Legend 2 1.0 1.0 380.6 kN/0.0046 647.0 kN·m/0.0046 373.0 kN 634.1 kN·m

Legend 3 1.2 1.5 382.7 kN/0.0046 650.5 kN·m/0.0046 373.5 kN 634.9 kN·m

Legend 4 1.5 2.0 384.1 kN/0.0046 652.9 kN·m/0.0046 374.3 kN 636.3 kN·m

Elasto-Plastic (Steel + Rebar) in both Tension and Compression except EL-Buckling for Rebar in Compression,
Confined Mander Curve, Figure 11b

Legend 2 1.0 1.0 379.7 kN/0.0042 645.5 kN·m/0.0042 373.5 kN 635.0 kN·m

Legend 3 1.2 1.5 381.5 kN/0.0042 648.5 kN·m/0.0042 374.1 kN 635.9 kN·m

Legend 4 1.5 2.0 382.8 kN/0.0042 650.8 kN·m/0.0042 374.9 kN 637.3 kN·m

4. Conclusions

(1) Significant implications of the information presented in the body of the study

Understanding the post-yield structural behavior of composite beams composed of structural steel
and concrete is quite a complicated issue. One of the most fundamental requirements in predicting an
accurate post-yield behavior of composite beams was to understand the constitutive relationships of
concrete with all the confinements provided by the surrounding structural elements such as stirrups
and the wide flanges of steel sections. Simplified but accurate analytical equations based on iterated
strain compatibility were proposed to estimate the equilibrium neutral axis and flexural moment
strength reflecting the buckling of reinforcing rebar in the compression zone. The post-yield behavior
of composite beams was accurately estimated, considering confining effects on the concrete by shear
reinforcement and the steel flange. A numerical investigation of the composite beams using finite
element analysis (FEA) based on damaged concrete plasticity was also presented with nonlinear
parameters to verify the analytically predicted post-yield behavior with the two confining effects.
In this study, the moment–strain relationships for different confining factors were obtained by an
analytical model based on strain compatibility. The influence of confinement in concrete caused by
rebar and steel on the post-yield behavior of composite beams was explored.

(2) Research impact both within and beyond academia

For deep beams with an L/d ratio of 3.9, inconsistencies at the yield limit state were demonstrated
between the flexural strengths calculated based on strain compatibility and those obtained by the
nonlinear finite element investigation, indicating that the flexural strength of deep beams was not
accurately estimated when only the curvature of the sections based on strain compatibility was
considered. However, the flexural capacities obtained by a nonlinear FEA based on the 9 m shallow
beam with a L/d ratio of 20 were relatively well compared with the analytical estimates based on strain
compatibility both at yield and maximum load limit states, respectively, when the effects of deep beam
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and concrete plasticity were minimized. The deep beam effect was one of the reasons for the difference
in the prediction of the post-yield deformations and the flexural capacities of composite beams at
the maximum load limit state because the analytical estimation based on strain compatibility cannot
consider the plastic rotation due to inelastic energy dissipation.

(3) Influence of the steel sections on the flexural capacities of the concrete-encased steel beams

Studies that focused on the consideration of double confinements (provided by both transverse
reinforcements and a wide flange steel section) are absent from the literature to some extent in
conventional composite beam analysis, ignoring the contribution of confined concrete by steel sections.
The highly and partially confined zones for compressive concrete sections at the yield and maximum
load limit state were limited, being unable to fully activate the confining effects on the flexural load
resisting capacity. However, the changes of flexural load resisting capacity were observed due to
the confining effects by the steel section when compressive buckling failure was considered. When
considering confining effects by the steel section, a decrease in moment strengths was observed
when rebars buckled during compression. However, the retarded decrease in moment strengths was
observed from the beam when compressive buckling failure was not considered. Rebar buckling in
the compression zone is not frequently considered for the flexural analysis of beams. However, it
was shown that an accurate flexural capacity of composite beams can be obtained when rebar was
modeled with buckling in the compression zone. The analytical algorithm based on strain compatibility
developed in this study can be extended to understand the post-yield behavior of columns with
axial loads.
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Nomenclature

Ari Area of rebar layer i (i = 1,2), mm2

Asi Area of part i of H-steel section, mm2

B Width of the beam section, mm
Bi Width of unconfined, confined, partially, highly confined concrete area (i = 1–4), mm
ci Height of concrete compression zone of unconfined, confined, partially, highly confined

concrete area (i = 1–4), mm
c11, c12 Height of components of unconfined area, mm
c21, c22 Height of components of unconfined area inside, mm
Cci Compressive force given by unconfined, confined, partially, highly confined concrete area, kN
C’ci Compressive force given by unconfined, confined, partially, highly confined concrete area

inside, kN
Cc11, Cc12 Components of compressive force given by unconfined area, kN
C’c11, C’c12 Components of compressive force given by unconfined area inside, kN
D Depth of the beam section, mm
di Distance from rebar layer i (i = 1,2) to bottom of beam, mm
dc Distance from centroid to bottom of the beam, mm
ds Distance from bottom flange of H-steel to bottom of the beam, mm
Es Young’s modulus of steel, MPa
Er Young’s modulus of rebar, MPa



Materials 2019, 12, 2302 20 of 22

Faxial The external axial forces, kN
FRtension The internal forces contributed by rebar in tension, kN
FRcompression The internal forces contributed by rebar in compression, kN
Fsteeltenstion The internal forces contributed by steel in tension, kN
Fsteelcompression The internal forces contributed by steel in compression, kN
Fri Force given by rebar layer i (i = 1,2), kN
Fsi Force given by part i of L-steel section, kN
εcmi Strain at fiber of unconfined, confined, partially, highly confined concrete area (i = 1–4)
εyR Yield strain of rebar
εyS Yield strain of steel
εri Strain of rebar layer i (i = 1, 2)
εsi Strain respect to part i of H-steel section
fyR Yield strength of rebar, MPa
fyS Yield strength of steel, MPa
f 'c Compressive strength of unconfined concrete, MPa
f 'cc Compressive strength of confined concrete, MPa
f c1 Concrete compressive stress in term of concrete strain of unconfined area, MPa
f c2 Concrete compressive stress in term of concrete strain of confined area, MPa
fεcm1 Concrete compressive strength at extreme fiber of unconfined region, MPa
fεcm2 Concrete compressive strength at extreme fiber of confined region, MPa
h Depth of H-steel section, mm
Kh Confinement factors for highly confined concrete
Kp Confinement factors for partially confined concrete
tf 1 Top flange thickness of H-steel section, mm
tf 2 Bottom flange thickness of H-steel section, mm
tw Web thickness of H-steel section, mm
xi Distance from the edge of the concrete confined areas to the bottom of the beam (i = 1–3), mm
w Width of H-steel section, mm
αi Stress factors for the concrete areas i
α’i Stress factors for the concrete areas inside i
σt0 Uniaxial tensile stress, MPa
γi Centroid factor for the concrete areas i
γ’i Centroid factor for the concrete areas inside i
ε Eccentricity
f b0 Initial equibiaxial compressive yield stress of concrete, MPa
f c0 Initial uniaxial compressive yield stress of concrete, MPa
K The ratio of the second stress invariant on the tensile meridian
G(σ) Non-associated plastic flow potential, Druker-Prager formulation
p, q The plane in which plastic potential function is defined.
ψ Dilation angle

Appendix A

The compressive concrete blocks c2, c3, c4 :

c2 = c1 − x1; x1 = 40 mm
c3 = c1 − x2; x2 = 93.75 mm
c4 = c1 − x3; x3 = 139 mm

The mean stress factors α for the four zones are obtained by

α1 =

∫ 0.002
0 fc1dεc

0.002 f ′c
(A1)

α′1 =

∫ 0.002
0 fc1dεc

0.002 f ′c
(A2)
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α2 =

∫ εcm2

0 fc2dεc

f ′ccεcm2
; εcm2 = εyS ×

c2
ds + h− c1

(A3)

α′2 =

∫ εcm3

0 fc2dεc

f ′ccεcm3
(A4)

α3 =

∫ εcm3

0 Kp fc2dεc

Kp f ′ccεcm3
=

∫ εcm3

0 fc2dεc

f ′ccεcm3
; εcm3 = εyS ×

c3
ds + h− c1

(A5)

α′3 =

∫ εcm4

0 Kp fc2dεc

Kp f ′ccεcm4
=

∫ εcm4

0 fc2dεc

f ′ccεcm4
(A6)

α4 =

∫ εcm4

0 Kh fc2dεc

Kh f ′ccεcm4
=

∫ εcm4

0 fc2dεc

f ′ccεcm4
; εcm4 = εyS ×

c4
ds + h− c1

. (A7)

Here, the centroid factors γ are given as

γ1 = 1−

∫ 0.002
0 εc fc1dεc

0.002
∫ 0.002

0 fc1dεc

(A8)

γ′1 = 1−

∫ 0.002
0 εc fc1dεc

0.002
∫ 0.002

0 fc1dεc

(A9)

γ2 = 1−

∫ εcm2

0 εc fc2dεc

εcm2
∫ εcm2

0 fc2dεc
(A10)

γ′2 = 1−

∫ εcm3

0 εc fc2dεc

εcm3
∫ εcm3

0 fc2dεc
(A11)

γ3 = 1−

∫ εcm3

0 εc
(
Kp fc2

)
dεc

εcm3
∫ εcm3

0 (Kp fc2)dεc
= 1−

∫ εcm3

0 εc fc2dεc

εcm3
∫ εcm3

0 fc2dεc
(A12)

γ′3 = 1−

∫ εcm4

0 εc
(
Kp fc2

)
dεc

εcm4
∫ εcm4

0

(
Kp fc2

)
dεc

= 1−

∫ εcm4

0 εc fc2dεc

εcm4
∫ εcm4

0 fc2dεc
(A13)

γ4 = 1−

∫ εcm4

0 εc(Kh fc2)dεc

εcm4
∫ εcm4

0 (Kh fc2)dεc
= 1−

∫ εcm4

0 εc fc2dεc

εcm4
∫ εcm4

0 fc2dεc
. (A14)
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