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Abstract: Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of
carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine,
due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of
stem cells. In this study, we demonstrate the influence of astaxanthin on the proliferation of
adipose-derived mesenchymal stem cells in tissue-engineered constructs. The tissue engineered
scaffolds were fabricated using photopolymerizable gelatin methacryloyl (GelMA) with different
concentrations of astaxanthin. The effects of astaxanthin on cellular proliferation in two-dimensional
environments were assessed using alamar blue assay and reverse transcription polymerase chain
reaction (RT-PCR). Then, rheological properties, chemical structures and the water absorption of
the fabricated astaxanthin-incorporated GelMA hydrogels were characterized using NMR analysis,
rheological analysis and a swelling ratio test. Finally, the influence in three-dimensional environments
of astaxanthin-incorporated GelMA hydrogels on the proliferative potentials of adipose-derived
stem cells was assessed using alamar blue assay and the confocal imaging with Live/dead staining.
The experimental results of the study indicate that an addition of astaxanthin promises to induce
stem cell potency via proliferation, and that it can be a useful tool for a three-dimensional culture
system and various tissue engineering applications.

Keywords: Astaxanthin; Mesenchymal stem cells; Proliferation; Gelatin methacryloyl; Hydrogel;
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1. Introduction

Recently, bioprospecting marine-based biomaterials for tissue engineering applications have
gained momentum due to a wide array of bioactivity, availability and economic viability [1]. Astaxanthin
(3, 3’-dihydroxy-β, β-carotene-4, 4’-dione), a red lipophilic pigment belonging to the xanthophyllic
family of carotenoids, can be derived from marine microorganisms and species such as the microalgae
Haematococcus pluvialis. Its unique structure of the ketone, hydroxyl groups and the polyene chains can
convert unstable electrons into a stable state and then terminate the free radical chain in the living
organism to exhibit antioxidant activities.

It therefore has beneficial properties, such as anti-inflammatory activity, by blocking the NF-κB
dependent signaling pathway and immune enhancement by scavenging oxygen radicals [2,3]. It has
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also been shown that astaxanthin can be used for a broad spectrum of pharmacological and therapeutic
applications, due to its outstanding anti-cancer and anti-apoptotic properties compared to other
antioxidant carotenoids. Recent studies demonstrated that astaxanthin can change stem cell potency
through the PI3K and MEK signaling pathways [4,5]. Particularly, it can enhance the differentiation
of adipose-derived mesenchymal stem cells into oligodendrocytes, osteoblasts, chondrocytes and
adipocytes [6–8]. These studies indicate the feasibility of the use of astaxanthin in various applications
of tissue engineering and regenerative medicine.

Tissue-engineered three-dimensional scaffolds allow for a uniform interaction of bioactive
metabolite with native cells providing a close resemblance of the in vivo microenvironment.
Gelatin methacryloyl (GelMA) has been extensively used in tissue engineering applications
requiring in vivo mimicry and three-dimensional cell culture. GelMA has RGD sites
(Arg-Gly-Asp) for cell attachment, sequences of matrix metalloproteinase for biodegradability,
excellent biocompatibility and tunable physical properties. As a photopolymer, it forms
covalently cross-linked hydrogels when exposed to ultraviolet (UV) light in the presence
of photoinitiators such as Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) and
2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) [9–16]. Promising results
have been observed, in particular, with stem cell proliferation, cellular migration and viability, as it
mimics the natural extracellular matrix (ECM) by providing a suitable niche and microenvironment.
Many studies in tissue engineering and regenerative medicine have shown that stem cells encapsulated
in three-dimensional GelMA scaffolds can be used for the treatment of various diseases and have
exhibited positive impacts [17–20]. Among the various stem cell types, adipose-derived mesenchymal
stem cells (ADMSCs) display superior properties over other stem cells, namely: Easy isolation, minimal
invasiveness, great safety, no immune rejection with autologous cells and a self-renewal capacity [21,22].

In this study, we hypothesize that astaxanthin increases the cell proliferation of ADMSCs in
three-dimensional environments. The objective is to study the effects of astaxanthin on the proliferative
potential of ADMSCs incorporated with GelMA. First, the astaxanthin was tested in two-dimensional
environments to assess the cellular proliferation and stemness-related gene expression, with and
without astaxanthin, using alamar blue assay and RT-PCR analysis. In addition, three-dimensional
GelMA scaffolds with and without astaxanthin were fabricated and physiochemically characterized
by NMR analysis, rheological analysis and a water absorption test. Finally, cellular proliferation and
behavior in the astaxanthin-combined GelMA scaffolds were assessed using alamar blue assay and
confocal imaging with Live/dead staining.

2. Results and Discussions

2.1. Cellular Proliferation Test in Two-Dimensional Environments

Figure 1 illustrates the effect of various concentrations of astaxanthin (0, 0.5, 5, 50, and 500 ng/ml)
upon cellular proliferation. An overall increase in cell proliferation was seen across all groups in a
time-dependent manner. In specific, the ADMSCs in the concentration of 0.5 ng/ml showed the highest
proliferation (Figure 1). A decrease in cellular proliferation was observed in higher concentrations (500
ng/ml) with time. In addition, ADMSCs were treated with astaxanthin to support quantitative results
at various concentrations as shown in Figure S1. Therefore, the astaxanthin concentration of 0.5 ng/ml
was determined as the optimal concentration for further tests.

2.2. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

In various other studies, it has been demonstrated that multiple antioxidants such as
N-acetyl-L-cysteine, L-ascorbic acid 2-phosphate, sulforaphane and epigallocatechin gallate have
shown positive influences on cellular proliferation, as well as the stemness of stem cells [23–25].
Antioxidants can improve genomic stability and also promote proliferation by raising the number of
cells in the S phage of the ADMSCs [26]. To evaluate the influence of astaxanthin, which has antioxidant



Materials 2019, 12, 2416 3 of 12

properties on the proliferation of ADMSCs, reverse transcription-PCR (RT-PCR) for the expression
of molecular markers, including proliferation-related transcription factors and stemness genes, was
performed. As shown in Figure 2a,b, the treatment of astaxanthin in the concentration of 0.5 ng/ml
for one day increases the upregulation of stemness genes (SOX2 and KLF4) and proliferation-related
transcription factors (Rex1, c-MYC, and Wnt3a) [5]. In particular, the SOX2 gene was markedly
over expressed, which is known for its role in the maintenance of pluripotency. c-MYC, known to
transcriptionally amplify SOX2 target genes to regulate the self-renewal capacity of stem cells, was
also upregulated [27]. Rex1 is critically important for maintaining proliferation in mesenchymal
stem cells through the suppression of p38 MAPK signaling via the direct suppression of MKK3 [28].
ADMSCs treated with 0.5 ng/ml of astaxanthin indicated an overexpression of Rex1 genes because of
the increased proliferation. Wnt3a was also upregulated, which indicated cellular proliferation was
promoted through the wingless-related integration site (Wnt) signaling pathway [29]. Overexpression
of KLF4, a direct target of the MAPK signaling pathway, improves the stemness of stem cells for
self-renewal. Therefore, these results show that astaxanthin can enhance cellular proliferation and
maintain cell stemness.Materials 2019, 12, x FOR PEER REVIEW 3 of 13 
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2.3. Characterization of Astaxanthin-Incorporated GelMA Scaffolds

2.3.1. Fabrication of Astaxanthin-Incorporated GelMA Scaffolds

Gelatin was reacted with methacrylic anhydride to graft methacryloyl groups onto amine and
hydroxyl groups as seen in Figure 3. Then, modified-gelatin solution was incorporated with astaxanthin.
Finally, GelMA scaffolds combined with astaxanthin were fabricated by UV irradiation to crosslink
polymeric networks using photoinitiator (Irgacure 2959).
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Figure 3. Schematic image of the fabrication of astaxanthin-incorporated gelatin methacryloyl
(GelMA) scaffolds.

2.3.2. Degree of Methacrylation

The degree of substitution of free amino groups in samples can be modulated by the amount of
methacrylic anhydride and the reaction times for photopolymerization. The proton nuclear magnetic
resonance (1H NMR) confirms the peaks of the synthesized hydrogen atoms in methacrylate groups.

For the quantification of the degree of substitution, the spectra were normalized to the
phenylalanine signal (7.0–7.5 ppm), which represents the concentrations of gelatin. New peaks
(5.5 and 5.8 ppm) appeared in the spectrum of GelMA comparing to that of gelatin, which indicates
the acrylic protons (2H) of methacrylic methacryloyl functions (box A + B in Figure 4). The peaks of
GelMA with and without astaxanthin shown in box C were corresponded to the methylene protons
(2H) of unreacted lysine groups (3.1 ppm) and were slightly decreased compared to that of gelatin.
Also, in box D, the peak was observed only in GelMA with astaxanthin (2.7–2.8 ppm), indicating the
presence of astaxanthin [30,31]. The peaks in box E (1.98 ppm) for the methyl protons (3H) groups
of methacrylamide grafts show methacrylation in GelMA. The phenylalanine peaks (7.0–7.5 ppm)
were set as the internal reference to normalize the amine signals (3.1 ppm) of methacrylated lysine.
The degree of substitution with the methacrylate group used in this study was 56.65% yield by the 1H
NMR spectrum [11,32,33]. Therefore, the methacrylate groups have been successfully grafted to the
gelatin as shown in box A + B, C, and E well incorporated with astaxanthin in GelMA as presented in
box D.

2.3.3. Rheological Characterization

Before the assessment of storage moduli, strain amplitude sweeps (0.01–100%) were first performed
to choose the linear viscoelastic region. A time-sweep test was performed to confirm that the object is
maintaining its time-stable form for five minutes. All of the samples maintained its storage moduli in
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the time-dependent experiment as shown in Figure 5a. In the temperature-dependent rheological test
in Figure 5b, the storage moduli of GelMA samples with and without astaxanthin decrease very slightly
as the temperature increases (red and green). However, as thermo-sensitive polymer, the storage
modulus of gelatin (blue) was dramatically reduced over 30 ◦C [16]. These results elucidated that
GelMA-based hydrogels withstood gradient temperature conditions better than gelatin hydrogels
because of a more robust networking of crosslinking. GelMA showed slightly decreased storage moduli
(G’) in a frequency sweep test in Figure 5c,d (GelMA only: 275 ± 1 Pa and GelMA with astaxanthin:
230 ± 1.9 Pa at 1 rad/s) frequency range possibly due to the scavenging property of astaxanthin thereby
reducing free radicals generation.
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2.3.4. Swelling Behaviors

In hydrogel, the swelling ability is an essential aspect of tissue engineering, since it affects various
parameters including surface properties, mobility and solute diffusion [13]. The swelling behaviors of
GelMA with astaxanthin (red) and without astaxanthin (black) are shown in Figure 6. GelMA with
0.5 ng/ml of astaxanthin exhibited a more increased swelling ratio than did the control. Specifically,
the swelling ratio of all samples increased during the initial 1 h, and almost reached an equilibrium
after 5 h of immersion. Water absorption in hydrogels was reduced significantly after 1 h. This can be
attributed to the antioxidant property of astaxanthin, wherein the ratio of radical polymerization of
the macromers was reduced by quenching the radical formed, as demonstrated by Chiellini et al. [34].
The experimental results may indicate astaxanthin containing ketone and hydroxyl groups possibly
scavenges the free radicals in GelMA, which can make an effect of a slight increase of water absorption.
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2.4. Cellular Proliferation in Astaxanthin-Incorporated GelMA Scaffolds

The alamar blue assay investigated the cellular proliferation of adipose-derived mesenchymal
stem cells encapsulated in GelMA hydrogels with astaxanthin (0.5 ng/ml and 50 ng/ml) and without
astaxanthin (control) on day 1, 4, and 7 (Figure 7). The control graph shows an increase in cellular
proliferation over time, which implies a non-toxicity and a cell attachment of GelMA-based hydrogels.
Compared to our control, astaxanthin incorporated into GelMA significantly enhanced the cellular
proliferation of ADMSCs on day 4 for both concentrations (0.5 ng/ml and 50 ng/ml). However, a slight
dip was noticed on day 7 in 50 ng/ml of astaxanthin, which could be overdosed to promote cellular
proliferation. ADMSCs cultured in three-dimensional GelMA-based hydrogel also reflected that
0.5 ng/ml of astaxanthin was the optimal concentration at different time points as observed in the
two-dimensional cell culture experiment.

2.5. Confocal Imaging of ADMSCs in GelMA Hydrogels

Figure 8 shows confocal images of the ADMSCs in 5% GelMA hydrogels using Live/dead staining
to demonstrate the difference of cell viability with (Figure 8b) and without the interaction with
astaxanthin (Figure 8a) after 8 days. The dimensions of all samples are 10 mm in diameter and 2 mm
in height. The width, depth and height of the scanning area of the confocal microscope are 1272.79 µm,
276 µm, and 1272.79 µm, respectively. The first row of the images of Figure 8 clearly shows that
ADMSCs thrived in both the hydrogels, and that the photo-crosslinking treatment of the hydrogel did
not produce any significant deleterious effects on cell viability. In Figure 8, there is an obvious increase
in the number of cells with an even spread in the GelMA hydrogels with astaxanthin compared to
the control without astaxanthin. Evidently, ADMSCs treated with astaxanthin show more robust cell
morphology with elongation. Moreover, more filopodia were observed in Figure 8b, indicating an early
interconnected network of cells within the hydrogel. Also in other studies, it has been demonstrated
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that major carotenoids including astaxanthin, carotene, lutein, zeaxanthin and lycopene stimulate gap
junctional intercellular communication, changing the phosphorylation pattern of connexin [35,36].
This could be attributed to the presence of astaxanthin in a three-dimensional hydrogel which induces
improved cell-cell communication, thus exhibiting a desirable trait in three-dimensional scaffolds that
mimics in vivo environments [18,19].
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concentrations of astaxanthin (0, 0.5, and 50 ng/ml) on day 1, 4, and 7. Data are presented as
the mean ± standard deviation (n = 4). (***p < 0.001, *p < 0.05).
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3. Materials and Methods

3.1. Cell Culture with Astaxanthin Reagent

Astaxanthin (3, 3’-dihydroxy-β, β-carotene-4, 4’-dione) derived from the algae Haematococcus
Pluvialis (Sigma-Aldrich, MO, IL, USA) was solubilized in dimethyl sulfoxide (DMSO) [37]. A stock
solution of astaxanthin at 10 mg/ml were prepared and filtered with 0.22 µm nylon membrane filter
(Jet biofil, Guangzhou, China). Further, astaxanthin at various concentrations (i.e., 0, 0.5, 5, 50, and 500
ng/ml) were studied in vitro for cell proliferation. Rabbit adipose-derived mesenchymal stem cells
(Cyagen, Guangdong, China) were cultured in a basal culture medium of Dulbecco’s Modified Eagle’s
medium (DMEM), supplemented with 4.5g/L glucose, L-glutamine, sodium pyruvate, 10% fetal bovine
serum (FBS), 1% penicillin-streptomycin, and 1% non-essential amino acids. Cells were incubated in a
5% CO2 incubator at 37 ◦C and 95% humidity. Passages of 5 and 6 were used in all experiments.

3.2. GelMA Synthesis

Briefly, a 10% (w/v) gelatin solution of type A (porcine, Bloom strength ~300, Sigma-Aldrich, USA)
was dissolved under constant stirring in Dulbecco’s phosphate buffered saline (PBS) at 50 ◦C. Further,
methacrylic anhydride (Sigma-Aldrich, MO, IL, USA) was added to gelatin solution at 50 ◦C. Post
rigorous stirring for 1 hour, the reaction was stopped with PBS (5×). The mixture was then dialyzed
through a 14 kDa molecular-weight-cutoff (MWCO) membrane (Sigma-Aldrich, MO, IL, USA) at 40 ◦C
for 5 days against ultrapure water. After discarding the by-products, the samples were lyophilized
for 3–4 days and stored at −20 ◦C until further use [9]. In all experiments, 5% of gelatin methacryloyl
(GelMA) were used.

3.3. Fabrication of GelMA Scaffolds with Mesenchymal Stem Cells

The cultured adipose-derived mesenchymal stem cells (ADMSCs) were trypsinized, counted,
and spun down. The resulting pellets were introduced to 5% of GelMA pre-solution and 0.5% (w/v)
photoinitiator of Irgacure 2959 (Sigma-Aldrich, MO, IL, USA); sterilized with 0.22 µm polyethersulfone
(PES) membrane syringe filter (Jet biofil, Guangzhou, China). Finally, the material was crosslinked
using a 365 nm ultraviolet (UV) lamp (Thorlabs, USA) with a light intensity of 2.7 mW/cm2 for 60 sec
and washed 2 times before culturing the hydrogels in DMEM at 37 ◦C and 5%CO2.

3.4. Alamar Blue Assay

1 × 104 cells/ml ADMSCs were treated with the above-mentioned concentrations of astaxanthin
solution in DMEM and cultured at 37 ◦C and 5% CO2. Cell proliferation was assessed at 1, 2, and 3 days
using the alamar blue reagents (Invitrogen, Carlsbad, CA, USA) in two-dimensional culture. A 10%
alamar blue reagent was directly added to the ADMSCs encapsulated hydrogels with astaxanthin and
without astaxanthin for 4 hours after day 1, 4, and 7. Absorbances were measured using a UV-Vis
spectrophotometer (BioTek, Winooski, VT, USA) at 570 nm and 600 nm. All proliferation assays were
performed in at least three separate experiments for each day. The percent reduction of alamar blue
was calculated using the following equation:

Percentage reduction (%) =

(
(O2 ×A1) − (O1 ×A2)

(R1 ×N2) − (R2 ×N1)

)
× 100 (1)

where, Q1 = the molar extinction coefficient (E) of oxidized alamar blue at 570 nm; Q2 = E of the
oxidized alamar blue at 600 nm. R1= E of the reduced alamar blue at 570 nm; R2 = E of reduced alamar
blue at 600 nm; A1 = absorbance of test wells at 570 nm; A2 = absorbance of test wells at 600 nm;
N1 = absorbance of negative control (without cells) at 570 nm; N2 = absorbance of negative control
(without cells) at 600 nm.
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3.5. RNA Extraction and RT-PCR

Post 24 hours exposure of ADMSCs with 0 and 0.5 ng/ml of astaxanthin, the total RNA was isolated
using TRI regent (Sigma-Aldrich, MO, IL, USA). The total RNA concentration was measured using
UV/Vis-spectrophotometry (BioTek, Winooski, VT, USA) at 260 nm. cDNA was synthesized from the
RNA using the reverse transcription method PrimeScript 1st strand cDNA Synthesis Kit (Takara, Shiga,
Japan). Template DNA was then used in gene-specific PCR, wherein synthesized cDNA using oligo-dT
primer was amplified by 40 cycles (initial denaturation, denaturation, annealing, and extension: 98 ◦C,
1 min, 98 ◦C, 10 sec; 55–60 ◦C, 30 sec; 72 ◦C, 1 min). The expression of stemness-related genes
(SOX2 and KLF4 (Bioneer, Alameda, California, USA)) and proliferation-related genes (Rex1, c-MYC,
and Wnt3a, (Bioneer, Alameda, California, USA)) were studied, wherein Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was utilized as a housekeeping gene. Details of the primers are listed in
Table 1. Further, aliquots of PCR product were electrophoresed on 1.5% agarose gels, PCR fragments
were stained by loading STAR dye (Dynebio, Gyeonggi-do, South Korea) and detected by the gel
documentation system (Daihan Scientific, Seoul, South Korea). All gene expression experiments were
performed in triplicates.

Table 1. Primer sequences used for RT-PCR.

Symbol Forward Reverse

SOX2 GGCGGCAACCAGAAGAACAG TCGATGAACGGCCGCTTCTC
KLF4 AGC CCCAAGATGCACAACTC AGGACGAGGAAGAGGCAGAC

Wnt3a TTCCTCAAGGACAAGTACGACA GAAGTTGGGGGAGTTCTCATAG
Rex1 AGCCCAGCAGGCAGAAATGGAA TGGTCAGTCTCACAGGGCACAT

c-MYC TCGGACTCTCTGCTCTCCTC CTTGTCGTTCTCCTCGGTGT
GAPDH CAAGTTCCACGGCACGGTCA CTCGGCACCAGCATCACCC

3.6. Proton Nuclear Magnetic Resonance

The lyophilized GelMA hydrogel with and without astaxanthin were dissolved using deuterium
oxide (D2O) solution at 40 ◦C. The methacrylation degree of the free amine group in the GelMA
samples were studied using the Fourier transform nuclear magnetic resonance spectrometer JNM
ECP-600 MHz (JEOL, Tokyo, Japan). The data were processed using JEOL delta V5.3 software (JEOL,
Tokyo, Japan) and the degree of methacrylation was calculated as follows [11]:

Methacrylation degree =

(
1−

Lysine integration signal of GelMA
Lysine integration signal of gelatin

)
× 100 (2)

3.7. Rheological Assessments

A dynamic rheological test of the hydrogels was performed (Discovery HR-2, TA instrument, USA)
to analyze the mechanical property of GelMA and GelMA/astaxanthin hydrogels using a rheometer
equipped with an 8 mm parallel plate. The samples were irradiated with UV for 60 s and loaded
into a 1mm gap. Strain amplitude sweeps (0.01–100%) were first performed to determine the linear
viscoelasticity region. A time sweep test was set at an angular frequency of 10 rad/s for 300 s to study
the time-dependent stability of the material. The frequency sweep test was performed at an angular
frequency of 0.01–100 rad/s at a strain in the linear viscoelastic ranging to protect against destroying
the structure of the samples. All tests were performed at 25 ◦C with a fixed strain of 1%, except the
temperature ramp test, which ranged between 45 to 25 ◦C and demonstrated in triplicate [15,38].
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3.8. Swelling Ratio Test

For mechanical characteristics and the diffusion process, the hydrogels were lyophilized under
dry conditions and were weighed (Wd). The dried hydrogels were then immersed in PBS, incubated at
37 ◦C and weighed (Ws). The swelling ratio was calculated under this formula:

Swelling ratio (%) =
(Ws − Wd)

Wd
× 100 (3)

where, Wd is the dry weight of hydrogel, Ws is the weight of swollen hydrogel.

3.9. Confocal Imaging Using Live/Dead Staining

Qualitative analysis and morphological variations of cell proliferation were carried by staining the
encapsulated hydrogel with and without astaxanthin. Briefly the cells were incubated in fluorescein
diacetate (FDA, Sigma-Aldrich, USA) and propidium iodide (PI, Sigma-Aldrich, USA) dyes for 6 min at
room temperature and were then washed with PBS thrice. All three-dimensional images were scanned
by a confocal laser scanning microscope system A1+ (Nikon, Tokyo, Japan) at 100× magnification.
The Live/dead images were compared and stacked to z-projection and volume using the ImageJ
software (V1.8, NIH, Bethesda, MD, USA) and an NIS-Elements viewer V4.50 software (Nikon, Japan).

3.10. Statistical Analysis

Data were analyzed as mean ± standard deviation. Difference between experimental groups
were evaluated with a one-way analysis of variance (ANOVA), and the level of significance was set at
p < 0.05, 0.01, and 0.001 (labeling *, **, and *** respectively). All analyses were performed by IBM SPSS
Statistics Version 12.0 (SPSS, Chicago, IL, USA).

4. Conclusions

In this study, we demonstrated that astaxanthin had a positive impact upon the cell proliferation
of adipose-derived mesenchymal stem cells in a time dependent manner. Thereafter, the upregulated
proliferation-related transcription factors coupled with an overexpression of stemness genes confirmed
the role of astaxanthin in improving the stem cell potency.

Furthermore, physico-chemical characterization and biological analysis of hydrogels shows the
feasibility of encapsulated GelMA hydrogel with astaxanthin to enhance cell-to-cell networking. Thus,
the addition of astaxanthin promises to induce stem cell potency via proliferation, and it can be a
useful tool for 3D culture systems and various tissue engineering applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/15/2416/s1,
Figure S1. Optical microscopy images of adipose-derived mesenchymal stem cells treated with astaxanthin at
various concentrations of (a) 0 ng/ml, (b) 0.5 ng/ml, (c) 5 ng/ml, (d) 50 ng/ml, and (e) 500 ng/ml.
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