

Supplementary Materials

Laser Synthesis of Iridium Nanospheres for Overall Water Splitting

Hai-Bin Wang, Jia-Qi Wang, Neli Mintcheva, Min Wang, Shuang Li, Jing Mao, Hui Liu, Cun-Ku Dong, Sergei A. Kulinich and Xi-Wen Du

Figure S1. HAADF-STEM image and the corresponding EDS mapping of Ir NSs showing elemental distribution of Ir (blue).

Figure S2. Size distribution of Ir NSs. The average size is 21.5 nm.

Figure S3. EIS of Ir NSs and Ir/C recorded at a potential of 1.53 V (vs RHE).

Figure S4. TEM (a) and HRTEM (b) images of the Ir NSs after OER test.

Figure S5. TEM (a) and HRTEM (b) images of Ir NSs after HER test.

Figure S6. Raman shift spectra of Ir NSs and Ir/C before (a) and after (b) OER test.

Figure S7. XPS O 1s spectra of Ir NSs (a) and commercial Ir/C (b) before and after OER test.

Figure S8. TEM (a) and HRTEM (b, c) images of commercial Ir/C.

Figure S9. Proposed mechanism of OER (a) and HER (b) in flat surface of Ir/C.

Figure S10. Faraday efficiency of the corresponding gas products (O₂ and H₂) at the current density of 100 mA/cm².

Figure S11. Photograph of overall water splitting driven by a 1.5 V solar cell.

Catalysts	Electrolyte	Current density	Overpotential	Reference
Ir NSs	0.5M H2SO4	10 mA/cm ²	266 mV	This work
Surface-clean 3D Ir	0.5 M HClO ₄	10 mA/cm ²	303 mV	Nano Lett., 2016, 16, 4424-4430
Ir-Ni NPs	0.05 M H2SO4	5 mA/cm ²	348 mV	Chem. Commun., 2016, 52, 5641
IrNi NCs	0.1 M HClO ₄	10 mA/cm ²	280 mV	Adv. Funct. Mater., 2017, 27, 1700886
Ir-Ni oxide	0.1 M HClO ₄	10 mA/cm ²	310 mV	J. Am. Chem. Soc., 2015, 137, 13031
Co-IrCu ONC/C	0.1 M HClO ₄	10 mA/cm ²	293 mV	Adv. Funct. Mater., 2017, 27, 1604688
IrNiCu DNF/C	0.1 M HClO ₄	10 mA/cm ²	300 mV	ACS Nano, 2017, 11, 5500
IrNiOx/ATO	0.05 M H2SO4	10 mA/cm ²	331 mV	Angew. Chem. Int. Ed., 2015, 54, 2975
IrNi2-PE	0.05 M H2SO4	10 mA/cm ²	315 mV	ACS Nano, 2018, 12, 7371
Ir ₃ Cu MAs	0.1 M HClO ₄	10 mA/cm ²	298 mV	ACS Energy Lett., 2018, 3, 2038
P-IrCu _x NCs	0.05 M H2SO4	10 mA/cm ²	311 mV	Chem. Mater., 2018, 30, 8571
Rh ₂ P	0.5 M H2SO4	10 mA/cm ²	510 mV	J. Am. Chem. Soc., 2017, 139, 5494
IrOx/SrIrO3	0.5 M H ₂ SO ₄	10 mA/cm ²	275 mV	Science, 2016, 353, 1011
IrW	0.1 M HClO ₄	10 mA/cm^2	300 mV	ACS Central Sci., 2018, 4, 1244

Table S1. Comparison of OER activity for different electrocatalysts in acidic electrolytes.

Catalysts	Electrolyte	Current density	Overpotential	Reference
Ir NSs	0.5M H2SO4	10 mA/cm ²	28 mV	This work
IrCoNi-PHNC	0.1 M HClO4	10 mA/cm ²	33 mV	Adv. Mater., 2017, 29, 1703798
Ru@C2N	0.5 M H2SO4	20 mA/cm ²	35 mV	Nat. Nanotechnol., 2017, 12, 441-446
RuP2@NPC	0.5 M H2SO4	10 mA/cm ²	38 mV	Angew. Chem. Int. Ed., 2017, 56, 11559
IrNiN NPs	0.1 M HClO4	6 mA/cm ²	110 mV	J. Mater. Chem. A, 2014, 2, 591
Ru/C ₃ N ₄ /C	0.5 M H2SO4	10 mA/cm ²	70 mV	J. Am. Chem. Soc., 2016, 138, 16174
Pt ₃ Ni ₃ NWs	0.5 M H2SO4	10 mA/cm ²	30 mV	Angew. Chem., 2016, 128, 13051
N-WC	0.5 M H2SO4	10 mA/cm ²	113 mV	Nat. Commun., 2018, 9, 924
Co-MoS ₂	0.5 M H2SO4	10 mA/cm ²	60 mV	Chem. Commun., 2018, 54, 3859
Rh/Si	0.5 M H2SO4	50 mA/cm ²	110 mV	Nat. Commun., 2016, 7, 12272
Rh-MoS ₂	0.5 M H2SO4	10 mA/cm ²	47 mV	Adv. Funct. Mater., 2017, 27, 1700359
Mn-doped CoS ₂	0.5 M H2SO4	10 mA/cm ²	43 mV	ACS Energy Lett., 2018, 3, 779
PtFeCo	0.5 M H2SO4	10 mA/cm ²	50 mV	Adv. Mater. 2016, 28, 2077
Rh ₂ S ₃	0.1 M HClO4	10 mA/cm ²	117 mV	Energy Environ. Sci. 2016, 9, 850

Table S2. Comparison of HER activity for different electrocatalysts in acidic electrolytes.

Table S3. Comparison of overall water splitting activity for different electrocatalysts in acidic electrolytes.

Catalysts	Electrolyte	Current density	Potential	Reference
Ir NSs	0.5M H2SO4	10 mA/cm ²	1.535 V	This work
Ir/CF	0.5 M	10 mA/cm ²	1.55 V	Nano Energy, 2017, 40, 27
	H_2SO_4			
IrAg NT	0.5 M	10 mA/cm ²	1.55 V	Nano Energy, 2019, 56, 330
	H_2SO_4			
CB[6]-Ir	0.5 M	10 mA/cm ²	1.56 V	ACS Energy Lett., 2019, 4, 1301
	H_2SO_4			
IrNi NCs	0.5 M	10 mA/cm ²	1.58 V	Adv. Funct. Mater., 2017, 27, 1700886
	H_2SO_4			
Ultrasmall Ir	0.5 M	10 mA/cm ²	1.58 V	Inorg. Chem. Front., 2018, 5, 1121
	HClO ₄			
AuCu@IrNi	0.5 M	10 mA/cm ²	1.585 V	Nanoscale Horiz., 2019, 4, 727
	H_2SO_4			
	0.1 M	10 mA/cm ²	1.593 V	ACS Appl. Mater. Interfaces,
IrCo NDs	HClO ₄			2018, 10, 24993

Materials 2019,

Ir WNWs	0.1 M HClO4	10 mA/cm ²	1.62 V	Nanoscale, 2018, 10, 1892
NC-CNT/CoP	0.5 M H2SO4	10 mA/cm ²	1.63 V	J. Mater. Chem. A, 2018, 6, 9009
MoSe2/MoO2/CNT	0.5 M H2SO4	10 mA/cm ²	1.63 V	Nanoscale, 2018, 10, 9268
IrNiFe NPs	0.5 M HClO4	10 mA/cm ²	1.64 V	J. Mater. Chem. A, 2017, 5, 24836
IrCoNi PHNCs	0.5 M H2SO4	10 mA/cm ²	1.65 V	Adv. Mater., 2017, 29, 1703798
ONPPGC/OCC	0.5 M H2SO4	10 mA/cm ²	1.66 V	Energy Environ. Sci., 2016, 9, 1210
PMFCP	0.5 M H2SO4	10 mA/cm ²	1.75 V	ChemSusChem, 2019, 12, 1334
C ₃ N ₄ -CNT-CF	0.5 M H2SO4	10 mA/cm ²	1.75 V	J. Mater. Chem. A, 2016, 4, 12878