

1 Supporting information

Heterocycle Effects on the Liquid Crystallinity of Terthiophene Analogues

4 David F. Ester ¹, Declan McKearney ¹, Khrystyna Herasymchuk ¹ and Vance E. Williams ^{1,*}

Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6
 Canada; vancew@sfu.ca

7 1. Synthesis and Identification

8 All solvents used were reagent grade. 1-Bromooctane was purchased from TCI America. 9 Triethylamine was purchased from Anachemia. All other reagents were purchased from Sigma-10 Aldrich. All reagents were used as received without further purification. Column chromatography 11 was performed on silica gel 60 (230-400 mesh) purchased from Silicyle Inc. CDCl₃ was obtained from 12 Cambridge Isotope Laboratories Inc.

400 MHz ¹H NMR spectra were run on a Bruker AMX-400 400 MHz NMR spectrometer. 500
 MHz ¹H NMR spectra were run on a Varian AS500 Unity Inova 500 MHz spectrometer. High
 resolution mass spectrometry was carried out on a Bruker micrOTOF II LC/MS (ESI⁺) by Nonka
 Sevova at Notre Dame Mass Spectrometry and Proteomics facility.

The final target compounds were prepared according to the procedures described in the experimental section of the paper. The synthetic procedures for any precursors and literature compounds are outlined below. The percent yield and detailed ¹H and ¹³C NMR and mass spec data for all compounds are given below.

21 1.1. Precursors and literature compounds

22 2-Decylthiophene: In an oven-dried 100 mL 3-neck round bottom flask, thiophene (1.0 g, 11.9 23 mmol) in dry THF was cooled to -78 °C under a nitrogen atmosphere. n-Butyllithium (0.95 eq., 2.5 M 24 solution in hexanes) was added drop-wise. The mixture was stirred at 0 °C for 60 minutes. Once 25 cooled back to -78 °C, 1-bromodecane (0.90 eq.) was added slowly. The reaction was allowed to warm 26 to room temperature and stirred overnight. It was then quenched with water, extracted with diethyl 27 ether (3x50 mL), and the combined organic fractions were dried over magnesium sulfate. The crude 28 was purified by vacuum distillation to give the product as a yellow oil (81 % yield). ¹H NMR (500 29 MHz, Chloroform-*d*) δ 7.18 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.00 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.87 (d, *J* = 3.2 Hz, 30 1H), 2.93 (t, J = 7.7 Hz, 2H), 1.79 (p, J = 7.4 Hz, 2H), 1.53 – 1.33 (m, 16H), 1.02 (t, J = 6.8 Hz, 3H) ppm.

31 5-Decyl-2-thiophenecarboxylic acid: In an oven-dried 100 mL 3-neck round bottom flask, 2-32 decylthiophene (1.0 g, 4.46 mmol) in dry diethyl ether was cooled to -78 °C under a nitrogen 33 atmosphere. n-Butyllithium (1.2 eq., 2.5 M solution in hexanes) was added drop-wise. The mixture 34 was stirred at 0 °C for 60 minutes. Once cooled back to -78 °C, carbon dioxide (excess) in the form of 35 dry ice chunks was added. The reaction was allowed to warm to room temperature and stirred 36 overnight. The precipitate was filtered and washed with diethyl ether then 10% hydrochloric acid 37 and dried under high vacuum overnight to give the product as a white solid (69 % yield). ¹H NMR 38 (500 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 3.6 Hz, 1H), 6.80 (d, *J* = 3.5 Hz, 1H), 4.65 (s, 1H), 2.83 (t, *J* = 7.6 39 Hz, 2H), 1.69 (p, J = 7.5 Hz, 2H), 1.43 – 1.18 (m, 15H), 0.88 (t, J = 6.8 Hz, 3H) ppm.

40 *Hydrazide derivative* 1: In an oven-dried 25 mL 3-neck round bottom flask, 5-decyl-2-41 thiophenecarboxylic acid (1.0 g, 3.52 mmol) was refluxed in thionyl chloride (5 mL, excess) under a 42 nitrogen atmosphere for 2 hours. After cooling to room temperature, remaining thionyl chloride was 43 removed via high vacuum overnight to generate 5-decyl-2-thiophenecarbonyl chloride in situ. This – 44 oyl chloride was added to an oven-dried 50 mL 3-neck round bottom flask containing dry NMP. 45 Triethylamine (3 mL, excess) was added followed by the drop-wise addition of hydrazine hydrate

Triethylamine (3 mL, excess) was added followed by the drop-wise addition of hydrazine hydrate (0.7 eq.) at 0 °C. The mixture was warmed to room temperature and stirred overnight. The resulting

precipitate was collected by filtration. This crude product was purified by column chromatographyon silica treated with 2% trimethylamine using a gradient from 0 to 50 % of ethyl acetate in hexanes

48 on silica treated with 2% trimethylamine using a gradient from 0 to 50 % of ethyl acetate in hexanes 49 as the eluent. The pure product was isolated as a white powder (37 % yield). ¹H NMR (500 MHz, 50 Chloroform-*d*) δ 9.04 (s, 2H), 7.52 (d, *J* = 3.7 Hz, 2H), 6.76 (d, *J* = 3.7 Hz, 2H), 2.81 (t, *J* = 7.6 Hz, 4H),

51 1.67 (p, J = 7.5 Hz, 4H), 1.26 (s, 28H), 0.88 (t, J = 6.9 Hz, 6H) ppm.

52 α -Terthienyl, **Th**₃: Magnesium turnings (0.90 g, 37.0 mmol) were added to a 100 mL 3-neck round 53 bottom flask, which was then sealed, purged with N₂, and flame dried. Added dry diethyl ether (50 54 mL) and cooled to 0 °C, followed by slow addition of 2-bromothiophene (3.26 mL, 33.7 mmol). 55 Solution was warmed to room temperature and then refluxed for 2 hours to generate the Grignard 56 solution. An oven-dried 250 mL 3-neck round bottom flask was charged with [1,3-57 bis(diphenylphosphino)propane] dichloronickel(II) (catalytic, ~2%) and cycled between N2 and 58 vacuum three times. Dry diethyl ether (150 mL) and then 2,5-dibromothiophene (1.71 mL, 15.3 mmol) 59 were added and the solution was cooled to 0 °C. The Grignard solution prepared in situ was then 60 added dropwise, the reaction was warmed to room temperature and then refluxed for 2 hours. After 61 cooling to room temperature, the reaction was quenched by slow addition of 10% hydrochloric acid, 62 the organic was separated out, and the aqueous was further extracted with diethyl ether (3x75 mL). 63 The combined organic fractions were dried over magnesium sulfate. The crude was purified by 64 column chromatography on silica using 5% ethyl acetate in hexanes as the eluent to give the final 65 product (57 % yield). ¹H NMR (500 MHz, Chloroform-*d*) & 7.23 (dd, *J* = 5.1, 1.2 Hz, 2H), 7.18 (dd, *J* = 66 3.6, 1.2 Hz, 2H), 7.09 (s, 2H), 7.03 (dd, J = 5.1, 3.6 Hz, 2H) ppm.

67 Th₃(10): A flame-dried 50 mL three-neck round bottom flask was charged with Th₃ (0.15 g, 0.60 68 mmol) and cycled between high vacuum and N2 atmosphere three times. Dry THF (25 mL) was added 69 by cannula and the solution was cooled to around -78 °C prior to the drop-wise addition of n-70 butyllithium solution (2.5 M, 2.5 equivalents). After stirring for 30 minutes, potassium t-butoxide (1.0 71 M solution, 2.5 equivalents) was added and the solution was stirred for another 30 minutes. Then 1-72 decylbromide (2.2 equivalents) was added drop-wise. This mixture was warmed to room 73 temperature and stirred overnight. The reaction was quenched with water (40 mL) and extracted with 74 hexanes (3x30 mL). The combined organic fractions were dried over magnesium sulfate. Further 75 purification was done by column chromatography on silica using hexanes as the eluent. 76 Recrystallization from ethanol afforded the product as a light yellow solid (49 % yield). ¹H NMR (500 77 MHz, Chloroform-d) δ 6.96 (t, J = 3.3 Hz, 4H), 6.67 (d, J = 3.4 Hz, 2H), 2.78 (t, J = 7.6 Hz, 4H), 1.67 (p, J 78 = 7.4 Hz, 4H), 1.42 – 1.21 (m, 28H), 0.92 – 0.84 (m, 6H) ppm. ¹³C NMR (101 MHz, Chloroform-d) δ 79 145.56, 136.29, 134.79, 124.92, 123.60, 123.31, 32.06, 31.76, 30.35, 29.76, 29.71, 29.52, 29.48, 29.24, 22.84, 80 14.27 ppm.

81 Th-Thd-Th core: In a 150 mL high pressure vessel, 2-thiophenecarboxaldehyde (1.5 g, 13.4 82 mmol), sulfur (1.5 equivalents), and hydrazine hydrate (4.0 equivalents) were combined in propanol 83 (10 mL). The mixture was allowed to react for 4 hours at 150 °C under high pressure. Once cooled to 84 room temperature, the precipitate was collected by vacuum filtration. The crude was then dissolved 85 in dichloromethane (150 mL), washed with saturated sodium sulfide (2x120 mL), water (1x150 mL), 86 and then dried over magnesium sulfate. Recrystallization from ethanol afforded the final product as 87 a light orange solid (88 % yield). ¹H NMR (500 MHz, Chloroform-d) & 7.56 (dd, J = 3.7, 1.1 Hz, 2H), 88 7.50 (dd, J = 5.1, 1.1 Hz, 2H), 7.13 (dd, J = 5.0, 3.7 Hz, 2H) ppm. ¹³C NMR (126 MHz, Chloroform-d) δ 89 161.18, 132.35, 129.65, 129.55, 128.14 ppm.

90 1.2. Oxadiazole derivative

91 Th-Oxd-Th(10): 64% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 3.7 Hz, 2H), 6.84 (dd,
 92 *J* = 3.7, 1.0 Hz, 2H), 2.87 (t, *J* = 7.6 Hz, 4H), 1.72 (p, *J* = 7.6 Hz, 4H), 1.42 – 1.23 (m, 30H), 0.88 (t, *J* = 6.9
 93 Hz, 6H) ppm, ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.25, 151.93, 129.83, 125.48, 122.39, 32.04, 31.61.

Hz, 6H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.25, 151.93, 129.83, 125.48, 122.39, 32.04, 31.61,
30.40, 29.72, 29.67, 29.46, 29.17, 22.83, 14.27 ppm. HRMS (ESI⁺ of m + H⁺): m/z calcd for C₃₀H₄₇N₂OS₂:

95 515.3085, found: 515.3124.

96 1.3. Thiadiazole derivatives

97**Th-Thd-Th(4)**: 62% yield. ¹H NMR (500 MHz, Chloroform-d) δ 7.35 (d, J = 3.7 Hz, 2H), 6.79 (dd,98J = 3.7, 1.0 Hz, 2H), 2.89 - 2.81 (m, 4H), 1.75 - 1.66 (m, 4H), 1.48 - 1.36 (m, 4H), 0.95 (t, J = 7.4 Hz, 6H)99ppm. ¹³C NMR (126 MHz, Chloroform-d) δ 160.96, 150.97, 129.74, 129.53, 125.30, 33.68, 30.15,10022.28,13.96 ppm. HRMS (ESI+ of m + H+): m/z calcd for C18H23N2S3: 363.0979, found: 363.1018.

101**Th-Thd-Th(6)**: 29% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 3.7 Hz, 2H), 6.79 (dd,102*J* = 3.7, 1.0 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 4H), 1.71 (p, *J* = 7.6 Hz, 4H), 1.43 – 1.29 (m, 12H), 0.92 – 0.87 (m,1036H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.97, 151.04, 129.73, 129.54, 125.29, 31.57, 30.47,10428.86, 22.70, 14.24, 14.19 ppm. HRMS (ESI+ of m + H+): m/z calcd for C₂₂H₃₁N₂S₃: 419.1605, found:105419.1644.

106**Th-Thd-Th(8)**: 30% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 3.7 Hz, 2H), 6.79 (d, *J*107= 3.7 Hz, 2H), 2.84 (t, *J* = 7.6 Hz, 4H), 1.71 (p, *J* = 7.6 Hz, 4H), 1.43 – 1.21 (m, 20H), 0.88 (t, *J* = 6.9 Hz,1086H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.97, 151.03, 129.73, 129.52, 125.28, 31.98, 31.61,10930.46, 29.37, 29.20, 22.80, 14.27, 14.23 ppm. HRMS (ESI⁺ of m + H⁺): m/z calcd for C₂₆H₃₉N₂S₃: 475.2231,110found: 475.2270.

111**Th-Thd-Th(10)**: 51% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 3.7 Hz, 2H), 6.79 (d,112*J* = 3.7 Hz, 2H), 2.84 (t, *J* = 7.6 Hz, 4H), 1.71 (p, *J* = 7.5 Hz, 4H), 1.43 – 1.22 (m, 28H), 0.88 (t, *J* = 6.9 Hz,1136H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.97, 151.04, 129.74, 129.52, 125.29, 32.05, 31.61,11430.48, 29.73, 29.68, 29.47, 29.20, 22.84, 14.27 ppm. HRMS (ESI⁺ of m + H⁺): m/z calcd for C₃₀H₄₇N₂S₃:115531.2857, found: 531.2896.

116**Th-Thd-Th(12)**: 69% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 3.6 Hz, 2H), 6.79 (d,117*J* = 3.7 Hz, 2H), 2.84 (t, *J* = 7.6 Hz, 4H), 1.71 (p, *J* = 7.6 Hz, 4H), 1.41 – 1.22 (m, 36H), 0.88 (t, *J* = 6.9 Hz,1186H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.96, 151.03, 129.74, 129.51, 125.29, 32.07, 31.61,11930.47, 29.78, 29.68, 29.50, 29.46, 29.48, 29.19, 22.85, 14.27 ppm. HRMS (ESI+ of m + H+): m/z calcd for120C₃₄H₅₅N₂S₃: 587.3483, found: 587.3522.

121 2. Polarized Optical Microscopy (POM)

Polarized optical microscopy was carried out using an Olympus BX50 microscope equipped
 with a Linkam LTS350 heating stage. All images shown are of a size of ca. 920 x 1400 μm.

- 125
- Figure S1. POM of Th-Oxd-Th(10) showing needle-like textures of the crystalline state at 72.0 °C.

127Figure S2. POM of Th-Thd-Th(4) showing needle-like textures of the crystalline state at 94.0 °C (a)128and at 25.0 °C (b).

- 130 Figure S3. POM of Th-Thd-Th(6) showing schlieren and focal-conic textures of the SmC phase at
- 131 111.0 °C (a and b) and striations across focal-conic textures of the CrJ phase at 25.0 °C (c).

133Figure S4. POM of Th-Thd-Th(8) showing schlieren and focal-conic textures of the SmC phase at134125.0 °C (a and b), striations across focal-conic textures of the CrJ phase at 88.0 °C (c), and changes135upon cooling to the crystalline phase at 74.0 °C (d).

137Figure S5. POM of Th-Thd-Th(12) showing schlieren and focal-conic textures of the SmC phase at138131.0 °C (a and b respectively), striations across focal-conic textures of the CrJ phase at 96.0 °C (c), and139changes upon cooling to the crystalline phase at 87.0 °C (d).

140 3. Variable Temperature Powder X-ray Diffraction (VT-XRD)

141 X-ray scattering experiments were conducted using a Rigaku R-Axis Rapid diffractometer 142 equipped with an in-house built temperature controller. [1]

Compound (molecular lengthª, nm)	Temperature (°C)	Phase	Layer spacing ^ь (nm)	Correlation length ^c (nm)	# of layers	Tilt angle, θ (°) ^d
Th ₃ (10)	91	SmF	3.60	26	7	23
(3.91)	25	Cr	3.85	27	8	10
	110	SmC	2.26	31	13	40
Th-Thd-Th(6)	76	CrJ	2.28	36	16	39
(2.95)	25	CrJ	2.17	38	17	43
	124	SmC	2.65	25	9	40
Th-Thd-Th(8) (3.47)	83	CrJ	2.93	31	11	32
	25	Cr	2.49	38	15	44
	126	SmC	3.01	31	10	41
Th-Thd-Th(10)	88	CrJ	3.33	32	10	34
(4.00)	25	Cr	3.10	34	11	39
	127	SmC	3.38	29	9	41
Th-Thd-Th(12)	101	SmI	3.66	29	8	35
(4.49)	95	CrJ	3.69	25	7	35
	25	Cr	3.38	29	9	41

Table 1. XRD parameters of the phases of $Th_3(10)$ and Th-Thd-Th(n) (n = 6,8,10,12).

144 acalculated by DFT using B3LYP/6-31G*; bdetermined based on door peak; ccalculated using Debye-Scherrer

145 equation applied to doo1 peak; ^d calculated from molecular length and layer spacing

143

Table S2. XRD data of **Th₃(10)** and **Th-Thd-Th(n)** (n=6,8,10,12).

Compound (molecular length ^a , Å)	Temperature (°C)	Phase	d-spacings (Å)	Miller indices (hkl)
	01	CE	36.0	001
_	91	SINF	4.37	110
			38.5	001
Th ₃ (10) (39.1)		Cr	23.3	
	25		19.6	002
	25		4.37	110
			3.78	
			3.06	
	110	SmC	22.7	001
	110	SIIIC	4.37	alkyl halo
			22.7	001
	76	CrJ	11.4	002
			9.08	

¹⁴⁶

		7.22	003
			000
		6.65	
		6.24	
		5.55	004
		4.82	
		4.43	110
		3.62	
		3.54	
		3.27	
		3.20	
		21.7	001
		10.9	002
		7.12	003
		6.45	
		5.78	
25	CrJ′	4.78	
		4.34	110
		4.03	
		3.55	
		3.16	
		3.02	
124	SmC	26.5	001
124	SIIIC	4.37	alkyl halo
		29.3	001
		14.7	002
		9.83	003
		7.06	004
		6.73	
		5.18	
83	CrJ	4.87	
		4.45	110
		4.29	
		4.11	
		3.81	
		3.58	
		3.30	
		24.9	001
		12.5	002
		8.79	003
		E 70	
25	Cr	5.78	
25	Cr	5.78 4.75	
25	Cr	4.75 4.32	 110
_	25	25 CrJ′ 124 SmC 83 CrJ	5.55 4.82 4.43 3.62 3.54 3.27 3.20 21.7 10.9 7.12 6.45 5.78 4.34 4.03 3.55 3.16 3.02 124 5.78 4.34 4.03 3.55 3.16 3.02 4.37 29.3 14.7 9.83 7.06 6.73 5.18 83 CrJ 4.87 4.87 4.37 9.83 7.06 6.73 5.18 4.37 9.83 7.06 6.73 5.18 4.37 4.37 9.83 7.06 6.73 5.18 4.37 4.37 9.83 7.06 6.73 5.18 4.37 4.45 4.29 4.11 3.81 3.58 3.30 24.9 12.5

			3.54	
			3.29	
			3.14	
			30.1	001
	126	SmC	15.1	002
			4.37	alkyl halo
			33.3	001
			16.7	002
			11.1	003
			9.94	
			8.84	
			7.59	
	88	CrJ	5.16	
			4.29	110
			4.27	
			4.07	
			3.98	
Th-Thd-Th(10) (40.0)			3.80	
			31.0	001
			15.4	002
			9 78	003
			7 25	
			6.36	
			5.04	
	25	Cr	4 31	
	20	CI	4.22	110
			4 11	
			3.94	
			3 79	
			3.65	
			3.54	
			0.04	
			33.8	001
	127	SmC	17.1	002
	127	JIIIC	17.1	alkyl halo
			26.6	001
	101	Cmil	30.0 10 E	001
Th Th J Th (12) (44.0)	101	51111	10.5	110
1 n-1 na-1 n(12) (44.9)			4.37	110
			30.9 10.0	001
	05	C.I.I	10.0	002
	95	CrJ	12.4	003
			9.98	
			8.95	004

		5.13	
		4.52	
		4.33	110
		4.24	
		4.02	
		3.88	
		3.74	
		3.52	
		33.8	001
		17.1	002
		11.8	003
		9.83	
		8.61	004
		7.65	
25	Cr	5.07	
		4.26	110
		4.17	
		3.80	
		3.67	
		3.55	
		3.44	

147 •calculated by DFT using B3LYP/6-31G*

Figure S6. XRD of Th₃(10) at 91 °C, in the SmF phase (a) and at 25 °C, in the crystalline phase (b).

153Figure S8. XRD of Th-Thd-Th(12) at 127 °C, in the SmC phase (a); at 101 °C, in the SmI phase (b); at15495 °C, in the CrJ phase (c); and at 25 °C, in the crystalline phase (d).

156Figure S9. XRD of Th-Thd-Th(8) at 124 °C, in the SmC phase (a); at 83 °C, in the CrJ phase (b); and at15725 °C, in the crystalline phase (c).

159Figure S10. XRD of Th-Thd-Th(6) at 110 °C, in the SmC phase (a); at 76 °C, in the CrJ phase (b); and160at 25 °C, in the crystalline phase (c).

163 4. Differential Scanning Calorimetry (DSC)

Phase transition temperatures and enthalpies were determined using differential scanning
 calorimetry (DSC) on a TA Instruments DSC Q2000 equipped with a TA Instruments Refrigerated
 Cooling System 90, heating and cooling at a rate of 10°C min⁻¹.

167 **Table S3.** Phase transition temperatures and enthalpies of **Th₃(n)** reported by Boucher et al. [2].

n	Transition Temperature/ °C [enthalpy/ kJ mol ⁻¹]
5	Cr 46 [15.2] CrG 76 [13.6] I
6	Cr 51 [16.7] CrG 81 [16.4] I
7	Cr 52 [17.8] CrG 75 [3.8] SmF 82 [0.7] SmC 86 [7] I
8	Cr 64 [24.4] CrG 71 [3.3] SmF 85 [1.6] SmC 90 [7.3] I
9	Cr 66 [30.8] SmF 91 [1.8] SmC 94 [10.4] I
10	Cr1 43 [2.3] Cr2 71 [32.1] SmF 92 [2.7] SmC 95 [10.5] I

Figure S12. DSC thermogram of Th₃(10) (a), including zoomed in high temperature peak (b).

169

Figure S13. DSC thermogram of Th-Oxd-Th(10).

171

Figure S14. DSC thermogram of Th-Thd-Th(4).

176

Figure S16. DSC thermogram of Th-Thd-Th(8).

- 181 5. Thermogravimetric Analysis (TGA)
- 182 Thermogravimetric analysis was carried out on a Shimadzu TGA-50 with a heating rate of 2 °C
- 183 per minute.
- 184 TGA of Th-Oxd-Th(10):

TGA of Th-Thd-Th(10):

196 6. Single Crystal X-ray Diffraction

197 Suitable crystals (Th-Thd-Th, Th-Thd-Th(4) and Th-Thd-Th(10)) were coated in paratone oil, 198 mounted on a MiTeGen Micro Mount, and transferred to the the X-ray diffractometer. Data was 199 collected on a Bruker Smart instrument equipped with an APEX II CCD area detector fixed at a 200 distance of 5.0 cm (Th-Thd-Th, Th-Thd-Th(4)) or 4.0 cm (Th-Thd-Th(10)), from the crystal and a Cu 201 K α fine focus sealed tube (λ = 1.54178 Å) operated at 1.5 kW (45 kV, 0.65 mA), filtered with a graphite 202 monochromator. Data was collected at 150K (Th-Thd-Th(4), Th-Thd-Th(10)) or 296K (Th-Thd-Th); 203 the temperature was regulated using an Oxford Cryosystems Cryostream. Additional 204 crystallographic information can be found in Table S4. All diffraction data were processed using the 205 Bruker SAINT software package and were corrected for absorption effects using the multi-scan 206 technique (SADABS [3] or TWINABS [4]). The structures were solved with direct methods (SIR92) 207 and subsequent refinements were performed using SHELXL [5] and ShelXle. [6] Hydrogen atoms on 208 carbon atoms were included at geometrically idealized positions (C-H bond distance 0.95Å) and 209 were not refined. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 times 210 that of the preceding carbon atom. Diagrams were prepared using ORTEP-3 [7] and POV-RAY. [8] 211 Thermal ellipsoids are shown at the 50% probability level.

Table S4. Crystallographic information table for Th-Thd-Th, Th-Thd-Th(4), and Th-Thd-Th(10).

Compound	Th-Thd-Th	Th-Thd-Th(4)	Th-Thd-Th(10)
Chemical Formula	$C_{10}H_6N_2S_3$	$C_{18}H_{22}N_2S_3$	$C_{30}H_{46}N_2S_3$
Formula Mass	250.35	362.55	530.87
a/Å	6.34810(10)	7.3146(4)	7.5511(11)
b/Å	9.63630(10)	7.6299(3)	9.6532(16)
c/Å	17.8284(2)	18.0456(9)	23.523(4)
$\alpha/^{\circ}$	90	85.306(4)	91.278(8)
β/°	94.9750(10)	84.800(4)	94.604(7)
γ/°	90	67.452(4)	100.468(9)
Unit cell volume/Å ³	1086.49(2)	925.09(8)	1679.5(5)
Temperature/K	159(2)	150(2)	150(2)
Space group	P21/c	P-1	P-1

Number of formula unit per cell/Z	4	2	2
Radiation type	Cu Kα	Cu Kα	Cu Κα
Absorption coefficient, µ/mm ⁻¹	5.949	3.651	2.142
No. of reflections collected	5857	9288	17667
No. unique reflections	1922	3161	5526
Rint	0.0288	0.0693	0.0630
Final R ₁ values (I> 2σ (I))	0.0449	0.0867	0.2077
Final wR(F ²) values (I>2σ(I))	0.1299	0.2800	0.5868
Final R1 values (all data)	0.0475	0.1088	0.2178
Final wR(F ²) (all data)	0.1331	0.2965	0.6060
Goodness of fit	1.080	1.161	3.232

All crystal structure figures below follow the legend: sulphur in yellow, nitrogen in light blue,

214 carbon in grey, hydrogen in white.

215

Figure S19. Estimation of the tilt angle in the room temperature smectic phase of Th-Thd-Th(10)
based on the single crystal structure.

- Figure S20. Bond angles at the 2 and 5 positions of the central heterocycle for Th₃(8)[9] and Th-Thd-
- 220 **Th(10)**. Alkyl chains and hydrogens omitted for clarity.

(d)

221 222

Figure S21. Single crystal structure of **Th-Thd-Th(4)** showing the unit cell (a), lamellar order looking down the a- or b- axis (b and c respectively), and intra-layer packing looking down the c-axis (d).

a)

Figure S22. Single crystal structures of Th-Thd-Th showing the unit cell (a), order looking down the
b-axis (b), and herringbone packing looking down the a-axis (c).

a)

Figure S23. Literature single crystal structures of Th₃(8)[9] showing the unit cell (a), lamellar order
(b), and intra-layer packing (c).

Figure S24. Literature single crystal structures of Th₃[10] showing the unit cell (a) and herringbone
 packing (b).

Figure S25. Simulated powder XRD patterns of Th-Thd-Th(4) (a) and Th-Thd-Th(10) (b) as determined based on the single crystal structure.

231 7. UV/vis Absorption Spectroscopy

Table S5. Summary of UV-Vis spectral properties.

Compound	λ_{abs}^{max}	3	λ_{abs}^{onset}	$E_{g^{opt}}$
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(eV) ^a

Th-Oxd-Th(10)	328	28200	371	3.35
Th-Thd-Th(10)	359	26800	409	3.04
Th ₃ (10)	367	25900	423	2.93

a)

Figure S26. Absorption spectra of Th-Oxd-Th(10) in chloroform at various concentrations ranging from around 6×10^{-5} to 2×10^{-5} M (top to bottom) (a) and the resulting Beer-Lambert plot (b).

236Figure S27. Absorption spectra of Th-Thd-Th(10) in chloroform at various concentrations ranging237from around 5×10^{-5} to 1×10^{-5} M (top to bottom) (a) and the resulting Beer-Lambert plot (b).

240 8. Fluorescence Excitation/Emission Spectroscopy

```
241
```

Table S6. Summary of fluorescence spectral properties.

Compound	λ ^{max} (nm)ª	λ ^{max} (nm) ^ь	Stokes shift (nm)	$\mathbf{\Phi}_{\mathrm{f}^{\mathrm{c}}}$
Th-Oxd-Th(10)	340	387	47	0.48
Th-Thd-Th(10)	369	430	61	0.49
Th3(10)	380	443	63	0.56

^a Observed at the corresponding λ_{em}^{max} ; ^b Measured at the respective λ_{ex}^{max} ; ^c Relative to quinine

243 sulfate standard ($\Phi_f = 0.54$) in 0.1 M H₂SO₄

244

Table S7. Detailed fluorescence data used for quantum yield determination.

Compound	Concentration (x10 ⁻⁶ M)	Maximum absorbance, A _{max}	Integrated emission intensity, Iem	Iem/Amax gradientª	$\Phi_{\mathrm{f}}{}^{\mathrm{b}}$
	0.96	552038	43751369		
Th-Oxd-Th(10)	1.91	898329	69736325		
	2.87	1235771	94299072	74.9	0.48
	3.82	1567427	119646050		
	4.78	1915589	145914659		
Th Th 1 Th (10)	2.12	275332	21930717	77. 4	0.40
Th-Thd-Th(10)	6.35	559616	43049313	70.4	0.49

	8.47 10.59 12.70 16.94	696109 828772 983655 1258332	53070730 63336304 75462409 97024851		
Th3(10)	0.52 0.62 0.73 0.83 0.93	376360 423623 526075 599034 685502	38399486 42422719 51875681 58557104 64905104	87.1	0.56
Quinine sulfate	6.65 8.87 11.09 13.30 15.52 17.74	622805 792582 985531 1151426 1305979 1459479	59563561 76626907 93600171 110217780 126343550 142261748	98.2	0.54

 $245 \qquad {}^{a} \text{Determined from slope of } I_{em} \text{ vs. } A_{max} \text{ at various concentrations, see plots below; } {}^{b}$

246 Calculated according to: $\Phi_{f,x} = \Phi_{f,ref} (I_{em,x}/A_{max,x}) (A_{max,ref}/I_{em,ref}) (\eta_x / \eta_{ref})^2$,[11] using the

quinine sulfate standard ($\Phi_f = 0.54$)[12] in 0.1 M H₂SO₄, the gradients above determined

248 from experiment, and $\eta_{chloroform} = 1.444$ and $\eta_{water} = 1.333$.

Figure S29. Overlay of UV/vis absorption (solid line) and fluorescence excitation (dashed line) spectra
 of Th-Oxd-Th(10) (a), Th-Thd-Th(10) (b), and Th₃(10) (c) in CHCl₃.

252 253 254

Figure S30. Fluorescence excitation (top) and emission (bottom) spectra of **Th-Oxd-Th(10)** in chloroform at various concentrations ranging from around 5 x 10⁻⁶ to 1x10⁻⁶ M (shown in descending order) (a) and the respective Beer-Lambert plots demonstrating the linear range (b).

255Figure S31. Fluorescence excitation (top) and emission (bottom) spectra of Th-Thd-Th(10) in256chloroform at various concentrations ranging from around 16 × 10⁻⁶ to 2 × 10⁻⁶ M (shown in descending257order) (a) and the respective Beer-Lambert plots demonstrating the linear range (b).

a)

b)

258Figure S32. Fluorescence excitation (top) and emission (bottom) spectra of Th₃(10) in chloroform at259various concentrations ranging from around 9×10^{-7} to 5×10^{-7} M (shown in descending order) (a) and260the respective Beer-Lambert plots demonstrating the linear range (b).

261Figure S33. Fluorescence excitation (top) and emission (bottom) spectra of quinine sulfate in 0.1 M262sulfuric acid at various concentrations ranging from around 17x10-6 to 6x10-6 M (shown in descending263order) (a) and the respective Beer-Lambert plots demonstrating the linear range (b).

d)

264Figure S34. Integrated emission intensity vs. maximum absorbance plots created based on the265fluorescence spectra at various concentrations shown above for Th-Oxd-Th(10) (a), Th-Thd-Th(10)266(b), Th₃(10) (c), and quinine sulfate (d).

267 9. Cyclic Voltammetry (CV)

274

Cyclic voltammetry scans were performed on a PAR-263A potentiometer. All analytes were scanned as 1.0 mM solutions in THF (**Th-Ox-Th(10**) and **Th-Thd-Th(6**) reduction) or MeCN (**Th-Thd-Th(6**) oxidation) with a 0.1 M tetrabutylammonium perchlorate supporting electrolyte. The apparatus was a 20 ml glass cell equipped with a glassy carbon working electrode, platinum counter electrode and silver wire reference electrode. All scans were reference internally to a Fc/Fc⁺ reversible redox couple.

		Analy	Analyte (compound)			Ferrocene reference	
Compound	Process/ solvent	Ea (V)	Ec (V)	E ^{1/2} (V) ^a	Ea (V)	E _c (V)	E ^{1/2} (V)
Th-Oxd-Th(10)	Reduction/ THF	n/a, irre	versible	-2.20	1.29	0.53	0.91
	Reduction/ THF	-1.32	-1.64	-1.48	1.35	0.50	0.93
1 n-1 nd-1 n(6)	Oxidation/ MeCN	kidation/ MeCN n/a, irreversible 1.9	1.92	0.92	0.56	0.74	

Table S8. Summary of the raw CV data for select compounds.

^a Irreversible processes estimated based on middle of onset slope

Figure S35. Unprocessed cyclic voltammograms showing the reversible reduction of **Th-Thd-Th(6)** at different scan rates.

276

Figure S36. Unprocessed cyclic voltammograms showing the ferrocene internal standard signal (blue star) used for reference for **Th-Oxd-Th(10)** reduction in THF (a), **Th-Thd-Th(6)** reduction in THF (b), and **Th-Thd-Th(6)** oxidation in MeCN (c).

283 10. DFT and TD-DFT Calculations

284 *Density functional theory (DFT)* – DFT calculations were carried out using B3LYP functional[13,14] 285 and 6-31G* basis set (C, H, N, O, S)[15–18] in Gaussian 16[19] to determine the optimized molecular 286 structures (Figure 6) as well as the frontier molecular orbitals and respective HOMO/LUMO energy 287 levels (Figure S36). All of these results were consistent with those obtained by different basis sets 288 used during TD-DFT calculations (see following).

289 Time-dependent density functional theory (TD-DFT) – Geometry optimization calculations were 290 completed using the Gaussian 16 program (Revision B.01)[19], the restricted B3LYP functional[13,14], 291 the 6-31G* basis set (C, H, N, O, S), with a polarized continuum model (PCM) for CHCl₃ (dielectric ε 292 = 4.9).[15–18] Frequency calculations at the same level of theory confirmed that the optimized 293 structures were located at a minimum on the potential energy surface. Single-point calculations were 294 done using restricted B3LYP functional, the TZVP basis set (C, H, N, O, S)[20,21], with a PCM for 295 CHCl₃. The intensities of 30 lowest energy transitions using TD-DFT[22,23] calculations were 296 performed using the CAM-B3LYP functional[24–26], the TZVP basis set (C, H, N, O, S), with a PCM 297 for CHCl₃.

Table S9. Summary of predicted properties determined by DFT (B3LYP/6-31G*).

	Gas phase			Solva	Solvated in THF		
Compound	HOMO (eV)	LUMO (eV)	E _g calc (eV)	HOMO (eV)	LUMO (eV)	E _g calc (eV)	
Th ₃ (10)	-4.88	-1.51	3.37	-5.05	-1.69	3.36	
Th-Oxd-Th(10)	-5.59	-1.62	3.97	-5.77	-1.80	3.97	
Th-Thd-Th(10)	-5.54	-1.90	3.64	-5.71	-2.08	3.62	
Th-Thd-Th(6)	-5.54	-1.90	3.64	-5.71	-2.09	3.62	

 Table S10. Summary of predicted properties determined by TD-DFT (CAM-B3LYP/TZVP).

Compound	TD-DFT
----------	--------

²⁹⁸

	λ_{abs}^{max} (nm)	fª	Eg ^{opt} (eV) ^b
Th ₃ (10)	383	1.15	2.67
Th-Oxd-Th(10)	323	1.16	3.26
Th-Thd-Th(10)	354	1.18	2.94

^aOscillator strength

303 304

Figure S37. Frontier molecular orbitals of select compounds calculated by DFT at B3LYP/6-31G* level.

307Figure S38. TD-DFT predicted UV/vis spectra in chloroform of Th₃(10) (a), Th-Oxd-Th(10) (b), and308Th-Thd-Th(10) (c).

309 11. Complete List of Computational Data

310 **Optimized coordinates (Å) for Th-Oxd-Th(10):**

311	С	1.06861315	-2.08694106	0.00077733
312	С	-1.06861352	-2.08694115	0.00071126
313	С	2.39766853	-1.54132287	-0.00139990
314	С	2.77436144	-0.21785222	-0.00711548
315	S	3.79545595	-2.59381429	0.00380009
316	С	4.18572883	-0.04510711	-0.00774990
317	Н	2.06185720	0.59918123	-0.01079215
318	С	4.88823187	-1.22612957	-0.00253064
319	Н	4.66347744	0.92751470	-0.01198087
320	С	-2.39766880	-1.54132337	-0.00161983
321	С	-2.77436145	-0.21785256	-0.00731636
322	S	-3.79545651	-2.59381625	0.00318546
323	С	-4.18572881	-0.04510757	-0.00804950
324	Н	-2.06185703	0.59918136	-0.01084878
325	С	-4.88823212	-1.22613025	-0.00291490
326	Н	-4.66347720	0.92751460	-0.01222002
327	Ν	0.69495173	-3.33705542	0.00614971
328	Ν	-0.69495230	-3.33705639	0.00589109
329	С	6.37730125	-1.45485264	-0.00210701
330	Н	6.64913616	-2.06181825	0.87321688

331	Н	6.64960845	-2.06146371	-0.87757292
332	С	7.21222653	-0.16644298	-0.00169072
333	Н	6.95424034	0.43684545	-0.88254785
334	Н	6.95256581	0.43731071	0.87835320
335	С	8.72046191	-0.44679165	-0.00034091
336	Н	8.97778842	-1.05622778	-0.87899553
337	Н	8.97639213	-1.05525476	0.87939382
338	С	9.57263471	0.82886404	-0.00039303
339	Н	9.31489655	1.43723484	-0.87997259
340	Н	9.31352133	1.43825006	0.87807735
341	С	11.08204180	0.55434118	0.00093129
342	Н	11.34045757	-0.05583227	-0.87730798
343	Н	11.33914876	-0.05461481	0.88039787
344	С	11.93592221	1.82897310	0.00067000
345	Н	11.67705214	2.43912377	0.87889034
346	Н	11.67831709	2.43789854	-0.87877272
347	С	13.44553753	1.55547064	0.00193890
348	Н	13.70423043	0.94509834	-0.87622063
349	Н	13.70300327	0.94644163	0.88139028
350	С	14.30000861	2.82952366	0.00155407
351	Н	14.04226918	3.44048647	0.87974964
352	Н	14.04348258	3.43913280	-0.87793698
353	C	15.80965123	2.55653223	0.00280353
354	H	16.06751629	1.94662021	-0.87482891
355	Н	16.06631717	1.94801871	0.88175698
356	C	-6.37730151	-1.45485311	-0.00253797
357	H	-6.64960136	-2.06129019	-0.87812652
358	H	-6.64914399	-2.06199258	0.87266316
359	C	-7.21222663	-0.16644339	-0.00187290
360	H	-6.95422436	0.43702490	-0.88260214
361	Н	-6.95258163	0.43713048	0.87829899
362	C	-8.72046207	-0.44679200	-0.00060999
363	H	-8.97641050	-1.05543125	0.87899758
364	Н	-8 97777064	-1 05605206	-0 87939196
365	C	-9.57263461	0.82886387	-0.00042410
366	с Н	-9.31487576	1 43741292	-0 87987429
367	Н	-9 31354154	1 43807172	0.87817585
368	C	-11 08204175	0 55434112	0.00080914
369	е Н	-11 33916919	-0.05479501	0.88014500
370	Н	-11 34043741	-0.05565229	-0.87756110
371	C	-11 93592184	1 82897329	0.00078963
372	с Н	-11 67829497	2 43808021	-0.87852102
373	н	-11 67707320	2.43894256	0.87914228
374	C	-13 44553726	1 55547096	0.00196491
375	с Н	-13 70302454	0.94625918	0.88128339
376	н	-13 7042000	0.94528133	-0 87632779
377	C II	-14 3000797	2 82952426	0.00182434
378	с н	-14 04345988	3 43931684	-0.87753308
379	H	-14 04779024	3 44030374	0.88015380
380	C	-15 80965070	2 55652298	0.00010000
381	с Н	-16 06633871	1 94783575	0.88179890
382	Н	-16.06749411	1.94680457	-0.87478728
				···· ·····

С

Н

432

433

383	С	-16.65554604	3.83407879	0.00278355
384	Н	-16.44637672	4.44739458	-0.88259487
385	Н	-17.72753839	3.60505452	0.00362778
386	Н	-16.44520612	4.44844191	0.88715775
387	С	16.65554688	3.83407775	0.00236187
388	Н	17.72753913	3.60505337	0.00328081
389	Н	16.44639984	4.44720832	-0.88315009
390	Н	16.44518506	4.44862597	0.88660225
391	О	-0.00000010	-1.23211328	-0.00293686
392	Optimized co	oordinates (Å) for Th-Th	d-Th(10):	
393	С	-1.20806377	0.50845006	-0.08189367
394	С	1.20806231	0.50844896	-0.08186841
395	С	-2.62897218	0.26196466	-0.10378363
396	С	-3.30724199	-0.93120312	-0.21603580
397	S	-3.75383772	1.60215727	0.02841576
398	С	-4.72047485	-0.77714338	-0.19652581
399	Н	-2.81147972	-1.89206474	-0.30921571
400	С	-5.13166814	0.52795398	-0.07024494
401	Н	-5.40815518	-1.61115399	-0.27339070
402	С	2.62897093	0.26196222	-0.10372872
403	С	3.30724201	-0.93120506	-0.21597812
404	S	3.75383480	1.60215297	0.02850384
405	С	4.72047463	-0.77714681	-0.19643585
406	Н	2.81148083	-1.89206528	-0.30917861
407	С	5.13166637	0.52794882	-0.07013243
408	Н	5.40815598	-1.61115720	-0.27329419
409	Ν	-0.67872948	1.70492656	0.03120256
410	Ν	0.67872675	1.70492594	0.03121690
411	С	-6.52843051	1.08964312	-0.01520250
412	Н	-6.63703425	1.69821823	0.89371850
413	Н	-6.67075511	1.78587795	-0.85425675
414	С	-7.63742108	0.02837637	-0.04680507
415	Н	-7.54715630	-0.56880960	-0.96422752
416	Н	-7.50229530	-0.66611570	0.79336948
417	С	-9.03990065	0.64625750	0.02226512
418	Н	-9.17222518	1.34284177	-0.81852838
419	Н	-9.12561737	1.25118318	0.93680907
420	С	-10.16370184	-0.39780305	-0.00177323
421	Н	-10.07753765	-1.00321688	-0.91622769
422	Н	-10.02923954	-1.09455842	0.83884452
423	С	-11.56787885	0.21628248	0.06913067
424	Н	-11.70294970	0.91089331	-0.77327290
425	Н	-11.65144896	0.82523051	0.98159146
426	C	-12.69382056	-0.82574116	0.05176856
427	H	-12.55817735	-1.52007882	0.89440866
428	H	-12.61038804	-1.43514402	-0.86048329
429	C	-14.09796667	-0.21162192	0.12344441
430	H	-14.23434321	0.48104843	-0.72048688
431	H	-14.18006524	0.39991695	1.03443403

-15.22472807 -1.25259941

-15.08953979 -1.94519598

0.11041363

0.95476991

434	Н	-15.14373892	-1.86493410	-0.80029356
435	С	-16.62884142	-0.63855282	0.18189774
436	Н	-16.76479738	0.05219514	-0.66254269
437	Н	-16.70983608	-0.02632273	1.09146857
438	С	6.52842797	1.08963542	-0.01504594
439	Н	6.67075337	1.78593260	-0.85404804
440	Н	6.63702916	1.69814343	0.89392059
441	С	7.63741992	0.02837253	-0.04672512
442	Н	7.54715185	-0.56875040	-0.96418831
443	Н	7.50229921	-0.66617767	0.79340221
444	С	9.03989870	0.64625129	0.02238311
445	Н	9.12562012	1.25110739	0.93697263
446	Н	9.17221608	1.34290006	-0.81835809
447	С	10.16370221	-0.39780474	-0.00174333
448	Н	10.07753458	-1.00314607	-0.91624547
449	Н	10.02924615	-1.09462729	0.83881974
450	С	11.56787801	0.21627877	0.06920174
451	Н	11.65145398	0.82514851	0.98171422
452	Н	11.70293960	0.91096257	-0.77314316
453	С	12.69382278	-0.82573984	0.05173967
454	Н	12.61038518	-1.43506245	-0.86056533
455	Н	12.55818835	-1.52015233	0.89431953
456	С	14.09796741	-0.21162234	0.12345875
457	Н	14.18007275	0.39983248	1.03450416
458	Н	14.23433321	0.48112666	-0.72040975
459	С	15.22473246	-1.25259453	0.11032012
460	Н	15.14373686	-1.86484426	-0.80044361
461	Н	15.08955482	-1.94527067	0.95461285
462	С	16.62884428	-0.63854945	0.18184824
463	Н	16.70984597	-0.02640562	1.09147650
464	Н	16.76478881	0.05227942	-0.66252784
465	S	-0.0000002	-0.77125293	-0.20301612
466	С	17.74810507	-1.68492171	0.17003676
467	Н	17.71426080	-2.29059304	-0.74418072
468	Н	18.73699733	-1.21476990	0.22174887
469	Н	17.65926346	-2.36929533	1.02298639
470	С	-17.74809840	-1.68493049	0.17019756
471	Н	-18.73699188	-1.21477756	0.22187505
472	Н	-17.71426122	-2.29068893	-0.74396246
473	Н	-17.65924526	-2.36922236	1.02321157
474	Optimized co	ordinates (Å) for Th₃(1()):	
175		1 0/005050		0.00000100
473	C	1.26837879	-1.21007656	0.00008198
4/0 477	C	0.70852443	-2.4/104433	0.00033753
4// 170	C	-0./0852454	-2.4/104417	0.00033264
4/ð 470	C	-1.26837862	-1.21007627	0.00007325
4/9 100	5	0.0000022	0.01108963	-0.00024612
40U 401	H	1.30156813	-3.3/954852	0.00055460
401 100	н	-1.30156847	-3.3/954821	0.00053860
402 192	C	2.66280229	-0.82805285	0.00003919
403 101	C	3.22398045	0.42972758	-0.00007935
404	5	3.93527594	-2.04662194	0.00014213

-2.04662194

40 of 55

105	C	4 (4075001	0 40050040	0.00000707
485	C	4.64875931	0.42350348	-0.00008727
400	H	2.63410326	1.34072849	-0.00015208
40/		5.20090459	-0.83106076	0.00002478
488	H	5.24307275	1.33020577	-0.00017238
489	C	-2.66280200	-0.82805223	0.00002622
490	C	-3.22397990	0.42972830	-0.00029443
491	S	-3.93527604	-2.04662098	0.00043851
492	С	-4.64875882	0.42350458	-0.00026313
493	Н	-2.63410247	1.34072902	-0.00056956
494	С	-5.20090450	-0.83105947	0.00007857
495	Н	-5.24307197	1.33020702	-0.00051052
496	С	6.64764594	-1.25032333	0.00005105
497	Н	6.84287393	-1.88653100	0.87558288
498	Н	6.84287901	-1.88662508	-0.87541167
499	С	-6.64764594	-1.25032175	0.00018201
500	Н	-6.84289086	-1.88674621	-0.87518910
501	Н	-6.84286218	-1.88640668	0.87580539
502	С	7.63992573	-0.07865094	-0.00001001
503	Н	7.45912084	0.55298895	-0.88027122
504	Н	7.45910740	0.55309150	0.88017475
505	С	-7.63992573	-0.07864935	-0.00002881
506	Н	-7.45909269	0.55321695	0.88006408
507	Н	-7.45913566	0.55286667	-0.88038190
508	С	-9.10082769	-0.54674119	0.00009762
509	Н	-9.27876687	-1.18346403	-0.87896767
510	Н	-9.27872242	-1.18312624	0.87941647
511	С	9.10082774	-0.54674268	0.00002772
512	H	9.27873888	-1.18324276	0.87925998
513	Н	9.27875073	-1.18335047	-0.87912420
514	C	10 10788798	0.61059592	-0.00003658
515	H	9 92872375	1 24731056	-0.87907160
516	Н	9 92870528	1 24742444	0.87891218
517	C	-10 10788803	0 61059728	-0.00009860
518	н	-9 92873544	1 24720246	-0.87921525
519	Н	-9 92869396	1 24753527	0.87876850
520	C	-11 57042912	0 14715030	0.00002368
520	н	-11 74885435	-0.49003806	0.87900680
522	н	-11 74889954	-0.49036015	-0.87871669
522	C C	11 57042906	0.14714916	0.0000916
523	с u	11.77886742	0.14714710	0.87891440
52 4 525	П П	11.74000742	-0.49014292	0.07091440
525	11 C	11.74000003	-0.49023731	-0.07000911
520		12.37923310	1.0000212	-0.00005519
527	п	12.40049099	1.94036510	-0.87892943
520	H C	12.40046707	1.94050387	0.8/8/280/
529	C II	-12.5/923331	1.30306307	-0.00016181
33U 521	н	-12.40050068	1.94028629	-0.87911035
531 520	Н	-12.40045802	1.94060463	0.87854715
532 532	C	-14.04195172	0.84012335	-0.00004244
535	Н	-14.22049793	0.20274951	0.87889690
534	Н	-14.22054301	0.20243838	-0.87874691
535	C	-15.05135891	1.99530071	-0.00022078
536	Н	-14.87386773	2.63313839	-0.87918136

537	Н	-14.87382402	2.63344742	0.87850664
538	С	-16.51415231	1.53281315	-0.00010308
539	Н	-16.69196820	0.89604880	0.87832949
540	Н	-16.69201296	0.89574338	-0.87830512
541	С	14.04195156	0.84012266	-0.00000369
542	Н	14.22053285	0.20253421	-0.87878026
543	Н	14.22050803	0.20265236	0.87886359
544	С	15.05135854	1.99530022	-0.00006701
545	Н	14.87385921	2.63323209	-0.87895759
546	Н	14.87383159	2.63335269	0.87873044
547	С	16.51415205	1.53281294	-0.00001206
548	H	16.69200450	0.89583600	-0.87828311
549	Н	16.69197640	0.89595580	0.87835153
550	C	17.51529582	2.69276663	-0.00007501
551	H	17.38491046	3.32826236	0.88475111
552	Н	18 54962514	2.32973201	-0.00003320
553	Н	17 38493935	3 32814112	-0.88499243
555 554	C II	17.50455555	2 69276667	-0.00477243
555	U U	17.31327027	2.07270007	0.88526422
556	11 LI	-17.30494730	2 22072186	-0.00320422
557		-16.04902001	2.32973100	-0.00019049
557	П	-17.36490347	5.52655509	0.00447929
558	TD-DFT excitation en	argias and ascil	lator strongth	s for Th-Ovd-Th(10).
550	1D-D11 excitation en	ergres and osen	lator strength	9101 III-0.xu-11(10).
559	Excited State 1: Si	nglet-A 3.8397 e	V 322.90 nm f	$= 1.1612 < S^{**}2 > = 0.000$
560	139 ->142	0.16639		
561	140 ->141	0.67844		
562	This state for opt	imization and/o	r second-orde	r correction.
563	Total Energy, E([D-HF/TD-DFT]	= -2151.57241	331
564	Copying the exci	ted state density	y for this state	as the 1-particle RhoCI density.
565	Excited State 2:	Singlet-A	4.7066 eV	$263.42 \text{ nm f} = 0.0585 < S^{**}2 > = 0.000$
566	138 ->141	0.10602		
567	139 ->141	0.39208		
568	140 ->142	0.56073		
569	Excited State 3:	Singlet-A	5.1694 eV	239.84 nm f = $0.0007 < S^{**}2 > = 0.000$
570	137 ->141	0.58692		
571	138 ->142	-0.35150		
572	Excited State 4:	Singlet-A	5.1769 eV	239.50 nm f = $0.1757 < S^{**}2 > = 0.000$
573	137 ->142	-0.34830		
574	138 ->141	0.57678		
575	139 ->141	-0.12485		
576	Excited State 5:	Singlet-A	5.3774 eV	230.57 nm f = 0.0001 <s**2>=0.000</s**2>
577	133 ->142	0.12674		
578	139 ->141	0.55159		
579	140 ->142	-0.40040		
580	Excited State 6:	Singlet-A	5.6984 eV	217.58 nm f=0.0000 <s**2> = 0.000</s**2>
581	134 ->141	0.64152		
582	134 ->145	-0.14015		
583	136 ->141	0.20251		
584	Excited State 7:	Singlet-A	5.9211 eV	209.39 nm f = $0.0347 < S^{**}2 = 0.000$
585	133 ->141	0.21742	- • ·	
586	139 ->142	0.61505		
587	140 ->141	-0.13869		
507	-			

588	140 ->145	0.17856	
589	Excited State 8:	Singlet-A	$5.9270 \text{ eV} 209.19 \text{ nm} \text{ f} = 0.0000 \langle S^{**}2 \rangle = 0.000$
590	139 ->144	0.33420	
591	140 ->143	0.59840	
592	Excited State 9:	Singlet-A	5.9946 eV 206.83 nm f = 0.0008 <s**2> = 0.000</s**2>
593	139 ->143	0.37585	
594	140 ->144	0.56656	
595	Excited State 10:	Singlet-A	6.2904 eV 197.10 nm f = 0.0067 <s**2>=0.000</s**2>
596	116 ->141	-0.10331	
597	118 ->141	-0.21384	
598	122 ->141	-0.17124	
599	134 ->142	0.54317	
600	134 ->150	0.16147	
601	134 ->167	-0.12540	
602	136 ->142	0.17894	
603	Excited State 11:	Singlet-A	6.3596 eV 194.96 nm f = 0.0000 <s**2> = 0.000</s**2>
604	137 ->143	0.48569	
605	138 ->144	-0.45662	
606	Excited State 12:	Singlet-A	6.3618 eV 194.89 nm f = 0.0000 <s**2> = 0.000</s**2>
607	134 ->142	-0.10948	
608	137 ->144	-0.45141	
609	138 ->143	0.47057	
610	Excited State 13:	Singlet-A	6.5740 eV 188.60 nm = 0.0144 <s**2> = 0.000</s**2>
611	133 ->141	-0.16914	
612	137 ->141	-0.30996	
613	137 ->145	0.15244	
614	138 ->142	-0.34737	
615	139 ->150	-0.18597	
616	140 ->145	0.42003	
617	Excited State 14:	Singlet-A	6.6269 eV 187.09 nm f=0.0002 <s**2>=0.000</s**2>
618	137 ->142	0.50133	
619	138 ->141	0.37664	
620	138 ->145	-0.15985	
621	139 ->145	0.15232	
622	140 ->150	-0.19883	
623	Excited State 15:	Singlet-A	6.7394 eV 183.97 nm f=0.0251 <s**2>=0.000</s**2>
624	137 ->141	0.20498	
625	137 ->145	-0.10627	
626	138 ->142	0.43762	
627	139 ->142	-0.13396	
628	139 ->150	-0.14540	
629	140 ->145	0.44440	
630	Excited State 16:	Singlet-A	6.8924 eV 179.88 nm f=0.0019 <s**2>=0.000</s**2>
631	115 ->142	0.11594	
632	116 ->141	0.18119	
633	118 ->141	0.40486	
634	122 ->141	0.36915	
635	134 ->142	0.28832	
636	135 ->141	-0.10094	
637	Excited State 17:	Singlet-A	6.9960 eV 177.22 nm f = 0.3755 S**2>=0.000
638	113 ->141	-0.14081	
639	137 ->142	0.28490	

640	139 ->145	-0.28752	
641	140 ->150	0.52557	
642	Excited State 18:	Singlet-A	7.0016 eV 177.08 nm f=0.0091 <s**2>=0.000</s**2>
643	133 ->141	0.60542	
644	138 ->142	-0.11100	
645	139 ->142	-0.23165	
646	140 ->141	0.10649	
647	Excited State 19:	Singlet-A	7.0156 eV 176.73 nm f=0.0000 <s**2>=0.000</s**2>
648	110 ->142	0.10494	
649	112 ->141	-0.10370	
650	114 ->142	0.20899	
651	115 ->141	0.36301	
652	117 ->141	0.10405	
653	121 ->141	0.31625	
654	122 ->142	0.28720	
655	135 ->142	-0.14145	
656	136 ->141	-0.21074	
657	Excited State 20:	Singlet-A	7.0690 eV 175.39 nm f=0.0085 <s**2>=0.000</s**2>
658	110 ->141	0.17679	
659	114 ->141	0.37381	
660	115 ->142	0.24180	
661	116 ->141	-0.19952	
662	118 ->141	-0.19438	
663	121 ->142	0.21296	
664	122 ->141	0.18842	
665	122 ->145	0.10014	
666	135 ->141	-0.21212	
667	136 ->142	-0.14511	
668	Excited State 21:	Singlet-A	7.0864 eV 174.96 nm f=0.0000 <s**2>=0.000</s**2>
669	139 ->144	-0.16326	
670	140 ->147	-0.13963	
671	140 ->149	0.13149	
672	140 ->152	-0.21062	
673	140 ->153	0.29669	
674	140 ->154	0.32012	
675	140 ->159	-0.27770	
676	140 ->162	-0.23557	
677	Excited State 22:	Singlet-A	7.3232 eV 169.30 nm f=0.0000 <s**2>=0.000</s**2>
678	139 ->147	-0.18742	
679	139 ->149	0.16438	
680	139 ->152	-0.14061	
681	140 ->144	-0.12821	
682	140 ->146	0.34304	
683	140 ->148	-0.28060	
684	140 ->151	0.21270	
685	140 ->161	-0.16377	
686	140 ->163	0.13354	
687	140 ->169	-0.11490	
688	140 ->170	0.15360	
689	Excited State 23:	Singlet-A	7.4056 eV 167.42 nm f=0.0000 <s**2>=0.000</s**2>
690	139 ->144	0.14018	
691	139 ->158	0.11313	

692	139 ->163		-0.19155				
693	140 ->153		0.50296				
694	140 ->159		0.18105				
695	140 ->162		0.22337				
696	140 ->168		0.12670				
697	Excited State	24:	Singlet-A	7.4385 eV	166.68 nm	f=0.0000	<s**2>=0.000</s**2>
698	136 ->141		0.11977				
699	139 ->146		-0.19282				
700	139 ->148		0.16348				
701	139 ->151		-0.13568				
702	140 ->147		0.33618				
703	140 ->149		-0.26475				
704	140 ->152		0.16583				
705	140 ->153		0.11341				
706	140 ->154		0.10884				
707	140 ->159		-0.11322				
708	140 ->160		-0.15120				
709	140 ->162		-0.14973				
710	140 ->168		-0.11390				
711	Excited State	25:	Singlet-A	7.4553 eV	166.30 nm	f=0.0009	<s**2>=0.000</s**2>
712	139 ->143		0.16129				
713	139 ->153		-0.11429				
714	139 ->154		0.10306				
715	139 ->159		-0.15927				
716	139 ->162		-0.17987				
717	139 ->168		-0.11816				
718	140 ->146		-0.15137				
719	140 ->148		0.12997				
720	140 ->151		-0.13059				
721	140 ->155		0.15112				
722	140 ->158		-0.26395				
723	140 ->163		0.37400				
724	140 ->170		0.15430				
725	Excited State	26:	Singlet-A	7.5037 eV	165.23 nm	f=0.0000	<s**2>=0.000</s**2>
726	104 ->142		-0.13497				
727	105 ->141		0.13491				
728	107 ->141		0.17020				
729	110 ->142		0.14865				
730	112 ->141		-0.20770				
731	114 ->142		0.13178				
732	115 ->141		0.29385				
733	121 ->141		-0.12739				
734	134 ->141		-0.11645				
735	135 ->142		0.15633				
736	136 ->141		0.33751				
737	140 ->147		-0.12163				
738	140 ->153		-0.11847				
739	Excited State	27:	Singlet-A	7.5451 eV	164.32 nm	f=0.0224	<s**2>=0.000</s**2>
740	108 ->141		-0.13687				
741	111 ->141		0.18370				
742	113 ->141		0.16512				
743	133 ->142		0.44961				

Materials 2019, 12, 2314

744	137 ->150		0.21846				
745	138 ->145		0.23926				
746	139 ->141		-0.10379				
747	140 ->167		0.18617				
748	Excited State	28:	Singlet-A	7.5572 eV	164.06 nm	f=0.0000	<s**2>=0.000</s**2>
749	114 ->142		-0.21459				
750	116 ->142		0.25632				
751	118 ->142		0.45963				
752	118 ->150		0.13839				
753	118 ->167		-0.10476				
754	122 ->142		0 25208				
755	Excited State	29.	Singlet-A	7 5636 eV	163 92 nm	f=0 0011	<s**2>=0 000</s**2>
756	104 ->141	_>.	-0 20068	1.0000 01	100.72 1111	1 0.0011	0 2 0.000
757	105 ->142		0 10349				
758	107 ->142		0.10349				
759	107 -> 142		0.12340				
760	110 -> 141		0.24100				
761	112 -> 142		0.23230				
762	114 ->141		0.23230				
762	110 ->142		0.21505				
764	110 ->141 125 \\141		0.11039				
765	133 ->141		0.37713				
765	100-2142 Evoited State	20.	0.17901 Singlet A	7 (222 aV	162 42 mm	£_0.221E	~~***7~_0 000
767		30:	0 46672	7.6552 ev	162.43 1111	1=0.2313	<5**2>=0.000
769	137 ->143		0.40072				
760	138 ->142		0.18205				
/09	138 ->150		0.40275				
770	100 100		0.10000				
770	139 ->150		-0.12803				
770 771	139 ->150 140 ->166		-0.12803 -0.13622				
770 771 772	139 ->150 140 ->166 TD-DFT excitation	energ	-0.12803 -0.13622	r strengths f	or Th-Thd-	Γh(10):	
770 771 772	139 ->150 140 ->166 TD-DFT excitation	energ	-0.12803 -0.13622 ies and oscillato:	r strengths f	or Th-Thd-T	Гһ(10):	
770 771 772 773	139 ->150 140 ->166 TD-DFT excitation Excited State	energ 1:	-0.12803 -0.13622 ies and oscillato Singlet-A	r strengths f 3.5070 eV	or Th-Thd- 7 353.53 nm	Fh(10): f=1.1804	<s**2>=0.000</s**2>
770 771 772 773 774	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146	energ 1:	-0.12803 -0.13622 ies and oscillato Singlet-A 0.13462	r strengths f 3.5070 eV	or Th-Thd- 353.53 nm	Гһ(10): f=1.1804	<s**2>=0.000</s**2>
770 771 772 773 774 775	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145	energ 1:	-0.12803 -0.13622 ies and oscillato Singlet-A 0.13462 0.68560	r strengths f 3.5070 eV	or Th-Thd- 7 353.53 nm	Гһ(10): f=1.1804	<s**2>=0.000</s**2>
770 771 772 773 774 775 776	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o	energ 1: optimi	-0.12803 -0.13622 ies and oscillato Singlet-A 0.13462 0.68560 zation and/or sec	r strengths f 3.5070 eV cond-order c	or Th-Thd- 353.53 nm orrection.	Гh(10): f=1.1804	<s**2>=0.000</s**2>
770 771 772 773 774 775 776 777	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy,	energ 1: optimi E(TD-	-0.12803 -0.13622 ies and oscillato Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2	r strengths f 3.5070 eV cond-order c 2474.5571338	or Th-Thd-7 353.53 nm orrection. 1	Гһ(10): f=1.1804	<s**2>=0.000</s**2>
770 771 772 773 774 775 776 777 778	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e	energ 1: pptimi E(TD- xcited	-0.12803 -0.13622 ies and oscillato Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic	Гh(10): f=1.1804 le RhoCI d	<s**2>=0.000 ensity.</s**2>
770 771 772 773 774 775 776 777 778 779	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State	energ 1: pptimi E(TD- xcited 2:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm	Гh(10): f=1.1804 le RhoCI d f=0.0001	<s**2>=0.000 ensity. <s**2>=0.000</s**2></s**2>
770 771 772 773 774 775 776 777 778 779 780	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145	energ 1: Deptimi E(TD- xcited 2:	-0.12803 -0.13622 ies and oscillato: Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm	Г h(10): f=1.1804 le RhoCI d f=0.0001	<s**2>=0.000 ensity. <s**2>=0.000</s**2></s**2>
770 771 772 773 774 775 776 777 778 779 780 781	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for of Total Energy, Copying the e Excited State 143 ->145 144 ->146	energ 1: pptimi E(TD- xcited 2:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm	Г h(10): f=1.1804 le RhoCI d f=0.0001	<s**2>=0.000 ensity. <s**2>=0.000</s**2></s**2>
770 771 772 773 774 775 776 777 778 779 780 781 782	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State	energ 1: Dptimi E(TD- xcited 2: 3:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000	<s**2>=0.000 ensity. <s**2>=0.000 <s**2>=0.000</s**2></s**2></s**2>
770 771 772 773 774 775 776 777 778 779 780 781 782 783	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145	energ 1: Dptimi E(TD- xcited 2: 3:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 777 778 779 780 781 782 783 784	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148	energ 1: Deptimi E(TD- xcited 2: 3:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000	<s**2>=0.000 ensity. <s**2>=0.000 <s**2>=0.000</s**2></s**2></s**2>
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for of Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State	energ 1: Dptimi E(TD- xcited 2: 3: 4:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or sec HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->148 Excited State 140 ->148	energ 1: Dptimi E(TD- xcited 2: 3: 4:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 783 784 785 786 787	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State 141 ->146 142 ->145	energ 1: pptimi E(TD- xcited 2: 3: 4:	-0.12803 -0.13622 ies and oscillato: Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for of Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State 141 ->146 142 ->145 143 ->145	energ 1: optimi E(TD- xcited 2: 3: 4:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 788 789	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->148 Excited State 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 Excited State	energ 1: optimi E(TD- xcited 2: 3: 4: 5:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9658 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 Excited State	energ 1: optimi E(TD- xcited 2: 3: 4: 5:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A 0.62700	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9658 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 143 ->145 143 ->145	energ 1: optimi E(TD- xcited 2: 3: 4: 5:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A 0.62700 -0.28821	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9458 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 785 786 787 788 789 790 791 792	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for of Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 142 ->145 143 ->145 142 ->145 143 ->145 143 ->145 142 ->145 143 ->145 Excited State 141 ->145 142 ->146 Excited State 141 ->145 142 ->146 Excited State	energ 1: optimi E(TD- xcited 2: 3: 4: 5: 6:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or sec HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A 0.62700 -0.28821 Singlet-A	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9658 eV 5.1295 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm 241.71 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061 f=0.0139	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 785 786 787 788 789 790 791 792 793	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 Excited State 141 ->145 143 ->145 Excited State 141 ->145 143 ->145 Excited State 141 ->145 142 ->145	energ 1: pptimi E(TD- xcited 2: 3: 4: 5: 6:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A 0.62700 -0.28821 Singlet-A 0.14946	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9658 eV 5.1295 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm 241.71 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061 f=0.0139	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791 792 793 794	139 ->150 140 ->166 TD-DFT excitation Excited State 143 ->146 144 ->145 This state for o Total Energy, Copying the e Excited State 143 ->145 144 ->146 Excited State 140 ->145 140 ->148 Excited State 141 ->146 142 ->145 143 ->145 Excited State 141 ->145 143 ->145 Excited State 141 ->145 143 ->145	energ 1: optimi E(TD- xcited 2: 3: 4: 5: 6:	-0.12803 -0.13622 ies and oscillator Singlet-A 0.13462 0.68560 zation and/or see HF/TD-DFT) = -2 state density for Singlet-A 0.54962 0.41215 Singlet-A 0.68229 0.13663 Singlet-A -0.27999 0.60751 0.16448 Singlet-A 0.62700 -0.28821 Singlet-A 0.14946 -0.38413	r strengths f 3.5070 eV cond-order c 2474.5571338 this state as 4.4743 eV 4.7187 eV 4.9413 eV 4.9658 eV 5.1295 eV	or Th-Thd-7 353.53 nm orrection. 1 the 1-partic 277.10 nm 262.75 nm 250.92 nm 249.67 nm 241.71 nm	Fh(10): f=1.1804 le RhoCI d f=0.0001 f=0.0000 f=0.0964 f=0.0061 f=0.0139	<\$**2>=0.000 ensity. <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000 <\$**2>=0.000

795	143 ->148		-0.12713				
796	144 ->146		0.53809				
797	Excited State	7:	Singlet-A	5.3658 eV	231.06 nm	f=0.0006	<s**2>=0.000</s**2>
798	136 ->147		-0.13272				
799	144 ->147		0.67553				
800	Excited State	8:	Singlet-A	5.6407 eV	219.80 nm	f=0.0013	<s**2>=0.000</s**2>
801	133 ->145		0.52447				
802	140 ->146		-0.40254				
803	140 ->155		-0.12979				
804	144 ->147		-0.10696				
805	Excited State	9:	Singlet-A	5.7387 eV	216.05 nm	f=0.1112	<s**2>=0.000</s**2>
806	136 ->145		0.21706				
807	143 ->146		0.58147				
808	144 ->148		-0.28253				
809	Excited State	10:	Singlet-A	5.8126 eV	213.30 nm	f=0.0303	<s**2>=0.000</s**2>
810	136 ->146		-0.10062				
811	137 ->145		0.64223				
812	140 ->147		0.16350				
813	Excited State	11:	Singlet-A	5.8558 eV	211.73 nm	f=0.0002	<s**2>=0.000</s**2>
814	143 ->147		-0.18070				
815	143 ->150		0.26175				
816	144 ->149		0.59726				
817	Excited State	12:	Singlet-A	6.0214 eV	205.91 nm	f=0.0011	<s**2>=0.000</s**2>
818	133 ->145		-0.14580				
819	140 ->146		-0.11898				
820	143 ->149		0.36392				
821	144 ->150		0.50896				
822	144 ->152		-0.15647				
823	Excited State	13:	Singlet-A	6.1099 eV	202.92 nm	f=0.0038	<s**2>=0.000</s**2>
824	133 ->145		0.39510				
825	140 ->146		0.49361				
826	140 ->155		0.14768				
827	143 ->149		0.10918				
828	144 ->150		0.14781				
829	Excited State	14:	Singlet-A	6.1768 eV	200.73 nm	f=0.0000	<s**2>=0.000</s**2>
830	137 ->147		0.38238				
831	142 ->147		0.10202				
832	143 ->147		0.53709				
833	143 ->150		0.10905				
834	144 ->149	4 -	0.13514		405 54	6 0 00 (=	
835	Excited State	15:	Singlet-A	6.3335 eV	195.76 nm	f=0.0067	<s**2>=0.000</s**2>
830	136 ->145		0.30318				
837 929	141 ->145		-0.20038				
838 820	141 ->148		-0.16839				
839	142 ->146		-0.28521				
840 871	143 ->155		0.18149				
041 842	144 ->148	17.	0.43/90	6 2022 -17	104.26	f_0 0000	~C**7> _0 000
042 843		16:	Singlet-A	6.3823 eV	194.26 nm	r=0.0002	<5***2>=0.000
043 844	141 ->14/		0.10001				
0 44 845	141 ->150 171 \150		-0.40030				
0 4 5 8/16	141 ->132		0.12700				
040	142 ->149		0.4/299				

847	Excited State	17:	Singlet-A	6.3871 eV	194.12 nm	f=0.0000	<s**2>=0.000</s**2>
848	141 ->149		0.47975				
849	142 ->147		0.13512				
850	142 ->150		-0.39778				
851	142 ->152		0.12746				
852	143 ->150		-0.10594				
853	Excited State	18:	Singlet-A	6.4570 eV	192.01 nm	f=0.0031	<s**2>=0.000</s**2>
854	137 ->145		-0.10085				
855	141 ->146		0.50008				
856	142 ->145		0.30150				
857	142 ->148		0.21920				
858	143 ->148		0.17744				
859	144 ->155		0.19138				
860	Excited State	19:	Singlet-A	6.5242 eV	190.04 nm	f=0.0757	<s**2>=0.000</s**2>
861	141 ->145		0.20347				
862	141 ->148		0.17401				
863	142 ->146		0.44590				
864	143 ->146		0.20349				
865	144 ->148		0.37967				
866	Excited State	20:	Singlet-A	6.6944 eV	185.21 nm	f=0.0010	<s**2>=0.000</s**2>
867	136 ->145		0.55620				
868	137 ->146		-0.11522				
869	141 ->145		0.10055				
870	142 ->146		0.20532				
871	143 ->146		-0.24397				
872	144 ->145		0.11098				
873	144 ->148		-0.10053				
874	Excited State	21:	Singlet-A	6.8314 eV	181.49 nm	f=0.2001	<s**2>=0.000</s**2>
875	140 ->147		-0.27549	01001101	101117 1111	1 0.2001	0 2 0.000
876	141 ->146		-0.26409				
877	143 ->148		0.29197				
878	144 ->153		-0.12434				
879	144 ->155		0.43394				
880	Excited State	22:	Singlet-A	6.8374 eV	181.33 nm	f=0.0000	<s**2>=0.000</s**2>
881	117 ->146		-0.15989				
882	118 ->145		0.37991				
883	123 ->146		0.13395				
884	124 ->145		0.27591				
885	133 ->146		0.36296				
886	139 ->145		-0.17930				
887	Excited State	23:	Singlet-A	6.9028 eV	179.61 nm	f=0.0064	<s**2>=0.000</s**2>
888	114 ->145		-0.14222				
889	117 ->145		-0.33787				
890	118 ->146		0.23649				
891	119 ->145		0.12307				
892	123 ->145		0.34030				
893	124 ->146		0.21139				
894	138 ->145		-0.26525				
895	139 ->146		-0.12211				
896	Excited State	24:	Singlet-A	6.9601 eV	178.14 nm	f=0.0000	<s**2>=0.000</s**2>
897	137 ->147		-0.12830		_, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 0.0000	2 _ 0.000
898	143 ->150		0.22079				

899	143 ->178		-0.11140				
900	144 ->156		0.14121				
901	144 ->158		0.47414				
902	144 ->163		-0.18195				
903	144 ->169		0.20726				
904	Excited State	25:	Singlet-A	7.0702 eV	175.36 nm	f=0.0000	<s**2>=0.000</s**2>
905	111 ->145		-0.13921				
906	117 ->146		0.10414				
907	123 ->146		-0.17663				
908	124 ->145		-0.21380				
909	133 ->146		0.44611				
910	133 ->155		0.15483				
911	139 ->145		0.27099				
912	144 ->158		-0.12091				
913	Excited State	26:	Singlet-A	7.1966 eV	172.28 nm	f=0.0000	<s**2>=0.000</s**2>
914	118 ->145		-0.12226				
915	137 ->147		-0.48892				
916	139 ->145		-0.11810				
917	143 ->147		0.32931				
918	144 ->158		-0.19148				
919	144 ->159		-0.10344				
920	Excited State	27:	Singlet-A	7.2334 eV	171.41 nm	f=0.0000	<s**2>=0.000</s**2>
921	110 ->146		-0.10281				
922	111 ->145		-0.20097				
923	114 ->146		-0.13037				
924	115 ->145		-0.16591				
925	117 ->146		-0.17092				
926	118 ->145		0.35564				
927	133 ->146		-0.26648				
928	133 ->155		-0.10352				
929	137 ->147		-0.15400				
930	139 ->145		0.26259				
931	143 ->147		0.11741				
932	Excited State	28:	Singlet-A	7.2689 eV	170.57 nm	f=0.0132	<s**2>=0.000</s**2>
933	133 ->147		-0.12287				
934	137 ->146		0.62523				
935	137 ->155		0.12744				
936	143 ->146		-0.11783				
937	144 ->148		-0.10865				
938	Excited State	29:	Singlet-A	7.2892 eV	170.09 nm	f=0.0107	<s**2>=0.000</s**2>
939	140 ->147		-0.12446				
940	143 ->151		0.18465				
941	143 ->154		-0.16801				
942	143 ->156		0.14777				
943	143 ->165		0.10297				
944	144 ->150		0.20034				
945	144 ->152		0.30387				
946	144 ->153		0.28802				
947	144 ->157		-0.21871				
948	144 ->166	20	0.15341		1(0.41	6 0 0000	-0++C- 0.000
949	Excited State	30:	Singlet-A	7.3187 eV	169.41 nm	t=0.0002	<5**2>=0.000
930	143 ->152		0.18274				

951	143 ->153		0 16843				
952	143 ->157		-0 14315				
953	144 ->151		0.34681				
954	144 ->154		-0 29297				
055	144 \156		0.21631				
955	144 ->150		0.21031				
950	144 ->103		0.14280				
937	144 ->165		0.15538				
958	144 ->169		-0.18547				
959	TD-DFT excitation	energ	ies and oscillato	r strengths f	or Th3(10):		
960	Excited State	1:	Singlet-A	3.2352 eV	383.23 nm	f=1.1501	<s**2>=0.000</s**2>
961	143 ->146		0.10496				
962	144 ->145		0.69331				
963	This state for a	ontimi	zation and/or sec	ond-order o	orrection		
964	Total Energy	F(TD-	HF/TD-DFT =	-2442 483974	194		
965	Conving the e	vcited	state density for	this state as	the 1-nartic	le RhoCI d	ensity
966	Evolution Evolution	λεπεα γ.	Singlet A	1 4727 N	277 20 nm	f=0.0114	< <u>\$**7</u> ~-0.000
967	140 \145	۷.	0 12771	4.4/2/ 80	277.20 1111	1-0.0114	<5 2>=0.000
907	140 ->145		-0.13771				
900	143 ->145		0.41305				
909	144 ->146	2	0.53540	4.0600 11	3 40 0 7	6 0 0000	-C**O 0.000
970	Excited State	3:	Singlet-A	4.9600 eV	249.97 nm	f=0.0009	<5**2>=0.000
9/1	139 ->146		-0.12084				
972	140 ->145		0.12421				
973	142 ->145		0.24007				
974	143 ->145		0.52412				
975	144 ->146		-0.33903				
976	Excited State	4:	Singlet-A	5.0025 eV	247.84 nm	f=0.0001	<s**2>=0.000</s**2>
977	140 ->145		0.18829				
978	141 ->146		-0.15922				
979	142 ->145		0.57887				
980	143 ->145		-0.17322				
981	144 ->146		0.24500				
982	Excited State	5:	Singlet-A	5.1535 eV	240.58 nm	f=0.0025	<s**2>=0.000</s**2>
983	140 ->146		0.11974				
984	141 ->145		0.61946				
985	142 ->146		-0 24148				
986	144 ->149		0 12542				
987	Excited State	6.	Singlet-A	5 2003 eV	238 42 nm	f=0.0002	<\$**2>=0.000
988	130 ->1/8	0.	0 11003	5.2000 C V	200.42 1111	1 0.0002	0 2 0.000
080	144 \148		0.65392				
000	144 ->140		0.00000				
990	144 ->150	7	0.20644		225 45	(0 0000	< <u>-</u> C**2> 0.000
991	Excited State	7:	Singlet-A	5.2659 eV	235.45 nm	f=0.2023	<5**2>=0.000
992	140 ->145		0.59885				
993	141 ->146		0.21978				
994	142 ->145		-0.17621				
995	143 ->149		0.10311				
996	144 ->146		0.11921				
997	144 ->157		-0.12382				
998	Excited State	8:	Singlet-A	5.3190 eV	233.10 nm	f=0.0000	<s**2>=0.000</s**2>
999	143 ->150		-0.22838				
1000	144 ->147		0.63700				
1001	Excited State	9:	Singlet-A	5.4861 eV	226.00 nm	f=0.0009	<s**2>=0.000</s**2>

1002	143 ->147		-0.30436				
1003	144 ->148		-0.19118				
1004	144 ->150		0.56937				
1005	Excited State	10:	Singlet-A	5.7371 eV	216.11 nm	f=0.0898	<s**2>=0.000</s**2>
1006	139 ->145		-0.19445				
1007	141 ->145		-0.14198				
1008	143 ->146		0.38087				
1009	144 ->149		0.51601				
1010	Excited State	11:	Singlet-A	6.0924 eV	203.51 nm	f=0.0080	<s**2>=0.000</s**2>
1011	139 ->145		0.51640				
1012	140 ->146		0.11207				
1013	143 ->146		-0.24081				
1014	143 ->157		-0.10360				
1015	144 ->149		0.35163				
1016	Excited State	12:	Singlet-A	6.2170 eV	199.43 nm	f=0.0000	<s**2>=0.000</s**2>
1017	140 ->148		0.43473				
1018	140 ->150		0.17204				
1019	142 ->148		0.35622				
1020	143 ->148		-0.32545				
1021	Excited State	13:	Singlet-A	6.2258 eV	199.15 nm	f=0.0001	<s**2>=0.000</s**2>
1022	140 ->147		-0.21337				
1023	141 ->148		-0.15016				
1024	141 ->150		0.42272				
1025	142 ->147		0.41946				
1026	143 ->147		-0 14830				
1027	Excited State	14.	Singlet-A	6 2301 eV	199 01 nm	f=0 0000	<s**2>=0 000</s**2>
1028	140 ->148	11.	0 16562	0.2001 01	1777.01 1111	1 0.0000	0 2 0.000
1029	140 ->150		-0.16123				
1030	141 ->147		0 47248				
1031	142 ->150		0.38420				
1032	143 ->150		-0 12741				
1033	Excited State	15.	Singlet-A	6.3848 eV	194 19 nm	f=0 0000	<s**2>=0 000</s**2>
1034	139 ->147	10.	0 10077	0.0010 0 0	171.171111	1 0.0000	0 2 0.000
1035	143 ->150		0.20691				
1036	144 ->158		0.12446				
1030	144 ->160		-0 29750				
1038	144 ->162		0.52143				
1030	144 ->166		-0.10013				
1037	144 ->173		-0.10046				
1040	Excited State	16.	-0.10040 Singlet-A	6 5583 eV	189 05 nm	f=0 0785	<5**2>=0 000
1041	139 ->145	10.	_0 21790	0.0000 CV	107.05 1111	1-0.0705	<0 2>=0.000
1042	140 ->146		0.22034				
1043	140 ->140		0.22034				
1044	141 ->145		0.17735				
1045	142 ->145		-0.13030				
1047	142 -~140		-0.28815				
1047	143 -~140		-0.20013				
1040	144 ->149 Excited State	17.	0.1374/ Sinalat A	6 5091 -17	187 01 nm	f-0.0572	~⊆**? ∖_∩ ∩∩∩
1049		1/:	0 22005	0.0901 eV	107.71 1111	1-0.0372	~3 2/=0.000
1050	140 ->145 141 \146		0.22903				
1051	141 ->140 142 \145		-0.33047				
1052	142 ->143 142 \140		-0.20032				
1033	142 ->149		0.104/1				

1054	143 ->149		-0.25489				
1055	144 ->157		0.35732				
1056	144 ->163		0.12281				
1057	Excited State	18:	Singlet-A	6.7410 eV	183.93 nm	f=0.0047	<s**2>=0.000</s**2>
1058	121 ->146		-0.15110				
1059	124 ->145		-0.43713				
1060	126 ->145		0.48565				
1061	Excited State	19:	Singlet-A	6.7490 eV	183.71 nm	f=0.0404	<s**2>=0.000</s**2>
1062	139 ->145		0.32421				
1063	140 ->146		0.17189				
1064	142 ->146		0.32710				
1065	143 ->146		0.41507				
1066	144 ->145		-0.11702				
1067	144 ->149		-0.18198				
1068	Excited State	20:	Singlet-A	6.7642 eV	183.29 nm	f=0.0000	<s**2>=0.000</s**2>
1069	140 ->148		0.10227				
1070	143 ->148		0.12138				
1071	143 ->168		-0.10086				
1072	144 ->151		0.14359				
1073	144 ->153		-0.14284				
1074	144 ->156		0.16845				
1075	144 ->160		0.50528				
1076	144 ->162		0.26350				
1077	Excited State	21:	Singlet-A	6.8325 eV	181.46 nm	f=0.0029	<s**2>=0.000</s**2>
1078	139 ->145		-0.12983				
1079	140 ->146		0.55172				
1080	141 ->145		-0.19479				
1081	141 ->149		0.24496				
1082	142 ->146		-0.10988				
1083	144 ->169		0.10752				
1084	144 ->172		0.12705				
1085	Excited State	22:	Singlet-A	6.8371 eV	181.34 nm	f=0.0005	<s**2>=0.000</s**2>
1086	143 ->151		0.15153				
1087	143 ->153		-0.14615				
1088	143 ->156		0.12087				
1089	144 ->150		-0.12148				
1090	144 ->152		0.39264				
1091	144 ->154		-0.35542				
1092	144 ->155		0.26005				
1093	144 ->164		0.14586				
1094	Excited State	23:	Singlet-A	6.8658 eV	180.58 nm	f=0.0000	<s**2>=0.000</s**2>
1095	143 ->152		0.13304				
1096	143 ->154		-0.13296				
1097	143 ->155		0.10352				
1098	144 ->151		0.37744				
1099	144 ->153		-0.31825				
1100	144 ->156		0.19876				
1101	144 ->160		-0.23391				
1102	144 ->166		0.17936				
1103	144 ->175		0.12662				
1104	Excited State	24:	Singlet-A	6.9527 eV	178.33 nm	f=0.5434	<s**2>=0.000</s**2>
1105	140 ->149		0.13155				

1106	141 ->146		0.40916				
1107	142 ->145		0.13324				
1108	142 ->149		-0.18033				
1109	143 ->149		-0.18570				
1110	144 ->157		0.40079				
1111	144 ->163		0.11667				
1112	144 ->170		-0.13318				
1113	144 ->171		0.11015				
1114	Excited State	25:	Singlet-A	6.9796 eV	177.64 nm	f=0.0000	<s**2>=0.000</s**2>
1115	121 ->145		0.51090				
1116	125 ->145		0.32714				
1117	126 ->146		-0.25877				
1118	Excited State	26:	Singlet-A	7.0175 eV	176.68 nm	f=0.0009	<s**2>=0.000</s**2>
1119	139 ->148		0.10075				
1120	143 ->147		-0.17571				
1121	143 ->158		-0.12106				
1122	143 ->162		-0.22564				
1123	144 ->150		-0.13309				
1124	144 ->159		-0.10324				
1125	144 ->164		-0.28123				
1126	144 ->168		0.44776				
1127	Excited State	27:	Singlet-A	7.1144 eV	174.27 nm	f=0.0000	<s**2>=0.000</s**2>
1128	140 ->148		0.24262				
1129	142 ->148		0.10358				
1130	143 ->148		0.45693				
1131	143 ->150		0.21545				
1132	144 ->162		-0.23352				
1133	144 ->165		0.16471				
1134	144 ->173		-0.14445				
1135	Excited State	28:	Singlet-A	7.1596 eV	173.17 nm	f=0.0020	<s**2>=0.000</s**2>
1136	114 ->145		-0.17717				
1137	118 ->145		-0.28277				
1138	119 ->145		0.10392				
1139	121 ->146		0.11144				
1140	124 ->145		-0.26405				
1141	125 ->146		0.23664				
1142	126 ->145		-0.26854				
1143	126 ->149		-0.11796				
1144	137 ->145		0.28692				
1145	138 ->146		-0.12358				
1146	Excited State	29:	Singlet-A	7.2077 eV	172.02 nm	f=0.0083	<s**2>=0.000</s**2>
1147	139 ->146		-0.13113				
1148	141 ->146		0.12497				
1149	143 ->169		-0.11253				
1150	143 ->172		-0.13142				
1151	144 ->157		0.16827				
1152	144 ->170		0.57395				
1153	144 ->171		-0.19441				
1154	Excited State	30:	Singlet-A	7.2624 eV	170.72 nm	f=0.0000	<s**2>=0.000</s**2>
1155	112 ->145		0.25008				
1156	116 ->145		0.13405				
1157	120 ->145		-0.10514				

1158	121 ->145	0.23442
1159	124 ->146	0.14355
1160	125 ->145	-0.25429
1161	137 ->146	-0.13388
1162	138 ->145	0.35980
1163	143 ->148	-0.12958

1164 References

- 1165 1. Lavigueur, C.; Foster, E.J.; Williams, V.E. A simple and inexpensive capillary furnace for variable-1166 temperature X-ray diffraction. *J. Appl. Crystallogr.* **2008**, *41*, 214–216.
- 11672.Boucher, N.; Leroy, J.; Sergeyev, S.; Pouzet, E.; Lemaur, V.; Lazzaroni, R.; Cornil, J.; Geerts, Y.H.; Sferrazza,1168M. Mesomorphism of dialkylterthiophene homologues. Synth. Met. 2009, 159, 1319–1324.
- 1169 3. Bruker, APEX3, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- 1170 4. G. M. Sheldrick, TWINABS (Version 2012/1), University of Gçttingen, Germany, 1996.
- 11715.Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71,11723–8.
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. *J. Appl. Crystallogr.* 2011, 44, 1281–1284.
- 1175 7. Farrugia, L.J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854.
- Fenn, T.D.; Ringe, D.; Petsko, G.A. POVScript+: a program for model and data visualization using
 persistence of vision ray-tracing. *J. Appl. Crystallogr.* 2003, *36*, 944–947.
- 1178 9. Lercher, C.; Röthel, C.; Roscioni, O.M.; Geerts, Y.H.; Shen, Q.; Teichert, C.; Fischer, R.; Leising, G.; Sferrazza,
 1179 M.; Gbabode, G.; et al. Polymorphism of dioctyl-terthiophene within thin films: The role of the first
 1180 monolayer. *Chem. Phys. Lett.* 2015, 630, 12–17.
- 1181 10. Van Bolhuis, F.; Wynberg, H.; Havinga, E.E.; Meijer, E.W.; Staring, E.G.J. The X-ray structure and MNDO calculations of *α*-terthienyl: A model for polythiophenes. *Synth. Met.* **1989**, *30*, 381–389.
- 1183
 11. Resch-Genger, U.; Rurack, K. Determination of the photoluminescence quantum yield of dilute dye
 solutions (IUPAC Technical Report). *Pure Appl. Chem.* 2013, *85*, 2005–2013.
- 1185
 12. Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC 1186
 Technical Report). *Pure Appl. Chem.* 2011, *83*, 2213–2228.
- 1187
 13. Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* 1994, 98, 11623–11627.
- 118914.Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98,11905648–5652.
- 119115.Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: an overview of a new1192method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999,1193464, 211–226.
- 1194 16. Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the 1195 polarizable continuum model. *J. Comput. Chem.* **1998**, *19*, 404–417.
- 1196 17. Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies
 by the polarizable continuum model. *J. Chem. Phys.* 1997, 107, 3210–3221.
- 119818.Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion1199of AB initio molecular potentials for the prevision of solvent effects. *Chem. Phys.* 1981, 55, 117–129.
- 1200 19. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 1201 Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. 1202 Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. 1203 Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. 1204 Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. 1205 Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. 1206 Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. 1207 Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. 1208 Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. 1209 L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence
 quality for atoms Li to Kr. *J. Chem. Phys.* 1994, *100*, 5829–5835.
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J.
 Chem. Phys. 1992, 97, 2571–2577.
- 1214 22. Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density1215 functional theory for the calculation of excitation energies of large molecules. *J. Chem. Phys.* 1998, 109, 8218–
 1216 8224.
- 1217 23. Casida, M.E. Time-Dependent Density Functional Response Theory for Molecules. In *Recent Advances in Density Functional Methods;* Recent Advances in Computational Chemistry; WORLD SCIENTIFIC, 1995;
 1219 Vol. Volume 1, pp. 155–192 ISBN 978-981-02-2442-4.
- 1220 24. Huff, G.S.; Gallaher, J.K.; Hodgkiss, J.M.; Gordon, K.C. No single DFT method can predict Raman cross-sections, frequencies and electronic absorption maxima of oligothiophenes. *Synth. Met.* 2017, 231, 1–6.
- 1222 25. Jacquemin, D.; Michaux, C.; Perpète, E.A.; Maurel, F.; Perrier, A. Photochromic molecular wires: Insights
 1223 from theory. *Chem. Phys. Lett.* 2010, 488, 193–197.
- 122426. Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-1225attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, 393, 51–57.