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Abstract: This paper investigated the impact of the changes of thermal conductivity of an expanded
polystyrene insulation layer embedded in a typical residential building on the cooling effect at different
temperatures and moisture contents. The simulation was performed using expanded polystyrene
(EPS) in the extremely hot conditions of Al-Ain (United Arab Emirates, UAE) at different levels
of density, denoted as low density LD (12 kg/m3), high density HD (20 kg/m3), ultra-high density
UHD (30 kg/m3), and super-high density SHD (35 kg/m3), and three moisture content levels (10%,
20%, and 30%), compared to dry LD insulation material. The thermal performance of the building
incorporating polystyrene with variable thermal conductivity (λ-value) was compared to one with a
constant thermal conductivity by assessing the additional cooling demand and capacity due to the
λ-relationship with time, using e-quest as a building energy analysis tool. The results showed that,
when the λ-value was modeled as a function of operating temperature, its effect on the temperature
profile during daytime was significant compared with the use of a constant λ-value. The monthly
energy consumption for cooling required by the building was found to be higher in the case of
variable thermal conductivity for the LD sample. The yearly average change in space cooling demand
and cooling capacity when employing polystyrenes with constant and variable thermal conductivity
increased with the increase of the moisture content. Indeed, the highest changes in cooling demand
and capacity were 6.5% and 8.8% with 30% moisture content polystyrene.
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1. Introduction

The building sector is responsible for more than 36% of global final energy consumption, and
nearly 40% of total direct and indirect CO2 emissions. The energy consumption from building continues
to rise due to rapid growth in the building sector. In harsh climates, where industrial activities are not
extensive, the building sector contributes around 70% of the total energy requirements, mainly due to
the use of AC systems [1].

The building envelope represents an effective boundary and a physical barrier between the
internal and external environments [2]. Insulation material is a layer composed of a single material
or combination of materials that essentially contributes to the overall thermal performance of the
opaque walls [3,4], possessing the characteristic of high thermal resistance, which has the capability to
decline the heat flow rate [5], and responding to the external conditions with its specific thermophysical
properties [4].

The thermal conductivity of insulation (λ) is generally considered to be a constant in pertinent
calculations. This is, however, not true, as the λ-value of a building envelope—a wall, for
instance—exhibits variation with the operating temperature and moisture content.
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1.1. The Effects of Temperature on the Thermal Performance of Insulation Material

Aldrich and Bond investigated the effects of temperature on the thermal performance of rigid
cellular foam [6]. Their results showed a significant change in the λ-value with temperature changes.
Several studies have reported this dependence in recent years, with the λ-value generally found to
increase with temperature and moisture content [7–9]. Khoukhi and Tahat also investigated variations
in the λ-values as a function of the density and operating temperature of EPS insulation material, as
well as the effects of those changes on the cooling load required by buildings [10–12].

Recently, Berardi and Naldi [13] investigated the impact of the temperature-dependent thermal
conductivity of insulating materials on effective building envelope performance. They concluded that
the variation in conductivity in terms of temperature is almost linear for inorganic fiber insulations
and some petrochemical insulating materials. However, the variation in conductivity as a function of
temperature has been found to be non-linear for blown foam insulation.

1.2. The Effects of Humidity Content on the Thermal Performance of Insulation Material

A number of researchers have reported the effect of moisture transfer on the thermal performance
of insulation materials [14]. It has been reported that the presence of moisture in an insulation material
changes its thermal performance [15]. A reciprocal function between the density and water was
presented by Gnip et al. [16]. The presence of liquid in insulation also has a huge impact on the thermal
conductivity of the insulation material [17]. Previous results indicate that the accumulation of moisture
in building materials leads to an increase in their thermal conductivity or K-value, as well as a decrease
in their insulation capacity [18–22].

The thermal conductivity functions of four materials, namely rock wool, fiberglass, extruded
polystyrene, and polyisocyanute have been previously created, and dynamic simulations were run for
typical construction components of a building envelope [23]. This investigation was done on exterior
walls and flat roofs under different climactic conditions in Italy. According to the results obtained,
polyisocyanurate demonstrated a larger performance variability with respect to the other materials,
highlighting the potential inaccuracies that may introduced in building performance estimation by
assumptions about the thermal conductivity of insulation materials.

Recently, several advanced insulation materials have been developed, referred to as dynamic
insulation materials (DIMs) [24], which are expected to be useful for many applications in future
technology [20]. Recent findings show that the use of DIMs could save up to 17% on the annual cooling
and heating energy costs incurred by U.S. office buildings [25]. Similarly, novel adaptive insulation
technologies could provide an opportunity to reduce building energy use by modulating heat gains
and losses between outdoor and indoor environments [26,27].

The main objective of the present study was to investigate the impact of the change of the thermal
conductivity of EPS materials on the heat transfer through a wall assembly for different densities of
EPS material, in terms of operating temperature and moisture content. The required space cooling
and the yearly average change in space cooling demand and cooling capacity were calculated for both
constant and variable thermal conductivity. The difference in space cooling demand and capacity for
the whole year at different moisture contents for LD insulation material was assessed accordingly.

2. Materials and Methods

2.1. Measurment of Moisture Contents

The ability to absorb moisture on the K-values of EPS insulation with different densities has been
previously investigated by the authors [1] using a customized apparatus to mimic air moisture transfer.
During the experimental measurement, it was noticed that the effect of moisture on HD, UHD, and
SHD samples was insignificant, due their impermeability to moisture transfer because of their high
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density. Therefore, only the LD sample was considered for the current investigation. The best-fit linear
relationships between the K-values and moisture content were obtained as below:

y = 6 × 10−5x + 0.0357 (1)

2.2. Heat-Transfer Analysis

The heat-transfer analysis across the wall section was modeled and solved using the ANSYS
platform (Version 18, Computer software company, Cecil Township, PA, USA, 2018), adopting Al-Ain
climatic conditions, characterized by hot weather in July. The problem was solved transiently, applying
the user-defined daily transient equations of the weather conditions. The transient temperature
distribution at each node was determined iteratively by the solver, and the average surface temperature
was processed. The solution was updated at 1 min intervals: that is, after completing 20 iterations, for
a total run time of 24 h.

The total solar energy received by the outer building surface (concrete stucco surface) during the
day was calculated using Equation (2) [28]:

Qin =
∑n

n=1
Gi ×A×ϕ× ti (2)

where G is the global solar radiation intensity incident on the surface (W/m2), A is the surface area of
the concrete stucco surface facing south, ϕ is the absorbance coefficient of the concrete stucco, and t is
the time in hours. Applying (20 × 3) m2 as the concrete stucco surface area of the residential building
and inserting ϕ = 0.65 into Equation (2), a daily Qin of approximately 111 kWh was obtained.

The heat losses, when the building envelope was modeled using variable-λ polystyrene with
different densities and different moisture contents, were calculated by comparing the resulting indoor
temperatures in each case, using the expression below:

Qinner = hc × A × (Ts − Ti) (3)

where hc is the convective heat-transfer coefficient (between the inner surface and the interior), Ts is
the inner surface temperature, and Ti is the indoor air temperature. The hc value at the inner surface
facing indoors was calculated at 6.5 W/m2 ◦C using Equation (4), assuming free cooling and applying
the wind speed (vw) for UAE (United Arab Emirates) [29].

hc = 3.3 vw + 6.5 (4)

2.3. Building Energy Performance

The cooling energy demand of a typical one-story building (20 m × 20 m × 3 m) located in Al-Ain,
UAE (all building characteristics presented in Table 1), with a commonly used wall construction
assembly comprising a 200 mm thick concrete block layer, a 50 mm insulation layer, a 13 mm thick
interior gypsum board, and a 19 mm concrete stucco at the exterior surface, was numerically simulated
using the e-quest program as a building energy analysis tool.

The numerical model enabled the analysis of specified multizone buildings including heating,
ventilation, and air conditioning (HVAC) systems, internal loads from people from 10 residents (as an
average in local UAE houses), equipment including all the house appliances, and lighting, applying
the Al-Ain, UAE hot weather condition. The activities were set to medium level in the morning, low
during the day time, and high during the night time, while the set temperature was selected to be
25 ◦C.
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Table 1. Building characteristics and type of systems.

Characteristics Description of the Base Case

Orientation North
Height (Floor–Floor) 3.5 m
Floor Area 300 m2

Floor Dimension 20 × 15 m
Window Area 10% of the gross wall area, uniformly distributed
Window 6 mm single green-tinted glazing

Thermal transmittance (U-value) = 5.788 W/m2
·
◦C

Solar heat gain coefficient (SHGC) = 0.623
Solar Absorbance 0.50 for external walls and roof
Wall U-value = 2.388 W/m2

·
◦C

Roof U-value = 0.654 W/m2
·
◦C

Floor U-value = 0.781W/m2
·
◦C

Occupancy Density 6 People
Lighting Power Density 4.5 W/m2

Equipment Power Density 7 W/m2

3. Results

3.1. Measured Weather Data in Al-Ain, UAE

The average ambient temperature and the average hourly and total solar radiation of Al-Ain for a
typical day of each month are shown in Figures 1 and 2, respectively. Al Ain is characterized by long
and very hot summers and mild winters.
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3.2. Monthly Energy Demand for Space Cooling

Based on the obtained weather data, the monthly energy demand required for cooling a residential
house located in Al-Ain was obtained using constant (c) and variable (v) thermal conductivity of the
dry low density polystyrene, and the result is shown in Figure 3.
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3.4. Yearly Cooling Capacity and Required Air Flow

The total yearly cooling capacity and required supplied air flow applying different level of
polystyrene densities (Figure 6) and different levels of moisture contents (Figure 7) were calculated.
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4. Discussion

4.1. Monthly Energy Demand for Space Cooling

As the ambient temperature in Al-Ain, UAE increases in the summer season, the energy demand
for cooling purposes of residential buildings reaches its maximum during the hot months. The average
ambient temperature during the hot months reaches up to 43 ◦C, while the solar radiation during the
same months reaches 650 kW/m2 as a total daily.

As a result of such high ambient temperatures, non-uniform monthly energy consumption for
cooling purposes was obtained by simulations of the residential building across the year. Indeed, the
energy demand was at maximum during the hot months of July and August. Thus, the changes in
cooling demand between using constant and variant thermal conductivity reached their maximums
in these months. The peak cooling demands for the residential building house in Al-Ain, using
polystyrenes with constant and variable thermal conductivity as part of a wall section during July were
4.15 kWh and 4.32 kWh, respectively.
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4.2. Yearly Energy Performance

Depending on the obtained date and applying the measured weather data in the simulation
program, the yearly average and peak additional space cooling percentage employing dry variable
thermal conductivity in the wall sections of the residential building were calculated, as compared with
constant value of polystyrene thermal conductivity at different density levels (Figure 4) and at different
moisture levels (Figure 5) in the hot climate of UAE.

From Figure 4, a low-density polystyrene applied in the wall section of the residential building
in hot weather in Al-Ain, UAE resulted in the lowest yearly average of additional space cooling
required (0.4%), while using a super-high-density polystyrene insulation showed the highest change in
cooling demand at 0.5%. However, the abovementioned change for the dry polystyrene was not highly
significant, since it was less than 1%.

By contrast, the yearly average changes for cooling demand when applying different moisture
levels of the polystyrene insulation, as observed from humid weather, were significant and need to
be considered in future design processes. The cooling demand increased by 5% as the moisture level
of polystyrene insulation increased by 10%. When the moisture level of the polystyrene content was
doubled (20%), the change in cooling demand reached 6%. The highest change in required cooling
demand was 6.5%, in the case of polystyrene with a 30% moisture content.

The results support the necessity of considering the change of the thermal conductivity of
polystyrene as the moisture content changes due to humid hot weather in the designing process of
cooling systems.

4.3. Yearly Cooling Capacity and Required Air Flow

The yearly cooling capacity and required air flow to control the room temperature within the
comfortable temperature were assessed by employing variable thermal conductivity and compared
with constant values of polystyrene at different levels of density and moisture content, as shown in
Figures 6 and 7, respectively.

Among the different polystyrene densities presented in Figure 6, LD polystyrene insulation
resulted in the lowest yearly average change in cooling capacity and air supplied, at 0.55% and 0.73%,
respectively. In the other hand, SHD polystyrene insulation showed the highest change in cooling
capacity and supplied air at 0.73% and 1%, respectively.

The yearly average change in cooling capacity and required air flow at different moisture levels
is presented in Figure 7. The yearly additional changes for cooling capacity and air flow at the 10%
moisture level were 4.8% and 9.5%, respectively. Further increases of cooling capacity occurred as the
moisture level increased to 20% of the polystyrene content, reaching 8.2%. The highest changes in
cooling capacity and required air supplied were 8.9% and 11.2%, respectively, in the case of polystyrene
with a 30% moisture content.

5. Conclusions

Accuracy of building energy assessment mainly depends on the accuracy of the overall heat
transfer coefficient of the building envelope, which depends mainly on the thermal conductivity of the
layers of the assembly, particularly the insulation material. In this study, the impact of changes in the
thermal conductivity of EPS material was investigated by appling polystyrene insulation as part of a
wall section with variable thermal conductivity (λ-value), subjected to yearly weather data of Al-Ain,
UAE and compared to a constant thermal conductivity. The additional cooling demand and capacity
due to the λ-relationship with time were assessed using e-quest as a building energy analysis tool. The
results showed that when the λ-value was modeled as a function of operating temperature, its effect on
the temperature profile during daytime was significant compared with cases of a constant λ-value.
The yearly average change in space cooling demand and cooling capacity employing polystyrene with
constant and variable thermal conductivity increased with the increase of the moisture content. Indeed,
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the highest changes in cooling demand and capacity were 6.5% and 8.8% with 30% moisture content
polystyrene, highlighting the importance of taking the moisture level and operating temperature into
account at the primary stage of building energy assessment for cooling system selection.

The current work had the limitation of evaluating the combined effect of temperature and moisture
change for higher density levels. Therefore, in future studies measuring the dynamic hygrothermal
response of the thermal conductivity of insulation and its impact on building energy performance,
it would be worth employing a more appropriate model that takes into account the combined effect
of temperature and moisture change. Moreover, similar studies should also be extended to other
insulation materials, including fiberglass, mineral wool, cellulose, and polyurethane foam, which could
be more sensitive to variations in the combined effect of temperature and humidity.
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