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Abstract: In the present paper, experimental and numerical investigations were conducted on
concrete bridge barriers utilizing glass fiber reinforced polymer (GFRP) bars with a hook at their
ends. Implementation of these hooked bars instead of the bent bars or headed-end bars in the bridge
barriers presented in the Canadian Highway Bridge Design Code (CHBDC) was investigated on
American Association for State Highway and Transportation Officials (AASHTO) test level 5 (TL-5)
concrete bridge barriers. This research aimed to reach a cost effective and safe anchorage method
for GFRP bars at the barrier–deck junction, compared to the conventional bend bars or headed-end
bars. Therefore, an experimental program was developed and performed to qualify the use of the
recently-developed, small radius hooked bars at the barrier–deck junction. The experimental findings
were compared with the design factored applied transverse load specified in CHBDC for the design
of the barrier–deck junction as well as factored applied bending moment obtained at the barrier–deck
junction using a recently-conducted finite-element modeling. Satisfactory behavior for the developed
hooked GFRP bars as well as their anchorage resistance was established and a reasonable factor of
safety in design of barrier–deck joint was achieved.

Keywords: GFRP bars; 180◦-hook anchorage; concrete barrier; bridge barriers; barrier–deck junction;
anchorage resistance; experimental testing

1. Introduction

Bending of glass fiber reinforced polymer (GFRP) bars at construction sites is not possible, and bent
bars do not have the same strength as straight bars. This problem results in an increase in the number
of GFRP bars used in construction. Alternatively, headed-end GFRP bars can address this problem.
A vehicle crash test was conducted using a AASHTO test level 5 (TL-5) bridge barrier reinforced with
headed-end, sand-coated GFRP bars, and resulted in a new structural design for bridge barriers [1].
Another crash test was conducted on an actual size barrier reinforced with ribbed-surface GFRP bars,
confirming the same design [2]. These crash tests were performed in accordance with the Manual for
Assessing Safety Harware (MASH) test level 5, TL-5, [3], and showed acceptable resistance for the
GFRP bars in sustaining vehicle impact [4]. Parts of the crash-tested barriers were tested further to
collapse under transverse static loading. Their ultimate experimental load carrying capacities were
observed to be far greater than the factored design loads specified in the AASHTO-LRFD specifications
and the Canadian Highway Bridge Design Code [5,6]. Other studies were conducted to determine the
transverse capacity of the steel-reinforced barrier using yield line analysis [7,8].

A design for precast ultra-high performance fiber-reinforced concrete (UHPFRC) TL-4 barriers,
including investigation into their mechanical behavior under quasi-static transverse loading up to
failure, was done both experimentally and using finite element modeling [9]. Experimental testing on

Materials 2019, 12, 2485; doi:10.3390/ma12152485 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8798-2577
https://orcid.org/0000-0003-2730-4832
http://www.mdpi.com/1996-1944/12/15/2485?type=check_update&version=1
http://dx.doi.org/10.3390/ma12152485
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2485 2 of 24

cast-in-place and precast barriers subjected to quasi-static loading and anchored bridge decks was also
done in 2015, with all tested configurations exceeding the design criteria in CSA-S6-06 and AASHTO
LRFD specifications [10]. Finite element modeling was used in the comparison between the load
transfer and failure mode of precast and cast-in-place bridge barriers [11]. Fiber-reinforced concrete has
also been used in bridge barriers in other studies, revealing the mechanical properties of the barriers
under static and dynamic loading [12]. Concrete railing and deck connection with internal FRP I-bars
was investigated, incorporating static tests on the connection of the railing post and deck [13], and a
design procedure for the concrete post to deck joint was proposed [14]. Anchorage capacity of precast
concrete bridge barriers for test level 2 (TL-2) has been studied elsewhere, with finite element modeling
used for the evaluation of capacity of TL-4 barriers [15].

Figure 1a shows the sand-coated GFRP bar details of the crash tested barrier utilizing headed-end
bars at the barrier–deck junction [1]. The manufacturer of the headed-end bars has recently used a
twisted roving method to develop a GFRP bar with a 180◦ hook with reduced radius, to reduce the cost
associated with the use of the headed-end bars at the barrier–deck junction. An alternative design for
the barrier wall is presented in Figure 1b, showing the revised details of the TL-5 barrier by replacing
the headed bar shown in Figure 1a with a hooked bar. The developed hook shown in Figure 2 has
an inner radius of 22.5 mm and a length of 100 mm. Table 1 summarizes the material properties of
the GFRP bars used in the present study, as obtained from the manufacturer [16] The 185 mm vertical
embedment length into the deck slab cantilever was considered given the fact that the typical slab
thickness used by Ontario Ministry of Transportation in Ontario bridges is 225 mm, with the difference
between then representing the proper concrete cover between the bottom of the bar and the bottom
surface of the deck slab.
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Figure 1. Reinforcement details of AASHTO test level 5 (TL-5) barrier reinforced with glass fiber
reinforced polymer (GFRP) bars with headed ends and 180◦ hooks. (a) Barrier with headed GFRP bars;
(b) Barrier with 180◦ hooked GFRP bars.
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Figure 2. Views of the developed GFRP bar with 180◦ hook. (a) length of the hook; (b) radius of
the hook.

Table 1. Properties of GFRP bars as obtained from the manufacturer.

Product Name Bar Size
Tensile

Strength
(MPa)

Elastic
Modulus, E

(GPa)

Failure
Strain

Nominal Cross
Section Area

(mm2)

Gross Cross
Section

Area (mm2)

Straight bar
# 4 (M13) 1281.5 61.32 2.09% 129.0 145.0

# 5 (M15) 1237.4 60.01 2.06% 199.0 224.4

Straight
portion of the

hooked bar
# 5 (M15) 1500.0 60.10 2.45% 199.0 233.0

To qualify the revised barrier design in Figure 1b, experimental tests were conducted to ensure that
the capacity of barrier–deck junction satisfied Canadian Highway Bridge Design Code (4) requirements.
CHBDC specifies transverse, longitudinal, and vertical loads of 210, 70 and 90 kN, respectively, for
design of a TL-5 barrier–deck anchorage. By inspection, the transverse load simulating vehicle impact
is the only load out of these three load components that affects the barrier–deck joint design. As such,
the factored design transverse load to be compared with the barrier experimental load carrying capacity
was 357 kN, considering a 1.7 load factor, distributed over 2400 mm length in the direction of traffic
and at a height of 990 mm over the deck slab top surface.

2. Experimental Study

Five TL-5 barrier specimens of 900 mm length were constructed and tested by the authors to
collapse at Ryerson University’s Structures laboratory to determine their failure patterns and load
carrying capacities. Figures 3–7 show cross-section dimensions and GFRP bar arrangement for the
five specimens (Specimens # 1 through # 5). The difference between Specimen # 1 and # 2 was the
orientation of the 180◦ hooks embedded in the deck slab, which were towards the roadway and towards
the outer face of the barrier in Specimens # 1 and # 2, respectively (both specimens represent the interior
location in parapets). In these specimens, the vertical GFRP bars at the front and back faces of the
barrier wall were made of 15M and 13M bars at 300 mm spacing, respectively, representing the interior
segment of a barrier wall. Specimen # 3 showed the end segment of a barrier, with double vertical
reinforcement at the front face only, while bar size and spacing in the barrier wall were otherwise
identical to those in Specimens # 1 and 2. It should be noted that Specimens # 1 through 3 rested
over a deck slab cantilever of length 700 mm, representing the case of slab-on-girder bridge barrier
construction. On the other hand, a barrier wall may be built over a non-deformable slab, which is the
case of barrier walls cast over voided slab, solid slab, or side-by-side box beam bridges. Specimen # 4
was similar to Specimen # 1, except that the barrier wall was built integrally over a 500 mm thick slab.
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Specimen # 5 was built to showcase the implementation of replacing the barrier wall in existing bridges
with a post-installed barrier wall, using post-installed GFRP bars. HIT RE 500 epoxy was used for
post-installation in this case. Figure 8 shows views of the formwork and bar arrangement for each
barrier specimen.

Materials 2019, 12, x FOR PEER REVIEW 4 of 24 

 

bridges. Specimen # 4 was similar to Specimen # 1, except that the barrier wall was built integrally 
over a 500 mm thick slab. Specimen # 5 was built to showcase the implementation of replacing the 
barrier wall in existing bridges with a post-installed barrier wall, using post-installed GFRP bars. HIT 
RE 500 epoxy was used for post-installation in this case. Figure 8 shows views of the formwork and 
bar arrangement for each barrier specimen. 

 
Figure 3. Specimen # 1: Interior location of barrier connected to a cantilever slab (hooks facing the 
roadway). 

Figure 3. Specimen # 1: Interior location of barrier connected to a cantilever slab (hooks facing
the roadway).Materials 2019, 12, x FOR PEER REVIEW 5 of 24 

 

 
Figure 4. Specimen # 2: Interior location of barrier connected to a thin cantilever slab (hooks not facing 
roadway). 

 
Figure 5. Specimen # 3: End location of barrier connected to a cantilever slab. 

Figure 4. Specimen # 2: Interior location of barrier connected to a thin cantilever slab (hooks not
facing roadway).



Materials 2019, 12, 2485 5 of 24

Materials 2019, 12, x FOR PEER REVIEW 5 of 24 

 

 
Figure 4. Specimen # 2: Interior location of barrier connected to a thin cantilever slab (hooks not facing 
roadway). 

 
Figure 5. Specimen # 3: End location of barrier connected to a cantilever slab. Figure 5. Specimen # 3: End location of barrier connected to a cantilever slab.Materials 2019, 12, x FOR PEER REVIEW 6 of 24 

 

 
Figure 6. Specimen # 4: Interior location of barrier connected to a non-deformable slab. 

 
Figure 7. Specimen # 5: Interior location of the barrier connected to a non-deformable slab using post-
installed bars. 

Figure 6. Specimen # 4: Interior location of barrier connected to a non-deformable slab.



Materials 2019, 12, 2485 6 of 24

Materials 2019, 12, x FOR PEER REVIEW 6 of 24 

 

 
Figure 6. Specimen # 4: Interior location of barrier connected to a non-deformable slab. 

 
Figure 7. Specimen # 5: Interior location of the barrier connected to a non-deformable slab using post-
installed bars. 

Figure 7. Specimen # 5: Interior location of the barrier connected to a non-deformable slab using
post-installed bars.Materials 2019, 12, x FOR PEER REVIEW 7 of 24 

 

  
(a) Specimen # 1 (b) Specimen # 2 

  
(c) Specimen # 3 (d) Specimen # 5 

Figure 8. Views of the formwork and reinforcement details. (a) Specimen # 1; (b) Specimen # 2; (c) 
Specimen # 3; (d) Specimen # 5. 

Based on tested concrete cylinders on the day of casting, the average compressive strengths of 
concrete were 43, 40, 39, 49 and 52 MPa for Specimens # 1 to # 5, respectively, while the characteristic 
concrete strengths were 37, 35, 38, 45 and 44 MPa, respectively [4]. Each barrier specimen was tied 
down to the strong floor in the structures lab according to the test setup shown in Figure 9a. Strain 
gauges were installed in a few GFRP bars and on the concrete surface to record strains at critical 
locations with increase in applied transverse loading. Figure 9b shows the arrangement of 
potentiometers (POTs) to record lateral deflection of the barrier wall, vertical deflection of the 
cantilever slab, specimen uplift at the tie-down location, and transverse movement of the deck slab. 
The transverse loading was applied in increments at 990 mm from the top surface of the slab until 
collapse. The specimen was considered failed when it could not take any more load. 
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Based on tested concrete cylinders on the day of casting, the average compressive strengths of
concrete were 43, 40, 39, 49 and 52 MPa for Specimens # 1 to # 5, respectively, while the characteristic
concrete strengths were 37, 35, 38, 45 and 44 MPa, respectively [4]. Each barrier specimen was tied down
to the strong floor in the structures lab according to the test setup shown in Figure 9a. Strain gauges
were installed in a few GFRP bars and on the concrete surface to record strains at critical locations with
increase in applied transverse loading. Figure 9b shows the arrangement of potentiometers (POTs) to
record lateral deflection of the barrier wall, vertical deflection of the cantilever slab, specimen uplift at
the tie-down location, and transverse movement of the deck slab. The transverse loading was applied
in increments at 990 mm from the top surface of the slab until collapse. The specimen was considered
failed when it could not take any more load.Materials 2019, 12, x FOR PEER REVIEW 8 of 24 
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3. Experimental Results and Discussions

In Table 2, the maximum transverse loads and resisting moments resulting from the tests are
presented and compared to the factored design moments according to CHBDC [17]. The resisting
moments were calculated based on the 900 mm width of the barrier and the distance of the applied
load from the top surface of the slab, which was 990 mm. The capacity-to-demand ratios (CDR), or the
factor of safety in design based on experimental findings, were calculated by dividing the experimental
resisting moments by the factored design moments in each case. The CDRs were also calculated based
on a material resistance factor of 0.75 [17].

Table 2. Experimental results.

Design Values Specimen # 1 Specimen # 2 Specimen # 3 Specimen # 4 Specimen # 5

Load at failure, kN
(experiment) 99.80 120.09 128.92 189.96 169.07

Resisting moment, kN.m/m
(experiment) 109.78 132.10 141.81 208.96 185.98

Factored design moment,
kN.m/m (CHBDC, 2006b) 83.00 83.00 102.00 83.00 83.00

Capacity-to-demand ratio:
CDR (2)/(3) 1.32 1.59 1.39 2.52 2.24

CDR Ratio (2)/(3) with 0.75
resistance factor 0.99 1.19 1.04 1.89 1.68
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The photos of crack patterns at failure and test setups for Specimens # 1 to # 5 are shown in
Figure 10, Figure 14, Figure 18, Figure 22 and Figure 26, respectively. Table 3 summarizes the concrete
cracking history during the tests. The load–displacement relationship for Specimen # 1 (shown in
Figure 10) is depicted in Figure 11. It can be observed that the average deck slab uplift and the horizontal
movement at failure were equal to about 7.0 and 13.6 mm, respectively, which was acceptable as they
were not affecting the structural behavior of the barrier. The maximum lateral and vertical deflections
of the barrier wall at failure were recorded as 50.78 and 19.59 mm, respectively. Tensile strains in the
diagonal GFRP bars at the front face are shown in Figure 12, where strain gauges were located at
115 mm above the top surface of the cantilever slab. Average strain in the hooked bars and the adjacent
middle bars at failure were recorded as 5487 and 4325 µε, compared to ultimate strain of the GFRP
bars of 20,000 µε (per the manufacturer’s document). The relationship between load and strain in the
concrete is shown in Figure 13, as obtained from strain gauges located 115 mm above the top surface of
the cantilever slab and at the front face of the barrier wall. Concrete compressive strain at failure was
1193 µε, compared to ultimate concrete strain at failure of 3500 µε. The tensile strain at failure in the
steel bars at the fixed end of the cantilever deck slab was 1461 µε, compared to the steel yield strain of
2000 µε. The failure of the barrier–deck junction was due to diagonal tension cracking in the deck slab
cantilever just under the barrier wall, as depicted in Figure 10b.
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Table 3. Crack pattern history.

Load and Crack
Pattern Specimen # 1 Specimen # 2 Specimen # 3 Specimen # 4 Specimen # 5

Load at first
visible crack, kN 50 40 50 50 60

Location of first
visible crack

At intersection
of tapered
portions of
front side of
barrier wall

At barrier–deck
junction

At barrier–deck
junction and

intersection of
tapered

portions of
front side of
barrier wall

At intersection of
tapered portions
of front side of

barrier wall

At barrier–deck
junction

Load at next step
flexural cracks,

kN
60 70 60 90 70

Location of next
step flexural

cracks

At barrier–deck
junction and

deck slab
At deck slab At deck slab At barrier–deck

junction

At intersection of
tapered portions
of front side of

barrier wall

Load at failure,
kN 99.80 120.09 128.92 189.96 169.07

Crack pattern at
failure

Propagation of
initial cracks in

both barrier
and slab, plus

sudden
diagonal

tension crack
in deck

Propagation of
initial cracks in

both barrier
and slab, plus

sudden
diagonal

tension crack
in deck

Propagation of
initial cracks in

both barrier
and slab, plus

sudden
diagonal

tension crack
in deck

Propagation of
initial flexural

cracks and
sudden concrete
breakout at the

location of
embedded GFRP

bars in deck

Propagation of
initial flexural

cracks and
sudden concrete
breakout at the

location of
embedded GFRP

bars in deck

The load–displacement relationship for Specimen # 2 (shown in Figure 14) is depicted in Figure 15.
One may observe that the average deck slab uplift and the horizontal movement at failure were equal
to about 5.54 and 9.72 mm, respectively, which was acceptable as they were not affecting the structural
behavior of the barrier. Maximum lateral deflection of the barrier wall at failure was 48.80 mm and the
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barrier vertical deflection was 19.02 mm. Tensile strains in the diagonal GFRP bars at the front face
are shown in Figure 16. Average strains in the hooked bars and the adjacent middle bars at failure
were 6564.6 and 5780.3 µε, compared to ultimate strain of the GFRP bars of 20,000 µε. The relationship
between load and strain in the concrete is shown in Figure 17. Concrete compressive strain at failure
was recorded as 1524 µε, compared to ultimate concrete strain at failure of 3500 µε. The tensile strain at
failure in the steel bars at the fixed end of the cantilever deck slab was 1001.5 µε, compared to the steel
yield strain of 2000 µε. Failure of the barrier–deck junction was due to diagonal tension in the deck
slab cantilever just under the barrier wall. One may observe that the barrier–deck anchorage capacity
increased by 20% only when the hooks faced the outer face of the barrier, compared to the arrangement
on which the hooks faced towards the traffic side in Specimen # 1. This may be attributed to greater
confinement to the concrete in the deck slab under the barrier wall associated with orienting the hook
to the back side of the wall, thus delaying the diagonal tension failure in this region to a higher load.
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The load–displacement relationship for Specimen # 3 (shown in Figure 18) is depicted in Figure 19.
It was noted that the average deck slab uplift and the horizontal movement at failure were equal
to 6.56 and 11.51 mm, respectively, which was acceptable as they were not affecting the structural
behavior of the barrier. Maximum lateral deflection of the barrier wall at failure was 49.06 mm and the
barrier vertical deflection was 21.97 mm. Tensile strains in the diagonal GFRP bars at the front face
are shown in Figure 20. It was observed that the average strains in the hooked bars and the adjacent
middle bars at failure were 3459 and 1874 µε, compared to ultimate strain of the GFRP bars of 20,000 µε.
The relationship between load and strain in the concrete is shown in Figure 21. Concrete compressive
strain at failure was recorded as 1238 µε, compared to ultimate concrete strain at failure of 3500 µε.
Failure of the barrier–deck junction was due to diagonal tension cracking in the deck slab cantilever
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just under the barrier wall. The tensile strain at failure in the steel bars at the fixed end of the cantilever
deck slab was 1839 µε, which gives an indication that the steel bars behaved in the elastic range at
specimen failure.
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Figure 21. Specimen # 3: Load vs. concrete strain history.

The load–displacement relationship for Specimen # 4 (shown in Figure 22), with a 500 mm thick
deck slab, is depicted in Figure 23. The average deck slab uplift and the horizontal movement at failure
were recorded as 1.40 and 3.42 mm, respectively, which was acceptable as they were not affecting
the structural behavior of the barrier. Maximum lateral deflection of the barrier wall at failure was
30.50 mm, which was very much smaller than that for Specimen # 1 with a cantilever deck slab.
Tensile strains in the diagonal GFRP bars at the front face are shown in Figure 24. Average strains in
the hooked bars and the adjacent middle bars at failure were 6558 and 3477 µε, compared to ultimate
strain of the GFRP bars of 20,000 µε. The relationship between load and strain in the concrete is shown
in Figure 25. Concrete compressive strain at failure was 1647 µε, compared to ultimate concrete strain
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at failure of 3500 µε. Failure of the barrier–deck junction was due to sudden concrete breakout at the
location of the embedded GFRP bars in the deck, as depicted in Figure 22b.
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Figure 25. Specimen # 4: Load vs. concrete strain history.

The load–displacement relationship for Specimen # 5 (shown in Figure 26) is depicted in Figure 27.
It was observed that the average deck slab uplift and the horizontal movement at failure were equal to
1.71 and 4.18 mm, respectively. Maximum lateral deflection of the barrier wall at failure was 19.38 mm.
Tensile strains in the diagonal GFRP bars at the front face are shown in Figure 28. Average strains in the
hooked bars and the adjacent middle bars at failure were 4387 and 4113 µε, compared to ultimate strain
of the GFRP bars of 20,000 µε. The relationship between load and strain in the concrete is showcased
in Figure 29. Concrete compressive strain at failure was 981 µε, compared to ultimate concrete strain at
failure of 3500 µε. Failure of the barrier–deck junction was sudden concrete breakout at the location of
the embedded GFRP bars in the deck, as depicted in Figure 26.
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Azimi et al. [18] conducted experimental tests to collapse on short barriers to examine their load
carrying capacities and failure modes at the barrier–deck anchorage when reinforced with ribbed-surface
GFRP bars with headed ends produced in Europe. Most recently, Rostami et. al. [19] conducted similar
research to that presented in this paper, but using sand-coated GFRP bars with headed ends produced
by the same manufacturer supplying the bars for the current research. Rostami et al. (2017b) also
conducted testing identical to that presented in this paper using GFRP bars with a spiral-profiled
surface and a 180◦ hook of 115 mm inside diameter, produced by another Canadian manufacturer.
Moreover, Dervishhasani and Sennah [20] conducted similar research using GFRP bars with headed
ends, developed by a third Canadian manufacturer. The four types of GFRP bars mentioned above
are produced with different surface profiles, anchorage details, tensile strength, modulus of elasticity,
and stain at rupture. However, all of them meet the requirement for being identified as Grade III
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GFRP bars, with a minimum tensile strength of 1000 MPa and a modulus of elasticity of 60 GPa [21].
In all these tests, the experimental barrier capacities were greater than or equal to the design values
specified in the Canadian Highway Bridge Design Code [4] after applying a proper resistance factor
for materials. The failure modes observed in these tests included (i) diagonal tension crack in the deck
slab region under the barrier wall in the case of deck slab cantilevers, (ii) anchorage cracking of the slab
under the barrier wall in the case of a non-deformable barrier base, and (iii) diagonal tension cracking
(shear failure) in the barrier wall between the transverse load location and the interfaces between the
two tapered portions of the barrier wall. It should be noted that there is no available design procedure
for such failure mode in North American bridge design codes. As such, experimental testing is the
only available methodology to qualify the use of GFRP bars with special anchorage profile at the
barrier–deck anchorage zone.

4. Comparison with Finite Element (FEA) Results

When an errant vehicle collides with a bridge barrier, the lateral impact force is distributed in the
barrier wall and the deck slab with dispersal angles, leading to the design forces at the barrier–deck
junction specified in CHBDC commentaries [18]. Figure 30a shows the distribution of a vehicle
transverse impact load on the concrete barriers [18]. Design shear forces and bending moment at
the barrier–deck interface can be calculated by finite element modeling for a 1000 mm barrier length.
The length of cantilever slabs of bridges can also be different, as in slab-on-girder or non-deformable
bases. Therefore, the change in the support condition for barriers should be studied. Barrier length is
the distance between two free ends of the barrier or between expansion joints. The length of the barrier
affects the dispersion angle of applied forces (Figure 30a). Finite element analysis (FEA) was conducted
by Azimi et al. [17] to examine the effects of barrier length, deck slab thickness, and cantilever length
on the factored applied moment at the barrier–deck junction of TL-5 barriers, as affected by the barrier
length, deck slab cantilever length, and deck slab thickness.

Slab thickness, ts, cantilever overhang length, Lc, and the barrier length, Lb, were considered in
the parametric study by Azimi et al. [17]. The associated values for each parameter were: 175, 225, 275,
and 350 mm for ts; 0, 0.5, 1.0, 1.5, and 2.0 m for Lc; and 3, 4, 6, 8, 10, and 12 m for Lb. Linear elastic FEA
was performed on the TL-5 barrier of Figure 1. Shell element with six degrees of freedom at each node
was used with a change in thickness to model TL-5 barriers with tapered faces. The maximum element
sizes were taken as 50 × 50 mm, with an aspect ratio of 1.2 in a few cases. A view of the FEA model is
shown in Figure 30b. The support condition was taken as fixed at the end of the cantilever overhang.
The cantilever length, Lc, of 0 represented a fixed base of the barrier wall, for a non-deformable deck
slab. Barrier lengths were considered between 3 and 12 m, as this study showed that greater length
does not have considerable effect on the results. The reason to choose these length is that the minimum
barrier length, Lb, is usually considered to be 3 m in practice, and the maximum barrier length of
12 m was taken into consideration in this study because analysis showed that greater lengths would
have insignificant effect on the distribution of forces in the inner portions of the barriers, and no effect
at the end portions of the barrier. Transverse loads were applied at the middle of the barrier for
interior locations and at the end of barrier for the exterior locations, and were distributed over specified
lengths. An equation for factored design moments at the barrier–deck interface was developed based
on the statistical package of curve fitting (Table 4), to determine the factored design moment at the
barrier–deck junction as a function of barrier length and deck slab cantilever length and thickness,
which can be used only for the range of parameters considered here.
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Comparisons between experimental and numerical results for the interior and end locations are
shown in Figures 31 and 32. Chapter 2 of the CHBDC [4] specifies that the designer shall consider the
environmental conditions and deterioration mechanisms for FRP reinforcement, and recommends that
a 0.75 durability factor be applied to the results, which was followed by authors in this paper. To be
able to qualify the proposed GFRP bar detailing in Figure 1b, the factor of safety was considered at
least 1 to ensure that the experimental capacity was at least equal to the factored applied moment at the
barrier deck junction specified in CHBDC or obtained by FEA modeling. Figures 31 and 32 present the
factors of safety in design of the proposed barrier when a material durability factor of 0.75 was applied.
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Table 4. Factored design moments at the barrier–deck interface [18].

Design Parameters Design values

Lateral Load, Pt (kN) 210

Factored lateral load (kN) 357

Length of lateral load (mm) 2400

Height of lateral load, H (mm) 990

Minner (kN.m)

Fixed base 132

Cantilever deck slab

100(Lb + 2.3ts)
−1

+2.83t0.2
s (Lb − 1)0.7L−0.8

c

+143ts + 23

Mend (kN.m)

Fixed base 148

Cantilever deck slab

14t−1
s (Lb + 2.3ts − 2)−1

+2.83t0.2
s (Lb − 1)0.7L−0.7

c

+240ts + 25

Notes: Formulas are best applicable for: 175 mm ≤ ts ≤ 350 mm; 0 ≤ Lc ≤ 2.0 m; 3.0 m ≤ Lb(ts = overhang thickness
(m); Lc = cantilever length (m); Lb = barrier length (m); Minner = moment in the interior locations; Mend = moment in
the end locations).
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5. Conclusions

Based on the experimental findings in this research, the following conclusions can be made:

• It was observed that using the proposed reinforcement arrangement presented in Figure 1b,
utilizing GFRP reinforcement, is safe and practical for barrier lengths greater than or equal to 6 m
in the case of slab-on-girder and box girder bridges with deck slab cantilever lengths up to 2 m.

• Regarding embedment length for the vertical bars, it was observed that 185 mm vertical embedment
length for the GFRP bars in the deck slab was sufficient and satisfied the required barrier–deck
anchorage capacity. The same GFRP bar arrangement can be used in solid slab and voided-slab
bridge cross-sections with a minimum deck slab thickness of 500 mm.

• The barrier–deck anchorage capacity increased by 20% only when the 180◦ hooks were oriented
towards the outer face of the barrier, compared to the arrangement in which these hooks faced
toward the traffic side of the barrier wall.

• Tensile strains in the diagonal GFRP bars at the front face in the hooked bars and the adjacent middle
bars at failure were far below the ultimate strain of the GFRP bars. Additionally, the concrete
compressive strain at failure in the outer face of the barrier was also far below the ultimate concrete
strain at failure. Moreover, the tensile strain at failure in the steel bars at the fixed end of the
cantilever deck slab was below the steel yield strain. These observations support the observed
failure mode at the barrier–deck region.

• Failure of the barrier specimen with deck slab cantilever was due to diagonal tension cracking
in the deck slab cantilever just under the barrier wall. On the other hand, failure in the barrier
specimen supported over the 500 mm thick deck slab was due to sudden concrete breakout at the
location of the embedded GFRP bars in the deck.
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