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Abstract: In this work, we present and test an approach based on an inverse model applicable to the
control of induction heat treatments. The inverse model is comprised of a simplified analytical forward
model trained with experiments to predict and control the temperature of a location in a cylindrical
sample starting from any initial temperature. We solve the coupled nonlinear electromagnetic-thermal
problem, which contains a temperature dependent parameter α to correct the electromagnetic field
on the surface of a cylinder, and as a result effectively the modeled temperature elsewhere in the
sample. A calibrated model to the measurement data applied with the process information such as the
operating power level, current, frequency, and temperature provides the basic ingredients to construct
an inverse model toolbox, which finally enables us to conduct experiments with more specific
goals. The input set values of the power supply, i.e., the power levels in the test rig control system,
are determined within an iterative framework to reach specific target temperatures in prescribed
times. We verify the concept on an induction heating test rig and provide two examples to illustrate
the approach. The advantages of the method lie in its simplicity, computationally cost effectiveness
and independence of a prior knowledge of the internal structure of power supplies.

Keywords: induction heating; heat transfer; model-based control; process control; inverse model;
process modelling

1. Introduction

Induction heating is a complex multiphysics problem where electromagnetic, thermal, mechanical,
and metallurgical problems are influencing each other. Therefore, modeling and simulation require the
simultaneous consideration of complex interactions. The knowledge of the process variables and their
complicated relationships is fundamental and necessary for simulation and modeling but not fully
possible. Therefore, the process optimization and process control of induction heating and hardening
is a true challenge both for the experimentalists and the theorists in the field.

There is a significant amount of literature and progressive study on the simulation and modeling
of induction heating [1]. Numerical approaches such as the finite element (FE) and finite difference
(FD) are quite popular for the analysis and modeling of coupled problems like induction heating.
Since these approaches are based on discretization, the resulting differential equation system is very
large, in the order of millions. Control approaches based on these methods, even if possible in principle,
are challenging because they are computationally expensive and are not applicable when quick decision
making is necessary. For example, the authors in Ref. [2] have studied and examined the efficiency
of optimization approaches for induction heating processes based on the FE approach. They have
focused on the power density distribution in the sample and the goal of achieving a prescribed
temperature at a specific location near the surface of a cylindrical magnetic sample. Such models
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have the advantage of (1) a general description of physical mechanisms and (2) validity over a whole
domain such as a sample or workpiece, as shown by [2] and other authors [3]. However, in face
of the complexity of the algorithm presented in [2] and the usage of computationally expensive FE
tools to solve electromagnetically-thermally coupled problems, the agreement between the optimized
and targeted temperatures (Figure 12 of Ref. [2]) might not be sufficient for process optimization
and especially process control concepts. Moreover, it is often necessary to consider the transient
evolution of process parameters such as the current and frequency over the course of a heating cycle
instead of assumed constant values. Model reduction is also an active research area for the control
design and process control. In Ref. [4] the authors apply a reduced FE model for the control of the
temperature profile of an axisymmetric sample by finding an optimal control input current. However,
the comparison between the full and reduced model results shows an 80 K difference in the temperature
at intermediate times. Therefore, applying a reduced model in real time and on induction heating test
rigs to control the temperature profile will not perform satisfactorily.

In general, the mere application of physical approaches is not applicable to the induction heating
systems because of the complexity of the power systems and the implemented control algorithms to
the process control inputs. In real applications the induction heating operator is just allowed to change
the power supply input control set values, while the control system, which is usually not accessible
to the operator, will set the output physical parameters. To bypass this complexity and to propose
a general approach applicable to any induction heating set up, and to avoid modeling of the power
generator circuit, we present and apply an inverse model to control and optimize an inductive heat
treatment process. The modeling strategy is not meant to replace a fully physical approach, but as
a powerful alternative that is better suited for performance driven applications including interactions
with the system control. With the implementation of such model types in the system control, the digital
process control of induction heating may become a feasible task in the near future.

By combining a simplistic mathematical model with controlled experiments, we take into account
the unknown relevant factors, (which are not explicitly included in the model, e.g., nonlinear boundary
conditions, geometry imperfections, power generator complexities, etc.) that are important for the
temperature evolution. In our induction heating test rig a cylindrical ferromagnetic sample is heated
up above its Curie temperature in static experiments, where the inductor and sample are fixed.
A mathematical model of the coupled electromagnetic-thermal problem is then calibrated with
experiments to extract the temperature dependent model parameter α. The parameter α corrects the
so-called modified Nagaoka coefficient which has mainly been assumed constant in the literature [5,6].
In principle, this parameter is temperature dependent and it changes during the heating process.
However, its explicit functionality is not well known apart from some conjectures [7]. Therefore,
we allow the optimization of this parameter by calibrating the model to the measurement data. In this
way, the correct magnetic field in the air gap between the inductor and the sample is approximated and
the modeled temperature is closer to the experiment. We also measure the current in the inductor and
extract its frequency from the signal. Recording of the power level, current, frequency, temperature,
and the model parameter α provides the basic ingredients to define an inverse model that enables us
to predict and conduct experiments with specific goals. In industrial setups, due to instrumentation
limitations, it is usually not feasible to continuously control the temperature of the samples applied to
the induction heating processes. Moreover, the knowledge of the process control set values is necessary
to target specific temperatures in specific times. The empirical way of trial and error is expensive,
and the FEM approaches are computationally demanding or might even be impossible in industrial
scales. To demonstrate the applicability of the presented approach for optimal control of induction
heating processes we show two examples, where the target temperatures are chosen randomly to be
achieved in specific times. Employing the inverse model we show how quickly and efficiently the
target temperatures are reached by providing calculated control input set values to the power supply
of our test rig.
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The paper is organized as follows: In Section 2 we present the mathematical model and the
solution of the coupled electromagnetic-thermal problem under certain assumptions. Section 3 shows
the test rig setup for the experiments and in Section 4 the material properties of the heated sample
are presented. In Section 5 we calibrate the forward model with experimental data and present some
test simulations. In Section 6 we present an inverse model and as an application in Section 7 we
demonstrate two experiments in which we desire to hit the prescribed target temperatures in specified
times. Finally, in Section 8 we summarize and make a conclusion.

2. Mathematical Model

In Figure 1 the considered geometry used in the mathematical model is shown. The cylindrical
conductor with length L and diameter D is heated up by a solenoid with an internal diameter d,
length L′ and rectangular cross section. In the following, we show the solution for the electromagnetic
and thermal problem under specific assumptions.

Figure 1. The geometries of the inductor and sample used in the mathematical model.

2.1. Solution to the Electromagnetic Problem

Maxwell equations are the starting point to describe and model any kind of electromagnetic
phenomena. These equations are as follows:

→

∇ ×
→

B = 0
→
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where
→

B is the magnetic induction,
→

H the magnetic field,
→

E the electric field,
→
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the electric flux density,
→

j the electric current density and
→
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where ε is the dielectric constant, µ the magnetic permeability and σ the electrical conductivity. The set
of Equations (1) and (2) is generic and applicable to any kind of geometry and system. Within certain
assumptions, the analytical solution is possible. In this work we assume

(1) The inductor carries a sinusoidal current with frequency f and magnitude I.

(2) The magnetic field is purely axial,
→

H = H(r)ẑ, while the electric field is circumferential,
→

E = E(r)ϕ̂.
(3) A homogenous medium with constant material properties.

(4) The displacement current is negligible, which is applicable to good conductors,
∂
→

D
−

∂t = 0,
and frequencies below the megahertz range.

(5) Linear magnetic behaviour,
→

B = µ
→

H
(6) No electric charge density, ρc = 0

Assuming the aforementioned assumptions the magnetic field is described by the following
differential equation [6]

d2H
dr2 +

1
r

dH
dr
− iωµσH = 0 (3)

where ω = 2π f is the angular frequency and i =
√
−1. The electric field can be calculated as follows

E = −
1
σ

dH
dr

(4)

To find H from Equation (3) the value of the field on the surface of the cylinder (H0) is required in the
boundary conditions. For an ideal solenoid, the magnetic field is H0 = NI/L′ where N is the winding
number. The value of the magnetic field for a short cylinder is corrected by the so-called modified
Nagaoka coefficient Kn [5,6]. The correction coefficient Kn for a finite-length coil is expressed as

Kn = Kn

(
1−

D2

d2

)
+

D2

d2

Kn =
1 + 1.536β2 + 0.274β4

1 + 1.036β2 −
8β
3π

(5)

where Kn is the Nagaoka coefficient and β = d
2L′ . The modified Nagaoka coefficient of Equation (5) just

accounts for the geometry interaction corrections. This is a good approximation for a high frequency
operating regime where the magnetic flux lines are mainly concentrated in the air gap between
the solenoid and sample. However, in a low frequency regime, the magnetic flux substantially
penetrates the sample and therefore the magnetic field becomes frequency dependent due to complex
electromagnetic-thermal problem couplings. The authors in Ref. [7] introduce a frequency dependent
(or temperature dependent) Nagaoka correction factor and verify its accuracy experimentally for
different frequency ranges and sample materials. In this work we assume that the correction factor is
a nonlinear function of temperature, which we determine numerically by calibrating the model with
the experiments. The modified Nagaoka coefficient we consider in the model is

K′n = α(T)Kn (6)

where α(T) is a temperature dependent parameter, which is found by calibrating the model with the
experiments. This approach is more general and practical than the approach presented in Ref [7]. α(T)
includes many other relevant influencing factors like geometry corrections (imperfections, complex
shapes), material uncertainties, and boundary conditions. Therefore, the parameter α(T) will cover
the complex interactions of the relevant factors, which influence the field intensity in the air gap
and as a result the Joule losses within the sample. We note that the temperature of the sample is
a function of the control input variables (power level in our test rig) and material properties, which is
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not shown explicitly. This is due to the coupling of electromagnetic and thermal problems whose
power dependency enters via the heat source term of the thermal equation (see Equations (10) and (11)).
It is the objective of the presented approach to find the optimum process inputs (power levels) to
achieve specific target temperatures (see details in Section 6).

The exact solution to Equation (3) is represented by the Bessel functions [6]

→

H = H0
J0
(√
−imξ

)
J0
(√
−im

) ẑ (7)

where J0(x) is the zero order Bessel function of the first type, ξ = 2r
D , m =

√
2D

2δ and H0 is the corrected

field on the surface, i.e., H0 =
NIK′n

L′ . The δ is the skin depth, i.e., the penetration depth of the magnetic
field, which depends on the material properties and working frequency and is given by

δ =

√
2
ωµσ

(8)

The active power flowing through the surface of the cylinder (W/m2) is given by the real part of
the Poynting vector

P = Re
(
→

E ×
→

H
)

(9)

The total amount of the heat per unit time that reaches the surface of the cylinder is

q =
P
2
πDL (10)

2.2. Solution to the Thermal Problem

The Fourier-Kirchhoff equation reads as

ρmCp
∂T
∂t

=
→

∇·

(
κ
→

∇T
)
+ qv (11)

where ρm is the mass density, Cp the specific heat at constant pressure, κ the thermal conductivity and
qv is the energy rate per volume. In general, for the temperature distribution one has to solve the heat
equation in the three-dimensional space. However, in this work for the sake of simplicity we assume
that the sample is point like, such that the spatial gradients in the heat equation can be neglected.
In principle, this assumption is valid for materials with high thermal conductivities. Furthermore,
we assume that the cylinder heats up due to induction heating (Joule losses) and loses energy at the
surface via radiation. We rewrite Equation (11) as

ρmCpπL
D2

4
∂T
∂t

= q−πσBεRD
(
L +

D
2

)(
T4
− T4

amb

)
(12)

where σB is the Stefan–Boltzmann constant, εR the emissivity and Tamb the ambient temperature.
We notice that in Equation (12) q is the total heat generation rate, which is calculated from the
electromagnetic solution and is given in Equation (10). This is the term that couples the thermal and
electromagnetic problems. The temperature solution can be easily calculated over time using the
explicit integration of Equation (12) with an initial temperature of T(0) = Tamb (see details below).
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2.3. Procedure to Solve Electromagneticlly-Thermally Coupled Problems

In this section, we show how in practice the electromagnetic-thermal problem is solved. We rewrite
Equation (12) as

∂T
∂t

= aq(α, δ) − b
(
T4
− T4

amb

)
(13)

where
a =

4
ρmCPπD2L

b =
4σBεR

ρmCPD

(
L +

D
2

) (14)

The material properties (CP, ρm), the skin depth δ and the model parameter α are
temperature dependent.

The total heat rate q depends on the yet unknown parameter α, which shall be determined by the
calibration of the model to the experimental data. After using the explicit time integration, Equation (13)
reads as

Ti+1 = Ti + dt
(
aiq(αi, δi) − bi

(
T4

i − T4
amb

))
(15)

where the subscript i refers to a point in time and dt is the integration time step. We also notice that
q(αi, δi) ≡ q(α(Ti), δ(Ti)). Since the temperature evolution is an initial value problem and the dynamic
is causal, therefore the optimization is done at each time step. For each time step we have the cost
function as

cost = Ti + dt
(
aiq(αi, δi) − bi

(
T4

i − T4
amb

))
− Texperiment (16)

In this way, αi is computed by fitting the model to the measurement at ti+1. We use a standard
built-in Scilab function for the optimization. Scilab is a free and open source software for numerical
computations [8]. The “lsqrsolve” routine is used to minimize the sum of the squares of nonlinear
functions (Levenberg–Marquardt algorithm).

In Figure 2, we show the flow chart of how electromagnetic-thermal problems are solved once
α is determined. First, we start (at t = t0) by solving the electromagnetic problem at an ambient
temperature to calculate the total heat generation, i.e., q. Then, in the next time step the thermal equation
is integrated to get the new temperature. After the update of the material properties, we continue the
loop by solving the electromagnetic problem and getting the new q. When we calibrate the model,
the temperature computation is accompanied by an optimization to find α. We notice that for the
analytical solution of the electromagnetic problem we assumed constant material properties, while in
practice we allow for the temperature dependent material data. We believe this provides a very good
approximation for the solution, and as mentioned previously, the temperature dependent Nagaoka
coefficient comprises the missing factors as well.

Figure 2. Flow chart of the procedure for solving coupled electromagnetic-thermal problems.

3. Induction Heating Test Rig Setup

The experimental setup is shown in Figure 3. The power supply operates both in the temperature
control and power control mode with the capacity to provide a maximum power of 30 kW. The graphical
user interface provides control over the operating power, heating time, movement of the inductor,
rotation of the sample, and quenching. Both the water and air cooling are possible in the unit.
Alternatively, the test rig can be controlled by means of the input files, which are loaded into the
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system control. In this way, heat treatment procedures with a high number of individual steps can be
carried out.

Figure 3. The induction heating test rig setup (product model: HU-VH300-MS30, manufacturer: Ideal
Thermal Processes GmbH (ITP), city: Oberkirch, country: Germany).

The control system of the test rig provides the data of relevant process parameters during heating.
These include the resonance frequency, running power, current, and voltage (inside the generator
before the transformer, not in the inductor), temperature of the cooling water at the inlet and outlet of
the solenoid, and the temperature of three points in the sample (two with thermocouples and one with
a pyrometer or alternatively all three with thermocouples (NiCr-Ni, type K)). The recording of the data
is performed with a sampling rate of 10 ms.

The cylinder of length L = 300 mm and diameter D = 22 mm is fixed between two clamps.
The rectangular inductor of length L′ = 37 mm and internal diameter d = 37 mm is used to heat up
the part of the sample beneath the solenoid. The setup is static where neither the sample rotates nor
the inductor moves. The point where the temperature is measured is located at a radial distance of
r = 2.1 mm from the surface and the thermocouple hole has a depth of 65 mm from the top side of
the cylindrical sample. The position of the inductor is fixed such that the temperature measurement
point (at the end of the thermocouple hole) is located at the center of the inductor. The diameter of the
thermocouple measures 2.0 mm, while the hole has a diameter of 2.2 mm.

The current in the inductor is measured by implementing a Rogowski coil right after the transformer
as shown in Figure 3. A Rogowski coil is wrapped around the straight conductor, which carries the
current to the inductor. The induced voltage in a Rogowski coil is proportional to the rate of the current
in the straight conductor. Therefore, the measured voltage is integrated to get the current as:

I(t) =
1
M

∫ t

t0

V(t′)dt′ (17)

where M = 0.064 µH is the mutual induction of the Rogowski coil and V is the voltage measured
by an Oscilloscope attached to our test rig (to measure the voltage induced in the Rogowski coil).
In principle, Rogowski coils are immune to external fields and show very low positioning related
sensitivity. During our experiments this was checked and two different Rogowski coils have been used.
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The finally calculated currents from both Rogowski coils differed by a few amperes only. The frequency
of the circuit is extracted from the time series of the current.

4. Material Properties

A sample material for the heating experiments of the steel grade 50CrMo4 was used with the chemical
composition given in Table 1 [9]. In Figure 4, the specific heat, mass density, electrical conductivity,
and relative magnetic permeability are shown compared to the temperature. These material data were
modeled by with the “JMatPro” software (Version 9.0) [10]. Based on the calculated material data,
the Curie temperature is around 800 ◦C.

Table 1. The chemical composition of 50CrMo4 with values in the weight percent and Fe is balanced.

C Mn Cr Mo Si P S Fe

0.49 0.71 1.05 0.18 0.27 0.016 0.01 bal

Figure 4. Material properties as a function of the temperature: (a) Specific heat, (b) mass density,
(c) electrical conductivity, (d) relative magnetic permeability.

5. Model Calibration and Testing

In this section, we check the accuracy of the mathematical model used for describing the
experiments. To this end, we allow the optimization of only one parameter in the model. As described
in Section 2, the optimized parameter corrects the magnetic field in the air gap between the cylindric
sample and the inductor and even takes into account other effects that are not included in the model.
For example, these are nonlinearity effects, inaccuracy of the material data, geometry asymmetries,
and the effects originating from the test rig setup.

We used a collection of experiments to calibrate the model. Table 2 shows the list of power
variation experiments for the calculation of the model parameter α. The minimum and maximum
powers in the measurements are 0.6 and 15 kW. We ran every experiment until the Curie temperature
was exceeded. The repetitively used sample for the experiments was assured to be free of any cracks
or other damages. To keep the sample in a good condition, we first conducted the experiments at low
powers and water quenching was only applied after convective cooling of the sample in ambient air
down to 400 ◦C. In this way, the sample does not experience extreme thermal and mechanical stresses.
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Table 2. List of power controlled static measurements for the calibration of the model.

Power(P)(kW) 0.6 0.9 1.5 2.1 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

In the calibration stage we construct the tables of power, temperature, current, frequency, and the
correction factor α. The only input control parameter in the experiments is the set value for the power
in the control system. The current and frequency are determined by internal algorithms in the power
supply, which depend on the sample temperature as well as the geometries of the sample and inductor.
In the model, the current and frequency are taken from the Oscilloscope measurements. To find α in
Equation (15), we use a fixed integration time step dt = 0.01 s that is equal to the sampling rate of the
temperature measurement. The knowledge of α(T) for several powers and its corresponding currents
and frequencies provides the basis to define an inverse model (see Section 6) with the ability to design
experiments with specific goals, such as the predefined temperature evolution.

Figure 5 illustrates the results of the model calibration for the power experiments with 13.5 and
2.1 kW and their corresponding optimized parameter α as a function of the temperature. We remind
that the temperature is monitored at the measurement point of 2.1 mm below the surface. In principle,
one could do this for any point in the sample. As we can see, with just one parameter the measurement
data are accurately reproducible. With the increasing temperature, the evolution of α shows a transition
zone corresponding to the Curie point of the material. For high powers, such as 13.5 kW, we see that
α is almost constant while for low powers, such as 2.1 kW, it is decreasing while approaching the
Curie temperature.

Figure 5. (a) Calibration of the model to the measurement data of the experiment done with 13.5 kW of
power. (b) The optimized parameter α for the experiment with 13.5 kW of power. (c) Calibration of
the model to the measurement data of the experiment done with 2.1 kW of power. (d) The optimized
parameter α for the experiment with 2.1 kW of power.

After calibration, we test the model on some experiments. Figure 6 shows the accuracy of the
calibrated model for four measurements different from the calibration set. In the upper panels of
Figure 6 we show the results for 12 and 15 kW of the power experiments using the model calibrated
with the 13.5 kW measurement data. As we can see, the simulated temperatures are very close to
the experimental data. In the lower panels of Figure 6 the results are shown for 1.5 and 3 kW of the
experiments using the model calibrated with the 2.1 kW measurement. Additionally, for the low power
regime, the agreement is very promising. These examples show that using the α optimized for a specific
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power can provide a very accurate predictive model for experiments close to that power. This reflects
the fact that α does not change substantially for the neighbouring power experiments. Therefore,
in practice, for the model calibration a discrete set of experiments is required. Then, interpolation of
the data will provide a database accurate enough for modeling.
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6. Inverse Model

In this section, we present the inverse model and its application for control of the induction
heating systems. The temperature control of the induction heating systems is a daunting task and up
to now not completely managable. Direct temperature control is not possible in the industrial context
since thermocouples can-not be applied in continuous processes and thermographic methods are not
sufficiently reliable. A prior knowledge of the control set values to reach certain target temperatures
in the sample in specific times has a great value for industrial setups and applications. Furthermore,
optimal temperature control paves the way to hit desired targets in material properties as a final goal.
The empirical way of the temperature adjustment is based on trial and error, which is not cost effective.
Moreover, methods based on FEM simulations are computationally expensive and might be even
impossible on industrial scales.

In our test rig power controlled static experiments, the only inputs to the control system are
the power level and the total holding time. Therefore, the temperature of the sample at time t is
a complicated function of power P, which can be expressed as

T(t) = F(P) (18)

The inverse problem is the process of finding power levels, which lead to certain temperatures in
the sample, i.e.,

P = F−1(T(t)) (19)

It is impossible to derive the explicit mathematical form of F−1. However, employing a mathematical
model, which is incorporated with some physical parameters, could assist to reverse engineer the
problem. As described in Section 5, the unknown model parameters, α in this work, are determined by
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calibrating the model with the experiments. Performing the experiments with different power levels
and recording the model parameters (current, frequency, α), the simulated temperature T and input set
value P, provides a tool to bypass the necessity of knowing the explicit form of F−1. With a discrete
set of experiments and the interpolation of the data, we can infer the required input powers to reach
specific temperatures. The linear interpolation (by using a standard Scilab built-in function [8]) has
been done for three surfaces (α, current, frequency) of a matrix with the power level and temperature
axes. The grid spacing of ∆P = 0.03 kW and ∆T = 0.1 ◦C is used in the interpolations.

To calculate the power levels with the model we start with an initial power level of Pn= 0.6 kW to
simulate the temperature for a total time of tn − tn−1 by using Equation (15), where n is the index for
numbering the target points (n = 1, 2, 3, ...). We notice that (t0 = 0, T(t0) = Tamb) and for multiple
target temperatures the initial temperature in the simulations with Equation (15) for a target point n
is T(tn−1).

The model parameters of the current, frequency and α are read from the interpolated surface
data, based on the current values of the temperature and power level. The power level is changed in
an iterative way to reach the target temperature, i.e.,

Pn = Pn − 0.01× (T(tn) − Tn) (20)

where Tn is the n-th target temperature and T(tn) is the simulated temperature after a total time
tn − tn−1. The iteration is terminated when the target temperature is simulated within a tolerance of
|T|tn| − Tn| < 5.

7. Inverse Model Application: Demonstration of the Temperature Control

In principle, if the model is accurate enough, the initial powers calculated by the inverse model for
reaching certain prescribed temperatures in the experiment might be good enough. However, in practice
extra iteration loops with a few experiments might be required to reduce the target temperature error.
In Figure 7 we show one iteration of this scenario where T1 and T2 are the target temperatures and P1

and P2 are the calculated initial powers by the inverse model as described in Section 6. When the model
is imperfect, we reach other temperatures T∗1 and T∗2 (see Figure 7) in the experiment, which might
be slightly higher (T∗2 > T2) or lower (T∗1 < T1) than the target temperatures. To get closer to the
target temperatures, in the next experiment, a new set of input power levels is calculated by using the
temperature values realized in the current experiment as target temperatures for the inverse model,
i.e., T∗1 and T∗2. Then, we adjust the power levels for the next experiment depending on the target
temperature error sign (Ti − T∗i > 0 or < 0). We summarize the steps and the procedure for the update
of the power levels as follows:

(1) Initial suggested powers (P1 and P2) found based on the inverse model to hit the target temperatures,
i.e., T1 and T2 in Figure 7.

(2) Run the experiments with the suggested powers.
(3) Compare the temperatures (T∗1 and T∗2) with the target temperatures. Terminate the loop if the

target is achieved within the specified accuracy, |Ti − T∗i | < tolerance.

(4) If the target is not achieved, adjust the power levels. For the adjustment, the model calculates
(in an iterative way as described in Section 6) the power levels to reach the new temperatures
(T∗1 and T∗2) in step (3) and then suggests a set of power levels for the next iteration based on
the difference between the new power levels and the old ones used in step (2), P = Pold + γ|∆P|.
The γ is 0.03 or −0.03 depending on whether the measured temperature (T∗i ) is below or above
the target temperature.

(5) Go to step (2).
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Figure 7. Schematics of one iteration (experiment) of the control assisted by the inverse model.

As an application for the inverse model, we show the accuracy of the approach for designing
targeted experiments in the induction heating systems. For the demonstration, we show two control
experiments where we target two and three temperatures at specific times. In Figure 8 we show the
results. Figure 8a shows the experiments to hit the temperatures T = {500, 900} ◦C at times t = {30, 80} s.
In Figure 9 on the left panels the corresponding power levels (inferred by the inverse model) and
errors in the target temperature are shown for each experiment. As we can see in three iterations the
target temperatures are achieved within a tolerance of |Ti − T∗i | < 12. Figure 8b shows the results for
the second control experiment with iterations to hit the temperatures T = {700, 825, 1030} ◦C times
t = {11, 34, 69} s. In addition, this control experiment converged in three iterations and we have omitted
the iteration number two in the plot for better readability. As we can see in Figure 9 the power levels
are not changing significantly during the iterations and already the first suggested powers lead to
promising results. However, for better optimization and reducing the error (see Figure 9, lower panels)
in the target temperatures a few iterations might be necessary. The control and design of experiments
similar to the one in Figure 8b is very appealing to material scientists. In inductive heat treatments,
the sample is heated up in a short time to achieve temperatures close to the Curie point and then the
heating continues at a lower rate. A preliminary setup of such experiments and a good guess of the
control input set values are crucial. The inverse model can substantially reduce time and energy for
the design of such experiments.

Temperature control with smaller convergence tolerances is possible at the cost of increased
experiment numbers. For higher accuracy and smaller tolerances each iteration should be done with
a new sample. Since material properties are not changing significantly, the repeated use of a single
sample is sufficient in order to show the principles of the presented method.

The optimization problem in this work may be a nonconvex one. In the application of the inverse
model to find a control input power level, we always started the iterations with the lowest power,
i.e., 0.6 kW. In this way, the iterative procedure most of the time converged to a global optimum.
However, more advanced and general optimization approaches like the genetic algorithms [11] are
preferable and might be necessary when the parameter search space is larger (more control input
variables) or more complicated optimization constraints are imposed.
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Figure 8. Illustration of two control experiments assisted by the inverse model. (a) Two target
temperatures T = {500, 900} ◦C are set for times t = {30, 80} s. (b) Target temperatures T = {700, 825,
1030} ◦C are set for times t = {11, 34, 69} s.

Figure 9. (a) Power level of each iteration for the control experiment with two target temperatures
(T = {500, 900} ◦C). (b) Power level of each iteration for the control experiment with three target
temperatures (T = {700, 825, 1030} ◦C). (c) Error in the target temperature for each iteration for the
control experiment with two target temperatures. (d) Error in the target temperature for each iteration
for the control experiment with three target temperatures.
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8. Summary

The inverse model is used to conduct and control experiments which are very interesting for heat
treatment applications. We performed two experiments with temperature targets at specific times
during the course of heating. We demonstrated that by using the inverse model the target temperatures
are hit within a few iterations. This is a significant improvement in comparison to the classic way of
trial and error and even complicated mathematical optimization algorithms [2,12]. The method was
only applied to a position close to the surface. However, it can easily be extended to multiple locations
within the sample.

Furthermore, the presented approach can be applied to a broad diversity of non-ideal complicated
scenarios. For example, to the induction heating setups where the sample is either asymmetric (and has
a complex geometry) or has non-ideal characteristics, or industrial configurations where an array of
coils are combined to surface harden the samples. Most often the FEM approaches fail to simulate
such large-scale processes due to the complexity of the boundary conditions and multiple uncontrolled
process variables.

In this work, the inverse model and the temperature control were demonstrated for static
cases without the quenching or cooling steps. In principle, the inverse model can be extended to
include quenching and cooling operations and even to take into account mechanical and metallurgical
problems. Last but not least, the approach is computationally very efficient and that makes it an attractive
alternative to control large scale induction heating systems.

The computational burden of our approach is in the order of min (1 to 10 min) and it grows quickly
when the number of target temperatures is increased. The response surface models are quite useful for
use in the system parameter identification and fast process control. These surrogate models [13] are
applicable with a low computational effort to both linear and nonlinear problems. It is in the interest
of authors to develop and investigate the neural network based metamodels (fast running surrogate
models) to control and optimize the induction heat treatments.
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