

Article Design Variation of a Dual-Antigen Liposomal Vaccine Carrier System

Roozbeh Nayerhoda¹, Andrew Hill^{2,3}, Marie Beitelshees², Charles Jones^{3,*} and Blaine Pfeifer^{1,2,*}

- ¹ Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- ² Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- ³ Abcombi Biosciences Inc., 1576 Sweet Home Road, Amherst, NY 14228, USA
- * Correspondence: charles.jones@abcombibio.com (C.J.); blainepf@buffalo.edu (B.P.)

Supplementary Materials:

Figure S1. Liposomal formation schematic featuring initiation (A) and extrusion (B).

Figure S2. Liposomal purification and protein surface labeling (with GFP, in this case), proceeding from steps A to D.

Figure S3. Assay for polysaccharide quantification. (A) Absorbance maximum for the polysaccharide 19F used in the quantification of encapsulation efficiency assays. (B) Colorimetric assay solution development pre- and post-incubation (blank and standard solutions are shown in triplicate and additional wells represent various samples tested within this particular assay).

Figure S4. Purification process for the NTA-cobalt liposomal variant featuring purified liposomes (A), liposomes post-extrusion (B), and free polysaccharide (C). Sample analysis was performed using the assay for polysaccharide assessment.