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Abstract: In this study, an improved Fourier series method is presented for the vibration modeling
and analysis of moderately thick laminated composite plates with arbitrary boundary conditions,
in which the vibration displacements are sought as the linear combination of a double Fourier cosine
series and auxiliary series functions. The vibration model was established using the Hamilton energy
principle. To study the vibration characteristics of laminated composite plates more comprehensively,
firstly, the accuracy of the current results were validated via comparison with previous results
and finite element method data. A parametric study was conducted on the effects of several key
parameters, such as the h/b ratio, orientation and number of layers. In this section, both solutions are
applicable to various combinations of boundary constraints, including classical boundary conditions
and elastic-supported boundary conditions. Secondly, in order to identify the action position of
vibration and the transmission of vibration energy, the response analysis of laminated plates was
studied, and the power flow field for laminated plates was analyzed. Finally, a modal test was
introduced to further verify the accuracy of the method in this paper.

Keywords: moderately thick laminated composite plates; Mindlin theory; improved Fourier series;
power flow; arbitrary elastic boundary; Hamilton principle

1. Introduction

It is generally known that laminated composite plates, as basic structural components,
are commonly applied in mechanical, aerospace, astronautic and civil engineering, among other
fields. This is mainly because they are superior to conventional materials when high strength-to-weight
and stiffness-to-weight ratios are required. Therefore, it is attractive for engineers and designers to
research the material characteristics of the laminated composite plates.

At present, there are various theories of laminated plates, distinguished according to the differences
in the displacement equation; these theories can be classified as follows: classical lamination theory
(CLD) [1], first-order shear deformation theory (FSDT) [2,3], higher-order shear deformation theories
(HSDT) [4–6], layer-wise lamination theory [7–10] and the three-dimensional elastic theory [11–13].
After establishing the vibration equation of composite laminates, there have been many studies on the
vibration and response analysis of laminated composite plates.

According to Yu et al. [14], the vibration characteristics of anisotropic rectangular plates under
the mixed boundary conditions of solid support and simple support are analyzed based on the
superposition principle. Ge et al. [15] studied the dynamic response of symmetrically orthogonal
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composite laminates on elastic foundations under in-plane preloading and transverse impact loads
based on the modal superposition method. In this paper, the equation of motion for displacement
description is deduced by using the higher-order shear deformation theory. Huang et al. [16] studied
the free vibration characteristics of orthotropic rectangular plates subjected to internal compression on a
two-parameter elastic foundation by the method of separated variables. Kshirsagar et al. [17] analyzed
the free vibration and buckling of rectangular plates under arbitrary classical boundary conditions based
on the superposition principle of infinite series with infinite truncation. Liu et al. [18] presented the
exact closed solution of a rectangular plate by using the method of separating variables. The boundary
conditions of plate structure in this paper are simply supported on one side, and have arbitrary
classical boundary conditions on the other. Chung et al. [19] studied the vibration characteristics
of rectangular plates under elastic boundary conditions by the Rayleigh-Ritz method, where the
Timoshenko beam function is used as the permissible deflection function. Liew et al. [20,21] presented
the vibration characteristics of anisotropic plates and symmetrical composite laminates under mixed
boundary conditions based on the subdomain and orthogonal polynomial methods. On this basis,
they use the Reissner-Mindlin theory and p-Ritz method to analyze the vibration characteristics of
composite laminates and calculate the vibration frequencies of composite laminates under different
boundary conditions, length-width ratios and width-thickness ratios. Cheung et al. [22] studied the free
vibration characteristics of symmetrically laminated plates under point-supported boundary conditions
by using a new displacement admissible function and the Rayleigh-Ritz method. The allowable
function is composed of a static beam function, which is different from the existing admissible
function. The functions they set can satisfy both geometric boundary conditions and point-supported
boundary conditions. Matsunaga et al. [23] analyzed the natural frequency and buckling stress of
laminates by considering the influence of shear deformation thickness variation and moment of inertia,
and expanded the vibration displacement function in power series. Mbakogu et al. [24] studied
the bending problem of orthotropic rectangular plates under uniformly distributed loads by the
Galerkin method. Dalaei et al. [25] solved the vibration problem of cantilever plates with anisotropic
materials for the first time by using the extended Kantorovich method; they also obtained a closed-form
high-precision solution in their paper. Bercin et al. [26] studied the bending and vibration of fully
clamped plates by the Kantorovich method. Chen et al. [27–30] established a series of composite
laminate models and studied the vibration, stability and large deformation of composite laminate
plates. Luccioni et al. [31] presented the free vibration characteristics and stability of composite
laminates by the finite element method, combining the classical laminate theory with the first-order
shear deformation theory. Rao et al. [32] presented several finite element models to study the static,
stability, impact and nonlinearity of laminated plates and shells. Shafiee et al. [33] analyzed the
vibration characteristics of composite coupled plates by the finite element method. Huang et al. [34]
studied the free vibration characteristics of rectangular plates with variable thickness based on the
discrete method, and the characteristic equation of free vibration was obtained by the Green function.
Liew et al. [35] presented the free vibration of symmetrical laminated plates by the moving least squares
differential integral method. Song et al. [36–38] studied the free vibration of laminated plates by the
local Radial Point Interpolation method; however, it is difficult to deal with the displacement boundary
using a meshless method. Zhang et al. [39,40] presented an improved Fourier series method for the
free vibration analysis of a moderately thick laminated composite rectangular plate with non-uniform
boundary conditions. They also established a unified analysis model for vibration characteristics of
composite laminated annular sector plates, circular sector plates, annular plates and circular plates
with various elastic boundary conditions. Qin et al. [41] studied the free vibration analysis of composite
laminated plates based on the Jacobi-Ritz method.

Romanelli et al. [42] presented the dynamic response of a simply supported rectangular composite
plate under local pressure based on the series method. Shen et al. [43,44] discussed the dynamic response
of a cantilever plate on a Pastemak elastic foundation under temperature and transverse dynamic loads
by the Rayleigh-Ritz method, considering the influence of first-order shear deformation, foundation
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stiffness coefficient and temperature change. Khan et al. [45] presented the dynamic response of
a composite cantilever plate under a uniform load by the variational method. Niyogi et al. [46]
analyzed the free and forced vibration responses of composite laminates based on the nine-node
element method, considering the influence of first-order transverse shear deformation and moment of
inertia. Biswas et al. [47] studied the transient dynamic response behavior of multi-layered hybrid
composite plates by a modified higher-order refined zigzag theory (HRZT). Zhang et al. [48] presented
the free and forced vibration behaviors of thin, three-dimensionally coupled plate structures based
on the dynamic stiffness method (DSM). Nefske et al. [49] presented a power flow finite element
method, which is applied to the calculation of beam structures. In subsequent studies, power flow
finite element method has been developed and gradually applied to the power flow analysis of coupled
structures. Hambric et al. [50] calculated the structural sound intensity of a cantilever plate with
stiffened members by the finite element method, and the bending, torsion and axial power flow were
obtained. Li et al. [51] obtained the structural sound intensity vectors in three cases by finite element
harmonic response analysis through calculating the surface admittance of a thin plate by the structural
sound intensity method. Cieslik et al. [52] presented a method to introduce the bending moment and
external force into the theoretical expression of structural vibration and sound intensity by using the
complex mode theory. The vibration power flow of simply supported stiffened plates is calculated
by the finite element method, and the energy flow distribution of stiffened plates is analyzed in this
paper. Xing et al. [53] studied the power flow of structures under fluid-structure interaction based
on the substructure method. The energy flow density vector was used to represent the energy flow
transmission path between substructures, and the energy flow transmission was visually shown by
graphics. Wang et al. [54] studied the structural sound intensity characteristics of composite laminates
under dynamic concentrated forces. An example of structural sound intensity was analyzed by
using finite element software; in this paper, the results show that orthotropic laminates have different
characteristics from isotropic laminates, and that the structural sound intensity characteristics of
orthotropic laminates are influenced by the boundary conditions, number of layers and stacking
sequence. Zhang et al. [55–59] presented the free and forced vibration behaviors of the laminated
plate-cavity coupling system by means of the improved Fourier series method.

There have been many studies on thin plates with arbitrary boundary conditions. However,
these studies have limitations for moderately thick composite plates with special supported boundary
conditions, for instance, an arbitrary elastic boundary. In addition, because the Mindlin theory considers
the shear deformation along the thickness direction compared with the equivalent single-layer theory
used in thin plates when studying the vibration of plates, the results obtained by the Mindlin theory
are more accurate. On the other hand, most of the recent research merely discusses the vibration
analysis, while the research on energy transfer is insufficient. Nevertheless, in many engineering
applications, such as in the design of vehicles, it is necessary to comprehend the energy transfer path
in order to reduce noise and vibration. Yan [60] points out that, compared with the traditional path
analysis method, power flow analysis not only describes the speed of energy transfer or transformation,
but also can be used to characterize the flow of vibration energy in the system. An et al. [61] studied
the transmission path in hydraulic pipelines by using vibration power flow. Inoue et al. [62–64]
studied the relationship between the structural noise response and the total power flow transmitted
to the receiving structure, and they presented that there is a certain similarity between the response
spectrum of structural noise and the total power spectrum transmitted to the receiving structure in
a wide frequency range. Lee et al. [65,66] used the method of measuring vibration power flow to
analyze the transmission paths of occupant interior structural noise caused by vehicle transmission
system; they identified the main transmission paths according to the power flow, and modified the
body structure with modal analysis to reduce the structural noise. Wang [67] studied the transmission
characteristic of energy flows of micro-vibrations in spacecraft structures. Therefore, the study of
power flow analysis of structural component is essential.
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In this paper, a mechanics model is presented, based on the Mindlin theory, in order to research
its vibration characteristics with arbitrary boundary conditions. Three kinds of restraining springs
(translational, rotational and torsional), attached to each edge, are introduced to establish the general
structure model of laminated composite plates. In addition, a modified Fourier series method is
introduced to describe the vibration displacement function of the structure to study the influences of
the structural style and the boundary conditions on the vibration characteristics of laminated composite
plates. Moreover, the vibration model of the laminated composite plates with arbitrary boundary
conditions is established, which is based on the Hamilton energy variation principle. This paper
also focuses on the effect on vibration frequency while changing various key parameters (such as
the ratio between thickness and width, the number of layers, as well as the laying angle between
two layers). In the following section, several numerical examples of the free vibration of a laminated
composite plate with arbitrary boundary conditions are presented, which can serve as references for
future engineering. The current results were checked against previous results and achieved good
agreement. Moreover, to analyze the vibration characteristics of laminated composite plates more
comprehensively, the present work discusses the vibration response characteristic of the laminate,
in terms of energy, through harmonic response and power flow analysis. In this section, we discuss
the periodic response of a continuous periodic load in a structural system; in addition, we found
the distribution character of energy transfer through changing the position of actions and boundary
conditions. Finally, we introduce a test to further verify the accuracy of the presented method, in which
the experimental data coincide with the theoretical value.

2. Theoretical Formulations

The mechanical properties of the composite laminate structure were related to the mechanical
properties and thickness of the single-layer board, as well as the fiber laying direction and sequence
and the number of layers. The laminated plate shown in Figure 1 consisted of five layers. The angle
of the first layer was 0◦, and the other four layers were expressed as α, 90◦, −α and 0◦, respectively.
The principal axis coordinate system of each layer in laminated composite plates was O12, and the global
coordinate system was Oxy. The ply-angle of the fiber can be expressed by θ, and the positive direction
was identified when the x-axis rolled towards the 1 axis in an anticlockwise direction. The material of
the plate structure in this chapter was a fiber-reinforced composite material, which was composed of
matrix and fiber. The matrix was mainly used to support and protect the fiber, while the fiber was
enhanced and mainly supported. In addition, the coupling vibration of bending and stretching of
composite laminate plates is not considered in this chapter.
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Figure 1. Abbreviated drawing of laminated composite plates.

For the plate model based on the assumptions of the first-order shear deformation theory,
the deformation of the plate was continuous. Thus, on the basis of not considering the in-plane
vibration of plates, the displacement field can be expressed as

u(x, y, z) = zψx(x, y), (1)

v(x, y, z) = zψy(x, y), (2)
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w(x, y, z) = w(x, y) (3)

where u, v and w are the displacement in the x-, y- and z- directions, respectively, and ψx and ψy are the
rotation in the x- and y- directions, respectively. Therefore, the stress-strain relationship in coordinates,
based on the small deflection theory, can be written as follows:

εx

εy

γxy

γyz

γxz


=


z

z∂ψx/∂x
z∂ψy/∂y

(∂ψx/∂x + ∂ψy/∂y)
ψx + ∂w/∂x
ψy + ∂w/∂y


. (4)

The corresponding stresses are obtained in terms of the generalized Hooke’s law:


σx

σy

τxy

 =


Qk

11 Qk
12 Qk

16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66



εx

εy

γxy

,
{
τyz

τxz

}
=

 Qk
44 Qk

45

Qk
45 Qk

55

{ γyz

γxz

}
, (5)

where the normal stresses are σx and σy in the x and y directions, respectively, and the shear stresses
are τyz, τxz and τxy in the x, y and z coordinate system, respectively. The lamina stiffness coefficients

are Qk
i j(i, j = 1, 2, 4, 5, 6), which can be expressed as follows:

Qk
11 = Qk

11m4 + 2(Qk
12 + 2Qk

66)m
2n2 + Qk

22n4

Qk
12 = (Qk

11 + Qk
22 + 4Qk

66)m
2n2 + Qk

12(m
4 + n4)

Qk
22 = Qk

11n4 + 2(Qk
12 + 2Qk

66)m
2n2 + Qk

22m4

Qk
16 = (Qk

11 −Qk
12 − 2Qk

66)m
3n + (Qk

12 −Qk
22 + 2Qk

66)mn3

Qk
26 = (Qk

11 −Qk
12 − 2Qk

66)mn3 + (Qk
12 −Qk

22 + 2Qk
66)m

3n

Qk
66 = (Qk

11 + Qk
22 − 2Qk

12 − 2Qk
66)m

2n2 + Qk
66(m

4 + n4)

Qk
44 = Qk

44m2 + Qk
55n2

Qk
45 = (Qk

55 −Qk
44)mn

Qk
55 = Qk

55m2 + Qk
44n2

, (6)

where m = cosθk,n = sinθk, in which the included angle is simply represented as θ between the
principal direction of the layer and the x–axis. The lamina elastic coefficients Qk

i j in Equation (6) can be
obtained from the material properties of the kth orthotropic lamina layer:

Qk
11 = E1

1−µ12µ21
, Qk

12 =
µ12E2

1−µ12µ21
, Qk

12 = E2
1−µ12µ21

Qk
44 = G23, Qk

55 = G13, Qk
66 = G12,

(7)

where E1 and E2 denote the longitudinal modulus and the transverse modulus, µ12 is the major
Poisson’s ratio and the other Poisson’s ratio µ21 can be obtained by µ12E2 = µ21E1. G12, G13 and G23

are the shear moduli.
Through taking the unit body of unit length from the plate in the x/y direction, we can synthesize

the stress component on the cross section of the unit body into an internal force per unit width.
Therefore, the bending moment Mx and My, the torque Mxy and Myx and the shear force Qx and Qy

can be expressed as

Mx =
∫ h/2
−h/2 σxzdz =

n∑
k = 1

∫ zk+1
zk

σk
xzdz,

My =
∫ h/2
−h/2 σyzdz =

n∑
k = 1

∫ zk+1
zk

σk
yzdz,

(8)
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Mxy = Myx =
∫ h/2
−h/2 τxyzdz =

n∑
k = 1

∫ zk+1
zk

τk
xyzdz, (9)

Qx = κ
∫ h/2
−h/2 τxzdz = κ

n∑
k = 1

∫ zk+1
zk

τk
xzdz,

Qy = κ
∫ h/2
−h/2 τyzdz = κ

n∑
k = 1

∫ zk+1
zk

τk
yzdz,

(10)

where κ is the shear correction factor, and σk
x, σk

y, τk
xy, τk

xz and τk
yz are the corresponding stresses of the

kth layer.
Consider a structural model of laminated composite plates that is elastically restrained along its

four edges, as shown in Figure 2. The laminated composite plates may also be loaded with three kinds
of restraining springs (translational, rotational and torsional) at arbitrary locations, and the boundary
conditions can be easily obtained by changing the stiffness of the springs.

According to Hamilton’s principle, the vibration equation can be easily established. For a
holonomic mechanical system with n generalized degrees of freedom, the generalized coordinates are
qs (s = 1, 2, . . . n), the Lagrange function is L(qs,

.
qs, t) = T −U −W, where T, U and W are the kinetic

energy, potential energy and the external work, respectively. The Hamilton action is defined as follows:

S =

∫ t1

to

L(qs,
.
qs, t)dt. (11)
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For the laminated composite plate in Figure 2, the Hamilton equation of the plate can be expressed
as follows:

δ

∫ t1

t0

(V − T −Wext)dt = 0, (12)

where V, T and Wext, denote the total potential, the total kinetic energy and the external potential
energy, respectively. The total potential includes the bending potential energy of the plate and the
elastic potential energy of springs. The total potential energy can be written as follows:

V = Vplate + Vspring, (13)

where Vspring is the elastic potential energy of springs, Vplate is the bending potential energy of the
plate and these terms can be explicitly expressed as follows.

The elastic potential energy of springs on the four edges can be written as follows:

Vspring = 1
2

∫ b
0


[
kx0w2 + Kx0ψ2

x + Kyx0ψ2
y

]
x = 0

+
[[

kxaw2 + Kxaψ2
x + Kyxaψ2

y

]]
x = a

dy

+ 1
2

∫ a
0


[
ky0w2 + Ky0ψ2

y + Kxy0ψ2
x

]
y = 0

+
[
kybw2 + Kybψ

2
y + Kxybψ

2
x

]
y = b

dx

. (14)
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The stress relationship can be evaluated according to the stress-strain relationship. On the basis
of the elastic mechanic theory, the relationship between elastic potential energy and stress-strain is
expressed as follows:

Vplate =
1
2

∫
V
εTσdV =

1
2

∫
S
εT

1 Θε1dS. (15)

In this equation, Θ is given by

Θ =


D11 D12 D16 0 0
D21 D22 D26 0 0
D16 D26 D66 0 0

0 0 0 A55 A45

0 0 0 A45 A44


, (16)

and ε1 is given by

ε1 =



∂ψx/∂x
∂ψy/∂y

(∂ψx/∂x + ∂ψy/∂y)
ψx + ∂w/∂x
ψy + ∂w/∂y


. (17)

The stiffness can be defined as

Di j =
1
3

n∑
q = 1

Q(q)
i j

(
h3

k − h3
k−1

)
i, j = 1, 2, 6, (18)

Ai j = κ
n∑

q = 1

Q(q)
i j (hk − hk−1) i, j = 4, 5. (19)

Therefore, Equation (5) can be expressed as follows:

Vplate = 1
2

∫ a
0

∫ b
0

{
D11

(
∂ψx
∂x

)2
+ D22

(
∂ψy
∂y

)2
+ 2D12

(
∂ψx
∂x

∂ψy
∂y

)
+2D16

∂ψx
∂x

(
∂ψx
∂y +

∂ψy
∂x

)
+ 2D26

∂ψy
∂y

(
∂ψx
∂y +

∂ψy
∂x

)
+ D66

(
∂ψx
∂y +

∂ψy
∂x

)2

+A44

(
∂w
∂y +ψy

)2
+2A45

(
∂w
∂y +ψy

)(
∂w
∂x +ψx

)
+ A55

(
∂w
∂x +ψx

)2
}
dxdy

. (20)

The total kinetic energy of the laminated composite plate is given by

T =
1
2
ρhω2

∫ a

0

∫ b

0

{
w2 +

1
12

h2
(
ψ2

x +ψ2
y

)}
dxdy. (21)

The external potential energy of the laminated composite plate can be expressed as

Wext =

∫ a

0

∫ b

0
f (x, y)w(x, y)dxdy, (22)

where w is the flexural displacement; a and b are the plate dimension in x direction and the plate
dimension in y direction, respectively; ρ and h are the mass density and the thickness of the plate,
respectively, and f (x, y) = F δ (x − x0) (y − y0), where δ is the delta function, F is the amplitude of the
stresses and x0 and y0 are the position coordinates of force. kx0 and kxa (ky0 and kyb) are the transverse
spring constants, Kx0 and Kxa (Ky0 and Kyb) are the rotational spring constants and Kyx0 and Kyxa (Kxy0

and Kxyb) are the torsional spring constants at x = 0 and x = a (y = 0 and y = b), respectively.
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The displacement function is expanded as a single Fourier series plus an auxiliary polynomial
function. The auxiliary function is used to overcome the discontinuities of the resilient boundary,
the transverse displacement function w(x, y).

w(x, y) =
∞∑

m = 0

∞∑
n = 0

Amn cos(λmx) cos(λny) + p(x, y), (23)

where p(x,y) can be expressed as

p(x, y) = p1(x, y)
∞∑

m = 0
d1

1m cos(λmx) + p2(x, y)
∞∑

m = 0
d1

2m cos(λmx)

+p3(x, y)
∞∑

n = 0
f1n cos(λny) + p4(x, y)

∞∑
n = 0

f2n cos(λny)
, (24)

where the auxiliary polynomial based on trigonometric function can be written as follows:

p1(x, y) = ξ1b(y) =
b

2π
sin

πy
2b

+
b

2π
sin

3πy
2b

, (25)

p2(x, y) = ξ2b(y) = −
b

2π
cos

πy
2b

+
b

2π
cos

3πy
2b

, (26)

p3(x, y) = ξ1a(x) =
a

2π
sin

πx
2a

+
a

2π
sin

3πx
2a

, (27)

p4(x, y) = ξ2a(x) = −
a

2π
cos

πx
2a

+
a

2π
cos

3πx
2a

, (28)

where λm = mπ/a, λn = nπ/b; a is length and b is width and Amn, d1
1m,d1

2m, f 1
1n and f 1

2n are the
expansion coefficients.

Therefore, function w(x, y) can be rewritten as follows:

w(x, y) =
∞∑

m = 0

∞∑
n = 0

Amn cos(λmx) cos(λny)

+
∞∑

m = 0
d1

1mξ1b(y) cos(λmx) +
∞∑

m = 0
d1

2mξ2b(y) cos(λmx)

+
∞∑

n = 0
f 1
1nξ1a(x) cos(λny) +

∞∑
n = 0

f 1
2nξ2a(x) cos(λny)

. (29)

Similarly, the rotational displacement function Ψx(x, y) and Ψy (x, y) can be easily obtained
as follows:

ψx(x, y) =
∞∑

m = 0

∞∑
n = 0

Bmn cos(λmx) cos(λny)

+
∞∑

m = 0
d2

1mξ1b(y) cos(λmx) +
∞∑

m = 0
d2

2mξ2b(y) cos(λmx)

+
∞∑

n = 0
f 2
1nξ1a(x) cos(λny) +

∞∑
n = 0

f 2
2nξ2a(x) cos(λny)

, (30)

ψy(x, y) =
∞∑

m = 0

∞∑
n = 0

Cmn cos(λmx) cos(λny)

+
∞∑

m = 0
d3

1mξ1b(y) cos(λmx) +
∞∑

m = 0
d3

2mξ2b(y) cos(λmx)

+
∞∑

n = 0
f 3
1nξ1a(x) cos(λny) +

∞∑
n = 0

f 3
2nξ2a(x) cos(λny)

, (31)

where Bmn, d2
1m,d2

2m, f 2
1n, f 2

2n,Cmn, d3
1m,d3

2m, f 3
1n and f 3

2n are the expansion coefficients.
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Substitution of Equations (17)–(19) into Equation (11) leads to a series of equations, and these
equations can be rewritten in matrix form as

(K− ρhω2M)A = F, (32)

where K is the stiffness matric, M is the mass matric, A is the unknown coefficient vector and F is the
force vector. The detailed expressions of K and M are shown in the Appendix A.

A =
[
A00, A01, · · ·AMN, d1

10, d1
11, · · ·d1

2M, f 1
10, f 1

11, · · · f 1
2N,

B00, B01, · · ·BMN, d2
10, d2

11, · · ·d2
2M, f 2

10, f 2
11, · · · f 2

2N,

C00, C01, · · ·CMN, d3
10, d3

11, · · ·d3
2M, f 3

10, f 3
11, · · · f 3

2N

]T
, (33)

K =


K1,1 K1,2 · · · K1,15

K2,1 K2,2 · · · K2,15
...

...
. . .

...
K15,1 K15,2 · · · K15,15

, (34)

M =


M1,1 M1,2 · · · M1,15

M2,1 M2,2 · · · M2,15
...

...
. . .

...
M15,1 M15,2 · · · M15,15

. (35)

In order to determine the modal characteristics of the laminated composite plate, one needs
to solve the characteristic equation by setting the external force vector F in Equation (20) to zero.
Obviously, the natural frequencies and eigenvectors of the laminated composite plate can now be
easily obtained by solving a standard matrix Eigen problem. Since the components of each eigenvector
are actually the expansion coefficients of the Fourier series, the corresponding mode shape can be
directly determined by substituting the eigenvector in Equation (17) into Equation (19).

On the other hand, when the external force vector F is not zero, it can be used to study the response
analysis of laminates. The response obtained is a harmonic response when the external excitation force
is a simple harmonic force.

A = (K− ρhω2M)
−1

F. (36)

The lateral displacement field and the corner of the bending vibration of the plate structure at the
excitation frequency by substituting the coefficient vector A in Equation (17) into Equation (19).

To solve the structural vibration and noise radiation problems, vibration power flow leads to
a more comprehensive evaluation of the vibration response characteristics of the structure. It can
intuitively identify the position of the vibration and the transmission path of the vibration energy,
providing a better evaluation index and basis for the vibration control of the structure.

The power flow intensity I(x, y) at any point in the Mindlin plate structure can be expressed
as follows:

I(x, y) =

√∣∣∣Ix(x, y)
∣∣∣2+∣∣∣Iy(x, y)

∣∣∣2, (37)

where Ix(x,y) and Iy(x,y) are the components of I(x, y) along the x and y axes, respectively.

Ix = −
1
2

Re
{

Qx

(
∂w
∂t

)∗
−Mx

(
∂ψx

∂t

)∗
−Mxy

(
∂ψy

∂t

)∗}
, (38)

Iy = −
1
2

Re
{

Qy

(
∂w
∂t

)∗
−My

(
∂ψy

∂t

)∗
−Myx

(
∂ψx

∂t

)∗}
. (39)
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Therefore, the power flow intensity I(x, y) at any point can be easily obtained by substituting
Equations (8)–(10) into Equation (38) and Equations (29)–(31) into Equation (39).

3. Results and Discussion

3.1. Modal Characteristics of Laminated Composite Plates

Consider a laminated composite plate with arbitrary elastic boundary support, with the dimensions
of a× b, which is illustrated in Figure 2. If three kinds of restraining springs (translational, rotational and
torsional) are assumed to be distributed uniformly along each edge, then all the classical boundary
conditions, as well as their combinations, can be easily obtained by simply setting the spring coefficients
to zero or infinity. For the sake of convenience, C denotes the clamped cases, E denotes the elastic
bearing cases, F denotes the free-boundary condition and S represents the simply supported cases.
Taking the edge of x = 0 as an example, the spring stiffness is shown in Table 1 when the boundary
condition is F, S, C or E, respectively. (Note that the elastic boundary can be chosen arbitrarily, and the
exact value of E can be transformable in different examples.)

First, the relationship between the vibration solution of a rectangular plate based on the energy
principle and the analytical solution based on the governing equation and the boundary condition
equation was studied. The laminate was a single-layer board and the material was an isotropic material,
the same as in [18].

Table 1. Spring stiffness under different boundary conditions.

BC kx0 Kx0 Kyx0

F 0 0 0
S 106

×D0 0 106
×D0

C 106
×D0 106

×D0 106
×D0

E (0,∞) (0,∞) (0,∞)

In Table 2, the first five non-dimensional frequency parameters are shown (Ω = (ωb2/π2)(ρh/D)1/2).
It can be seen from the table that the deviations of the results obtained by the present method and the
analytical method were all within 0.022. The results obtained were almost identical, which verified that
the energy method resulted in an exact solution when the permissible displacement function satisfied
both the displacement boundary condition and the force boundary condition.

Table 2. Natural frequency parameters for laminated plates with different methods.

BC Modes
h/b = 0.1

Ref. [18] Error
h/b = 0.2

Ref. [18] Error
Present Present

CCCC f 1 3.2954 3.2954 0.000% 2.6876 2.6874 0.007%
f 2 6.2860 6.2858 0.003% 4.6909 4.6907 0.004%
f 3 6.2860 6.2858 0.003% 4.6909 4.6907 0.004%
f 4 8.8105 8.8099 0.007% 6.299 6.2984 0.010%
f 5 10.3787 10.3787 0.000% 7.1766 7.1766 0.000%

CSSF f 1 2.2368 2.2363 0.022% 1.8823 1.8821 0.011%
f 2 3.6012 3.601 0.006% 2.8901 2.89 0.003%
f 3 5.4904 5.4895 0.016% 4.1419 4.1417 0.005%
f 4 6.5979 6.5977 0.003% 4.9848 4.9843 0.010%
f 5 6.7808 6.7804 0.006% 5.0088 5.0086 0.004%

ECCS f 1 2.8975 2.8974 0.003% 2.3846 2.3843 0.013%
f 2 4.5886 4.5881 0.011% 3.6439 3.6434 0.014%
f 3 6.0365 6.0364 0.002% 4.4907 4.4902 0.011%
f 4 7.682 7.681 0.013% 5.5498 5.5488 0.018%
f 5 7.7098 7.7089 0.012% 5.7913 5.791 0.005%
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In the following calculations, the laminated composite was an orthogonal symmetrical laminate,
which was composed of three layers of unit plates of equal thickness—that is, the layup direction of the
unit plate was 0◦/90◦/0◦. The physical parameters are specified as Ex/Ey = 40, G12 = 3/5Ey, G23 = 1/2Ey,
G13 = 3/5Ey, vy = 1/4, vx = 0.00625, S16 = S26 = S45 = 0, Poisson’s ratio µ = 0.3, shear correction factor
k = 5/6.

To verify the convergence of the solution, Table 3 compares the first seven non-dimensional modal
frequency parameters of the laminated composite plate under different cutoff values. For illustrative
purposes, one assumes that a SSFF laminated composite plate system shown in Table 3 is defined by
the dataset: D0 = Eh3/(12(1 − vxvy)); a/b = 1; h/b = 0.2; with E representing the larger value between Ex

and Ey. At the same time, a comparison of the solution in [21] is also presented. It is seen that the
maximum deviation of the first seven non-dimensional modal frequency parameters obtained in both
cases (M = N = 4 and M = N = 16) was 1.4%; on the other hand, when the cutoff value was more than
10, the results were almost invariant. Thus, it was evident that just a few terms can lead to excellent
prediction and the current solution shows remarkable convergence.

Table 3. Convergence study of frequency for rectangular laminated plates with SSFF.

M = N 1 2 3 4 5 6 7

4 0.4325 2.4001 4.7328 5.4424 5.8221 7.6876 8.8219
5 0.4275 2.3972 4.7319 5.4376 5.8136 7.6752 8.8146
8 0.4267 2.3965 4.7317 5.4355 5.8126 7.6715 8.8140

10 0.4266 2.3964 4.7317 5.4350 5.8125 7.6706 8.8139
12 0.4266 2.3963 4.7317 5.4347 5.8124 7.6702 8.8139
14 0.4265 2.3963 4.7317 5.4346 5.8124 7.6700 8.8139
15 0.4265 2.3963 4.7317 5.4346 5.8124 7.6699 8.8139
16 0.4265 2.3963 4.7317 5.4345 5.8124 7.6699 8.8139

Ref. [21] 0.426 2.396 4.732 5.434 5.812 7.670 8.814

To further verify the accuracy of the method from a modal perspective, the first five
non-dimensional frequency parameters are shown for the plates of various thickness–width ratios
and boundary conditions in Tables 4 and 5. Meanwhile, the results calculated by using the separate
variable method in [21], the Rayleigh-Ritz method in [18] and the results calculated by FEA are also
presented in Tables 4 and 5. It is seen that the present method has led to excellent agreement with the
classical solution.

Table 4. Natural frequency parameters for rectangular laminated plates with SSSS, CCCC, SCSC and CFFF.

BC Modes
h/b = 0.05 h/b = 0.1 h/b = 0.2

Present Ref. [21] FEA Present Ref. [21] FEA Present Ref. [21] FEA

SSSS f 1 6.134 6.138 6.149 5.164 5.166 5.188 3.593 3.594 3.608
f 2 8.884 8.888 8.881 7.755 7.757 7.737 5.768 5.769 5.747
f 3 15.105 15.11 15.055 12.911 12.915 12.838 7.395 7.397 7.363
f 4 19.319 19.354 19.333 13.038 13.049 13.086 8.686 8.688 8.691
f 5 20.631 20.665 20.73 14.366 14.376 14.377 9.144 9.145 9.107

CCCC f 1 10.933 10.953 10.938 7.405 7.411 7.412 4.446 4.447 4.446
f 2 14.009 14.028 14.011 10.387 10.393 10.390 6.64 6.642 6.641
f 3 20.366 20.388 20.372 13.897 13.913 13.895 7.698 7.7 7.696
f 4 23.111 23.196 23.115 15.419 15.429 15.419 9.183 9.185 9.185
f 5 24.897 24.978 24.903 15.79 15.806 15.802 9.735 9.738 9.735

SCSC f 1 6.887 6.89 6.893 5.868 5.871 5.893 4.136 4.137 4.157
f 2 11.241 11.246 11.208 9.45 9.454 9.483 6.473 6.474 6.438
f 3 18.651 18.664 18.641 13.33 13.34 13.367 7.663 7.664 7.692
f 4 19.585 19.619 19.593 14.869 14.878 14.883 9.157 9.159 9.168
f 5 21.768 21.801 21.74 15.329 15.34 15.491 9.641 9.643 9.657

CFFF f 1 2.126 2.127 2.129 1.918 1.918 1.925 1.444 1.444 1.436
f 2 2.37 2.369 2.386 2.103 2.103 2.093 1.545 1.545 1.541
f 3 4.562 4.559 4.536 4.188 4.188 4.162 3.466 3.466 3.472
f 4 10.045 10.04 10.049 7.752 7.757 7.749 4.686 4.687 4.655
f 5 11.056 11.07 11.063 7.957 7.961 7.943 4.86 4.86 4.877
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Table 5. Natural frequency parameters for rectangular laminated plates with SCSF, SSSC, SSSF and SFSF.

BC Modes
h/b = 0.05 h/b = 0.1 h/b = 0.2

Present Ref. [18] FEA Present Ref. [18] FEA Present Ref. [18] FEA

SCSF f 1 5.826 5.842 5.841 4.863 4.91 4.879 3.287 3.348 3.302
f 2 7.137 7.124 7.143 6.071 6.091 6.099 4.313 4.339 4.335
f 3 11.583 11.548 11.555 9.886 9.847 9.841 7.013 6.956 6.984
f 4 19.126 19.041 19.123 12.888 13.16 12.939 7.237 7.424 7.211
f 5 19.149 19.393 19.162 13.491 13.736 13.424 7.798 7.954 7.839

SSSC f 1 6.425 6.45 6.437 5.448 5.496 5.485 3.834 3.88 3.852
f 2 9.978 9.983 9.963 8.584 8.577 8.56 6.139 6.103 6.099
f 3 16.839 16.796 16.762 13.155 13.426 13.199 7.511 7.687 7.572
f 4 19.424 19.675 19.636 13.908 13.796 13.868 8.929 9.031 8.972
f 5 21.138 21.369 21.326 14.822 15.041 14.911 9.4 9.256 9.367

SSSF f 1 5.781 5.801 5.796 4.819 4.87 4.835 3.239 3.303 3.269
f 2 6.655 6.65 6.666 5.639 5.669 5.678 4.017 4.058 4.047
f 3 10.301 10.278 10.287 8.975 8.965 8.963 6.654 6.624 6.613
f 4 17.281 17.223 17.212 12.869 13.143 12.919 7.214 7.403 7.248
f 5 19.131 19.377 19.343 13.295 13.549 13.334 7.641 7.808 7.692

SFSF f 1 5.731 5.756 5.745 4.779 4.834 4.825 3.212 3.279 3.253
f 2 5.93 5.929 5.944 4.933 4.968 4.959 3.311 3.365 3.319
f 3 7.398 7.357 7.404 6.319 6.324 6.35 4.619 4.645 4.646
f 4 11.925 11.864 11.897 10.347 10.311 10.316 7.194 7.385 7.207
f 5 19.09 19.339 19.102 12.841 13.118 12.992 7.271 7.451 7.339

Figure 3 shows the mode shapes of the CCCC and FFFF moderately thick laminated composite
plate. The mode shapes obtained by the present method coincide with those obtained by the finite
element method. The material properties were as follows: a/b = 1, h/b = 0.2; the layup direction of the
unit plate was 0◦/90◦/0◦.
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In order to show the consistency between the results of the present method and finite element
method clearly, Figure 4 shows the frequency parameter curves of the SFCF laminated composite
plates. The layup direction of the unit plate was 45◦/−45◦/45◦; a/b = 1; h/b = 0.1. Figure 5 shows the
frequency parameter curves of the EFCS laminated composite plates. The spring stiffness coefficient
on the elastic edge were as follows: kx0 = D0, Kx0 = 0, Kyx0 = 0.
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In Figures 4 and 5, the frequency curves obtained by this method coincided with those obtained
by the finite element method at medium and low frequencies. At high frequencies, the results obtained
by the finite element method were larger than presented results. This was because the finite element
method needs finer meshes in order to get more accurate results in the high frequency band, with the
workload increasing sharply.

To research the influence of different ratios between thickness and width, the first six
non-dimensional frequency parameters for the SSSS and CCCC laminated composite plates are
shown in Figures 6 and 7, where the number of piles in the figures were three layers and five layers,
respectively. As can be seen in the figures, compared with low-order frequency parameters, high-order
frequency parameters showed a remarkable decrease with an increase in the ratio between thickness
and width; moreover, the change was more significant when h/b was less than 0.10.
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To further verify the effect of the number of layers on the frequency, Figures 8 and 9 show the
first six non-dimensional frequency parameters for the SSSC and CCSS laminated composite plates of
various layers, where h/b = 0.05 and the layup directions of the unit plates in Figures 8 and 9 were
0◦/45◦/0◦ and 0◦/90◦/0◦, respectively (when the number of layers was three), and the layup directions
in Figures 8 and 9, respectively were 0◦/45◦/0◦/45◦/0◦ and 0◦/90◦/0◦/90◦/0◦ (when the number of layers
is five), etc. In the following figures, the data were collected when the number of layers was odd (3, 5,
7, 9, etc.).

It can be seen in Figures 8 and 9 that the frequency parameters increased with the increase in the
number of layers, so long as the number of layers was less than 13, in which case, it stayed constant
as the number of layers changed. It should be mentioned that the effect was more noticeable for
higher frequencies.
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In order to study the influence of the number of layers laid on the vibration frequency, Figure 10
shows the variation of the dimensionless frequency of the first order with the number of layers and the
aspect ratio of the normal symmetric angled plywood structure under different boundary conditions.
Among them, the laying angle of the laminate was 45◦, and h/b = 0.1.

In Figure 10c,d, the spring stiffness coefficients on each side of EEEE_1 were kx0 = Kx0 = Kyx0 = 106

× D0, ky0 = Ky0 = Kxy0 = 104
× D0, kxa = Kxa = Kyxa = 102

× D0, kyb = Kyb = Kxyb = 103
× D0; the spring

stiffness coefficients of EEEE_2 were kx0 = ky0 = kxa = kyb = 106
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The laying angle was another important design parameter of the laminate. Figure 11 shows the
variation of the first-order vibration frequency with the laying angle of the composite laminate under
different layers.
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3.2. Vibration Response Analysis of Laminated Composite Plates

In this section, the following example is focused on the vibration harmonic response of the plate.
In order to avoid the numerical instability under the excitation of the plate structure resonance frequency
in the numerical calculation, the structural damping factor η is introduced in the analysis, and the
elastic modulus of the plate structure is correspondingly the complex elastic modulus, E’ = E(1 + jη).
To avoid the instability of the response at the resonant frequency, the damping factor η (loss factor
value) of the plate structure herein is η = 0.01.

The material in this section is an orthotropic plate, and the material properties of the plate were as
follows: a = 1 m, b = 1 m, h = 0.1 m, E1 = 128.8 GPa, E2 = 8.3 GPa, G12 = 4.1 GPa, G23 = G12, G13 = G12,
v2 = 0.355.

Figure 12 shows the displacement harmonic response curve at different points when the point
force acted on the center of the cantilever plate. This part of the response curve was based on the
frequency domain analysis, as the comparison map obtained by the frequency domain analysis was
more intuitive, and the full text always analyzed the frequency domain part of the research, which was
also to maintain the consistency of the whole article.Materials 2019, 12, x FOR PEER REVIEW 17 of 24 
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In order to study the effect of the excitation on the response of the rectangular plates with 
different positions, Figure 13 shows the displacement response and velocity response of the 
composite laminate under the action of point force. The boundary condition of the laminate was 
CFFC. The amplitude of the point force was 1 N, the action direction was along the z-axis, the action 
position was (0.5 m, 0.5 m) and the action time was 0.5 s. The displacement response in the figure 
was the same as the position of the velocity response, with both points being (0.5 m, 0.5 m). The 
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Figure 12. Response curve while the harmonic force acted on the center of the cantilever plate.
(a) (0.5 m, 0.5 m), (b) (0.8 m, 0.8 m).

The solid support edge was the edge on x = 0, and the force amplitude was F = 1 N. Figure 12a
is a curve where the response point was at the center of the plate (0.5 m, 0.5 m), and Figure 12b is
a curve at which the response point was at (0.8 m, 0.8 m). It can also be seen from the figure that
the frequency corresponding to the peak value of the response was the modal frequency of the plate
structure, and the response curves obtained by the finite element method were also given in the two
figures. The mesh size was 0.02 m × 0.02 m.
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In order to study the effect of the excitation on the response of the rectangular plates with different
positions, Figure 13 shows the displacement response and velocity response of the composite laminate
under the action of point force. The boundary condition of the laminate was CFFC. The amplitude of
the point force was 1 N, the action direction was along the z-axis, the action position was (0.5 m, 0.5 m)
and the action time was 0.5 s. The displacement response in the figure was the same as the position of
the velocity response, with both points being (0.5 m, 0.5 m). The calculation curve obtained by the
finite element method is also shown in the figure. It can be seen that the results obtained by the two
methods agreed well, thus verifying the feasibility of the method for solving transient problems.
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3.3. Vibration Power Flow Analysis of Laminated Composite Plates

In some engineering applications, studying the energy transfer path in structural systems is helpful
for solving the problems of structural vibration and noise radiation. In recent years, as a new energy
transfer analysis method, power flow studies the transmission and control of vibration in structures
from the perspective of energy. Because the power flow takes into account the inherent information
of both force and motion of the structure, it can evaluate the vibration response characteristics of
the structure more comprehensively than the previous single description of force or displacement.
In addition, energy dissipation and collection can be characterized through the study of power flow
fields, having practical significance for engineering.

In order to study the influence factors and characteristics of energy transfer, the dynamical
characteristics of the structures are described as the power flow field. The power flow intensity at any
point can be obtained by extracting the force and displacement from Equations (37)–(39), as shown in
Figures 14–17 by using MATLAB 2017 this section, the effects of boundary conditions, the excitation
frequency and the excitation location on energy transfer characteristics are presented.
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(a) (797.68Hz), (b) (1521.62 Hz), (c) (2132.81 Hz), (d) (2512.47 Hz). 
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The material in this part was normal symmetric orthogonally laid laminate, and the material 
properties of the plate were as follows: a = 1 m, b = 1 m, h = 0.1 m, E1 = 128.8 GPa, E2 = 8.3 GPa, G12 = 
4.1 GPa, G23 = G12, G13 = G12, v2 = 0.355. The boundary condition of Figures 14 and 15 was CCCC; the 
four subgraphs given in each figure show the power flow field under different excitation frequencies, 
which were the first four natural frequencies of the composite plate. By comparing the four subgraphs, 
it can be seen that the distribution field and frequency of the energy flow had a significant influence. 
When the excitation force, action position and boundary conditions remain unchanged, the frequency 
change may also cause a change in the power flow distribution field.  

Figure 16 shows the power flow distribution of the plate structure under different excitation 
frequencies when the boundary condition was CSSE and the excitation force acted on the point (0.65 
m, 0.65 m). The stiffness coefficients of the three types of elastic on the elastic side were kyb = Kxyb = D0, 
Kyb = 0. 

Figure 15. The power flow field for a CCCC laminated plate excited by point force on (0.5 m, 0.65 m).
(a) (797.68Hz), (b) (1521.62 Hz), (c) (2132.81 Hz), (d) (2512.47 Hz).

The material in this part was normal symmetric orthogonally laid laminate, and the material
properties of the plate were as follows: a = 1 m, b = 1 m, h = 0.1 m, E1 = 128.8 GPa, E2 = 8.3 GPa,
G12 = 4.1 GPa, G23 = G12, G13 = G12, v2 = 0.355. The boundary condition of Figures 14 and 15 was
CCCC; the four subgraphs given in each figure show the power flow field under different excitation
frequencies, which were the first four natural frequencies of the composite plate. By comparing the four
subgraphs, it can be seen that the distribution field and frequency of the energy flow had a significant
influence. When the excitation force, action position and boundary conditions remain unchanged,
the frequency change may also cause a change in the power flow distribution field.

Figure 16 shows the power flow distribution of the plate structure under different excitation
frequencies when the boundary condition was CSSE and the excitation force acted on the point (0.65 m,
0.65 m). The stiffness coefficients of the three types of elastic on the elastic side were kyb = Kxyb = D0,
Kyb = 0.
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In Figures 14‒17, it can be seen that the energy transfer in the structure had an important 
relationship with the frequency, position, number of excitation forces and boundary conditions of the 
plate structure. As the excitation frequency increased, the flow path of the vibration energy in the 
structure became more and more complicated. When the boundary condition of one side became soft, 
the vibration energy rapidly flowed to this side. The vibration energy did not always transfer energy 
from the excitation position to the boundary according to the shortest path principle. There was also 
a certain form of energy circulation inside the plate structure. Through the description of the power 
flow, the transmission of the vibration energy could be clearly seen, thereby providing a basis for the 
effective control of the vibration of the structure. 
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Aiming at strengthening our understanding of the vibration behaviors of the laminated 
composite plate, we verified the accuracy of the present method by experimental means. Figure 18 
shows the experiment to study the model characteristics of the plate. A hammer was used for 
excitation, and the experiment was carried out by single-point pock-up and point-by-point excitation. 
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The excitation frequency in Figure 16 was not the first four natural frequencies of the CSSE
rectangular plate, but the excitation frequency from Figure 14. It can be seen from the figure that the
distribution of the power flow field had strong dependence on the position of the excitation force and
the boundary condition of the rectangular plate, but there was no fixed distribution between them.

In order to study the energy transfer characteristics of plate structures subjected to multiple point
forces, Figure 17 shows the distribution of vibration power flow in the whole rectangular plate structure
under two-point excitation. The boundary conditions of the plate structure were CSSS. The excitation
frequencies of the two point forces were the same, and the direction of action was along the z-axis,
with the amplitude of 1 N. The positions of action for the two points were (0.2 m, 0.2 m) and (0.7 m,
0.7 m), respectively.

Figure 17a–d shows the power flow vector graphs at first to fourth natural frequencies. It can be
seen from the figure that the vibration energy was transmitted from the excitation to the surrounding
plate, but the excitation position was not always the source of vibration energy output. Under some
excitation frequencies, the excitation position may also have the flow of vibration energy, which further
verifies that the energy transfer was strongly dependent on the excitation frequency.
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Figure 17. The power flow field for a CSSS lamitated plate excited by point force on (0.2 m, 0.2 m) and
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In Figures 14–17, it can be seen that the energy transfer in the structure had an important
relationship with the frequency, position, number of excitation forces and boundary conditions of the
plate structure. As the excitation frequency increased, the flow path of the vibration energy in the
structure became more and more complicated. When the boundary condition of one side became soft,
the vibration energy rapidly flowed to this side. The vibration energy did not always transfer energy
from the excitation position to the boundary according to the shortest path principle. There was also a
certain form of energy circulation inside the plate structure. Through the description of the power
flow, the transmission of the vibration energy could be clearly seen, thereby providing a basis for the
effective control of the vibration of the structure.

3.4. Modal Test of Laminated Plates

Aiming at strengthening our understanding of the vibration behaviors of the laminated composite
plate, we verified the accuracy of the present method by experimental means. Figure 18 shows the
experiment to study the model characteristics of the plate. A hammer was used for excitation, and the
experiment was carried out by single-point pock-up and point-by-point excitation.Materials 2019, 12, x FOR PEER REVIEW 20 of 24 
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Figure 18. The test model of the laminated plate.

The composite laminate used in the experiment consisted of four layers of anisotropic single-layer
plates. The material of the single-layer plate was epoxy-based composite, and the material properties
of the plate were as follows: a = 0.29116 m, b = 0.19934 m, h = 0.00502 m, E1 = 135 GPa, E2 = 8.3 GPa,
G12 = 4.1 GPa, G23 = G12, G13 = G12, v2 = 0.355.

In this experiment, the boundary condition of the laminated composite plate was CFFF, and the
clamped boundary condition was simulated by the pressure plate and the Φ6 bolt fixed on the
foundation. The laminated plate was divided into a uniform mesh, the number of grids was 9 × 9
and the excitation position of the hammer was at each grid point. According to the experimental
requirements, the sampling frequency was selected to be 5000 Hz and the analysis frequency was
1950 Hz, where the sampling mode was transient and the triggering mode was signal triggering.
The Donghua DH5922 data acquisition analyzer and dynamic signal acquisition system were used to
analyze the excitation signal of the hammer and the response signal of the acceleration sensor. Finally,
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a modal analysis was performed to obtain the natural frequency in Table 6 and the mode shape of the
rectangular plate in Figure 19.

Table 6. Natural frequency of the laminate plate.

Mode Experiment (Hz) Present (Hz) Error (%)

1 88.71 86.85 2.10
2 127.57 124.98 2.03
3 360.23 351.55 2.41
4 554.34 537.23 3.08
5 610.18 586.63 3.86
6 798.82 782.42 2.05
7 881.37 851.30 3.41
8 1245.52 1209.85 2.86

Table 6 shows the first eight natural frequency values obtained from the experimental composite
laminate structure. The theoretical results are also given in the table. By comparing the experimental
values and the theoretical values, we see that the results were in good agreement, and the maximum
deviation was less than 4%, which verified the accuracy of the proposed modeling method. The results
of the two methods showed a certain deviation, mainly because during the experiment the clamped
boundary conditions were simulated by using multiple bolt joints, which had certain inconsistencies
with the complete solidification in the theoretical calculation process. This may cause the stiffness
to be less than the clamped end stiffness, resulting in the frequency of the experiment being higher
than the theoretical value. Furthermore, a certain error was also generated, as the acceleration sensor
introduced additional mass when it was connected to the plate structure.

Figure 19 shows the first four natural modes of the composite laminate obtained by the experimental
method and theoretical method.
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that the vibration energy does not always transfer energy to the boundary according to the shortest 
path principle, and that there is also a certain form of energy cycle inside the plate structure. The 
distribution field and frequency of the energy flow had a significant influence. When the excitation 
force, excitation position and boundary conditions remain unchanged, the frequency change may 
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Figure 19. Comparisons of modal shapes of the laminated plate between measured and theoretical
results. (a) First mode, (b) Second mode, (c) Third mode, (d) Fourth mode, (e) First mode, (f) Second
mode, (g) Third mode, (h) Fourth mode.

4. Summary

In this paper, on the basis of the improved Fourier series method, vibration modeling of a
laminated composite plate was proposed to study vibration characteristics of laminates. According to
the Mindlin plate theory, the mechanical models of the laminates were established and a number
of functions were deduced, such as the potential energy function, as well as the function of kinetic
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energy. Simultaneously, according to the Hamilton principle, the vibration equations of the plates with
arbitrary boundary conditions were derived by expressing the displacement as a superposition of a
Fourier cosine series and four auxiliary polynomials.

Through the numerical analysis, the effectiveness of the present method was verified by a
comparison between the FEA results and the results of the method proposed in relevant references
and mode shapes. The natural frequency was analyzed in terms of the different boundary conditions,
and the present method had the better accuracy. The effects of boundary conditions, the ratio
between thickness and width, the number of layers of laminates and the laying angle on the vibration
characteristics of composite laminates were studied.

It can be seen that the vibration frequency of laminate increased as the spring stiffness on the
boundary increased. As the number of layers increased, the frequencies, except for the first-order
frequency, showed a noticeable increase, and the frequency eventually became stable when the number
of layers increased to a certain value. It can also be concluded that the effect of frequency regarding the
ratio between thickness and width is significant; with the increase in h/b, the frequency of the plate
vibration decreased.

Furthermore, in order to study the influencing factors and characteristics of the energy transfer,
the harmonic response analysis and power flow analysis of the composited plate vibration showed that
the vibration energy does not always transfer energy to the boundary according to the shortest path
principle, and that there is also a certain form of energy cycle inside the plate structure. The distribution
field and frequency of the energy flow had a significant influence. When the excitation force,
excitation position and boundary conditions remain unchanged, the frequency change may also cause
a complete change in the energy transfer.
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Appendix A

The detailed expressions of the submatrices Kij and Mij in Equations (34)–(35) are provided
as follows. {

M1,1
}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1x cosλmx cosλn1y cosλnydxdy (A1)

{
M1,2

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1x cosλmxξ1b(y) cosλnydxdy (A2)

{
M1,3

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1x cosλmxξ2b(y) cosλnydxdy (A3)

{
M1,4

}
s,t

= ρh
∫ a

0

∫ b

0
ξ1a(x) cosλmx cosλn1y cosλnydxdy (A4)

{
M1,5

}
s,t

= ρh
∫ a

0

∫ b

0
ξ2a(x) cosλmx cosλn1y cosλnydxdy (A5)
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where s = m(N + 1) + n + 1, t = m1 (N + 1) + n1 + 1, m = 0, 1, . . . , M, m1 = 0, 1, . . . , M, n = 0, 1, . . . ,
N, n1 = 0, 1, . . . , N, M and N are the cutoff value. And the submatrix M1,6 to M1,15 are zero matrix.
Similarily, the other submatrix can be expressed as

{
M2,1

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1x cosλmxξ1b(y) cosλn1ydxdy (A6)

{
M2,2

}
s,t = ρh

∫ a

0

∫ b

0
cosλm1x cosλmxξ1b(y)ξ1b(y)dxdy (A7)

{
M2,3

}
s,t = ρh

∫ a

0

∫ b

0
cosλm1x cosλmxξ1b(y)ξ2b(y)dxdy (A8)

{
M2,4

}
s,t

= ρh
∫ a

0

∫ b

0
ξ1a(x) cosλmxξ1b(y) cosλn1ydxdy (A9)

{
M2,5

}
s,t = ρh

∫ a

0

∫ b

0
ξ2a(x) cosλmxξ1b(y) cosλn1ydxdy (A10)

{
M4,1

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1xξ1a(x) cosλn1y cosλnydxdy (A11)

{
M4,2

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1xξ1a(x)ξ1b(y) cosλnydxdy (A12)

{
M4,3

}
s,t

= ρh
∫ a

0

∫ b

0
cosλm1xξ1a(x)ξ2b(y) cosλnydxdy (A13)

{
M4,4

}
s,t

= ρh
∫ a

0

∫ b

0
ξ1a(x)ξ1a(x) cosλn1y cosλnydxdy (A14)

{
M4,5

}
s,t

= ρh
∫ a

0

∫ b

0
ξ1a(x)ξ2a(x) cosλn1y cosλnydxdy (A15)

where the submatrix M2,6 to M2,15 and M4,6 to M4,15 are zero matrix.{
K1,1

}
s,t

= A55
∫ a

0

∫ b
0 λm1λm sinλm1x sinλmx cosλn1y cosλnydxdy

+A44
∫ a

0

∫ b
0 λn1λn cosλm1x cosλmx sinλn1y sinλnydxdy

+A45
∫ a

0

∫ b
0 λm1λn sinλm1x cosλmx cosλn1y sinλnydxdy

+A45
∫ a

0

∫ b
0 λmλn1 cosλm1x sinλmx sinλn1y cosλnydxdy

+[ky0 + (−1)n1+nkyb]
∫ a

0 cosλm1x cosλmxdx

+[kx0 + (−1)m1+mkxa]
∫ b

0 cosλn1y cosλnydy

(A16)

{
K1,2

}
s,t

= A55
∫ a

0

∫ b
0 λm1λm sinλm1x sinλmx cosλn1yξ1b(y)dxdy

−A44
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ′1b(y)dxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ′1b(y)dxdy

+A45
∫ a

0

∫ b
0 λmλn1 cosλm1 sinλmx sinλn1yξ1b(y)dxdy

+[kx0 + (−1)m1+mkxa]
∫ b

0 cosλn1yξ1b(y)dy

(A17)
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{
K1,3

}
s,t

= A55
∫ a

0

∫ b
0 λm1λm sinλm1x sinλmx cosλn1yξ2b(y)dxdy

−A44
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ′2b(y)dxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ′2b(y)dxdy

+A45
∫ a

0

∫ b
0 λmλn1 cosλm1 sinλmx sinλn1yξ2b(y)dxdy

+[kx0 + (−1)m1+mkxa]
∫ b

0 cosλn1yξ2b(y)dy

(A18)

{
K1,4

}
s,t

= −A55
∫ a

0

∫ b
0 λm1λm sinλm1xξ′1a(x) cosλn1y cosλnydxdy

+A44
∫ a

0

∫ b
0 λn1λn cosλm1xξ1a(x) sinλn1y sinλnydxdy

+A45
∫ a

0

∫ b
0 λm1λn sinλm1xξ1a(x) cosλn1y sinλnydxdy

−A45
∫ a

0

∫ b
0 λmλn1 cosλm1xξ′1a(x) sinλn1y cosλnydxdy

+[ky0 + (−1)n1+nkyb]
∫ a

0 cosλm1x cosλmxdx

+[kx0 + (−1)m1+mkxa]
∫ b

0 cosλn1y cosλnydy

(A19)

{
K1,5

}
s,t

= −A55
∫ a

0

∫ b
0 λm1λm sinλm1xξ′2a(x) cosλn1y cosλnydxdy

+A44
∫ a

0

∫ b
0 λn1λn cosλm1xξ2a(x) sinλn1y sinλnydxdy

+A45
∫ a

0

∫ b
0 λm1λn sinλm1xξ2a(x) cosλn1y sinλnydxdy

−A45
∫ a

0

∫ b
0 λmλn1 cosλm1xξ′2a(x) sinλn1y cosλnydxdy

+[ky0 + (−1)n1+nkyb]
∫ a

0 cosλm1x cosλmxdx

+[kx0 + (−1)m1+mkxa]
∫ b

0 cosλn1y cosλnydy

(A20)

{
K1,6

}
s,t

= −A55
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1y cosλnydxdy

−A45
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1y cosλnydxdy

(A21)

{
K1,7

}
s,t

= −A55
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ1b(y)dxdy

−A45
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ1b(y)dxdy

(A22)

{
K1,8

}
s,t

= −A55
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ2b(y)dxdy

−A45
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ2b(y)dxdy

(A23)

{
K1,9

}
s,t

= −A55
∫ a

0

∫ b
0 λm1 sinλm1xξ1a(x) cosλn1y cosλnydxdy

−A45
∫ a

0

∫ b
0 λn1 cosλm1xξ1a(x) sinλn1y cosλnydxdy

(A24)

{
K1,10

}
s,t

= −A55
∫ a

0

∫ b
0 λm1 sinλm1xξ2a(x) cosλn1y cosλnydxdy

−A45
∫ a

0

∫ b
0 λn1 cosλm1xξ2a(x) sinλn1y cosλnydxdy

(A25)

{
K1,11

}
s,t

= −A44
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1ycosλnydxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1y cosλnydxdy

(A26)

{
K1,12

}
s,t

= −A44
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ1b(y)dxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ1b(y)dxdy

(A27)

{
K1,13

}
s,t

= −A44
∫ a

0

∫ b
0 λn1 cosλm1x cosλmx sinλn1yξ2b(y)dxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1x cosλmx cosλn1yξ2b(y)dxdy

(A28)

{
K1,14

}
s,t

= −A44
∫ a

0

∫ b
0 λn1 cosλm1xξ1a(x) sinλn1ycosλnydxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1xξ1a(x) cosλn1y cosλnydxdy

(A29)
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{
K1,15

}
s,t

= −A44
∫ a

0

∫ b
0 λn1 cosλm1xξ2a(x) sinλn1ycosλnydxdy

−A45
∫ a

0

∫ b
0 λm1 sinλm1xξ2a(x) cosλn1y cosλnydxdy

(A30)
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