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Abstract: An innovative method of effective composite mechanical properties estimation is applied
to optimize the distribution of reinforcement in a functionally graded structural element. The concept
is based on the assumption of the mechanical equivalence between two configurations: The real
heterogeneous composite configuration and the fictitious quasi-homogeneous one. It allows to obtain
the analytical formulae describing the dependence of the effective elastic composite properties on the
volume fraction of reinforcing inclusions. As an example of application, a circular bar subjected to
torsion is considered.

Keywords: constitutive modelling; composite materials; effective properties; optimal distribution
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1. Introduction

The establishing of the macroscopic properties of a composite material from the properties of its
constituents is of pivotal importance for the design process of composite structures. In the present work,
a material that consists of two isotropic phases is considered. An innovative method of evaluating
the effective properties of such composite in the macro-scale is presented, formed on a mechanical
equivalence hypothesis.

The method presented in this work uses an idea of the effective quasi-homogeneous continuum
(see Figure 1). The need for homogenization is due to the fact that although the components of the
composite are most often homogenous, the final composite material is heterogeneous. The approach of
mechanical equivalence between the real and fictitious material configurations, typically applied in
continuum damage mechanics issues [1] was lately broaden to a general multi-dissipative material
modelling by Egner and Ryś [2–4]. This method allows us to describe both the elastic and plastic
behaviour of the material, thanks to the use of the framework of thermodynamics of irreversible
processes with internal state variables. It was described in detail in Reference [5] and compared with
classical estimations like Voigt-Reuss [6,7], Hashin-Shtrikman [8], Mori-Tanaka [9], the self-consistent
method and so forth. These approaches are the most often used bounds in physics of solids to
determine the properties of a multiphase material. Hill’s theorem [10] states that the Voigt and Reuss
approaches are upper and lower limits of the real effective stiffness. The disadvantages associated with
the use of these boundaries are due to the fact that mentioned boundaries are usually distant from each
other. This results in a wide range of estimated values for the effective elastic properties of composites.
Hashin and Shtrikman determined narrower bounds. Their theorem utilizes the principle of minimum
potential energy and the concept of polarization. Mori and Tanaka proposed a conception using
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average internal stress in the matrix material of a two-phase composite characterized by transversely
isotropic or isotropic macroscopic moduli.
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Figure 1. Real and equivalent fictitious continuum.

With increasing computational possibilities and development of imaging techniques for
microstructure recognition, the computational homogenization methodologies gain increasing
popularity in effective properties prediction [11–13]. The advantage of these methods lies in their
capability of dealing with complexities of microstructure and distribution patterns, while the analytical
approaches require certain simplifications. Computational homogenization is essentially based on the
solution of a boundary problem at the micro scale and calculating the macroscopic properties from this
solution [14]. However, due to a high computational cost the computational homogenization has its
limitations. The extensive parametric studies, required for example for the optimal design of structural
elements, are often too burdensome, even though a number of methods have been recently developed
to reduce the computational cost and increase the accuracy of multi-scale analysis [15–17].

The homogenization method presented in this work provides a convenient mechanical analysis
method of isotropic composite materials. It is based on the assumption that the effective composite
properties can be described by volume averaging of the actual properties of its components. Generally,
using the majority of micromechanics models, you should choose a domain of analysis, usually called
the representative volume element (RVE). Over the RVE of the heterogeneous material the heterogeneity
is smeared out (on the micro and mesoscale). RVE must meet two basic conditions. Firstly, its size
should be big enough to be considered representative. Secondly, it should be fine enough to be treated
as a material point. Modifications of the macroscopic constitutive properties depend on the true
distribution of micro-structures within the RVE. For mapping thermodynamic forces from the real
multi-phase to the fictitious pseudo-homogeneous configuration, even-rank effect tensors are used.
According to a mechanical equivalence principle adopted (strain equivalence, energy equivalence etc.),
both configurations are equivalent.

One of the advantages of the method proposed here is the possibility to predict with better
efficiency the effective properties of composites in comparison to the above mentioned bounds,
while the calculations are relatively simple. The primary goal of this work is to present the
usefulness and convenience of the mechanical equivalence based method to analyse the optimal
distribution of reinforcement in functionally graded composite structures. However, it can also be
used for investigating other issues about composite materials, such as plasticity [3], damage and
fracture [2,18–20]. The outline of the paper is as follows. Section 2 describes the theoretical formulation
of the approach based on the mechanical equivalence hypothesis and introduces the effective elastic
composite properties in function of the inclusion volume fraction and the properties of constituent
materials. Section 3 provides the comparison between the proposed theory and various existing
analytical homogenization methods. The concentration factors are derived and the numerical results
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are presented to compare the theoretical predictions with the experimental results. In Section 4 the
example of optimization problem is presented. Finally, Section 5 presents the conclusions.

A list of definitions for abbreviations frequently used in the paper as well as symbols and notations
used to describe the mathematical aspects of the presented research are provided in Table 1.

Table 1. Definitions of frequently used abbreviations and notations.

RVE: Representative volume element Ni jkl: Inclusion-effect tensor

V: Voigt’s estimate δi j: Kronecker’s symbol

R: Reuss’ estimate K: Bulk modulus

HS (U): Hashin-Shtrikman upper λ, µ: Lamé parameters

HS (L): Hashin-Shtrikman lower α, β: Concentration factors

MT: Mori-Tanaka estimate R: Radius of cross-section

TEE: Estimate based on total energy equivalence ρ: Distance from the cross-section centroid

ξ: Volume fraction of inclusions in RVE L: Length of bar

ψ: Helmholtz’ free energy θ: Angle of twist

σi j: Cauchy stress tensor T: Torque

εi j: Strain tensor τ: Shearing stress

Ei jkl: Elasticity tensor

2. Theoretical Formulation

2.1. Basic Ideas

The object of analysis is a two-phase isotropic composite with randomly oriented and distributed
inclusions. To describe the impact of the inclusions on the macroscopic reply of a composite a scalar
parameter, defined as the volume fraction ξ of the inclusions dVI in the total volume dVRVE of the RVE,
is used:

ξ =
dVI

dVRVE . (1)

The inclusions influence the behaviour of the multiphase material, causing either hardening
or softening. It can therefore be assumed that the composite properties are related to the volume
fraction of inclusions ξ. In this method the approach inspired by the continuum damage mechanics
is used [1,21,22], which allows to describe the global mechanical properties by the use of effective
state variables. These variables (effective stresses σ̃i j, effective strains ε̃i j) appear in the state and
dissipation potentials in place of typical state variables (stress tensor σi j, strain tensor εi j). In the
sense of the proposed method the real heterogeneous material configuration is replaced by a fictitious
homogeneous material. According to the used mechanical equivalence hypothesis, both configurations
(real and fictitious) are equivalent [1]. In this approach the total energy equivalence hypothesis is
adopted, declared in the following way [2,5,23]:

At any time, to an RVE in its real (deformed, multiphase etc.) configuration, described by the set
of state variable pairs, we associate an unchanged (monophase, etc.) equivalent fictive configuration,
the state of which is described by the effective state variables—in such a manner that the total internal
energy defined over the two (real and fictive) configurations is the same.

The definitions of effective state variables are therefore connected with the two configurations,
real (R) and fictitious (F), used in the model (see Figure 1). Inclusion-effect tensor Ni jkl, defined
similar to the typical damage effect tensor, allows to map from multi-phase (R) to mono-phase (F)
configuration [1,24,25].
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2.2. Internal Energy

The equivalence of Helmholtz’ free energy ψ between real and fictitious configurations is here
utilised, expressed in the following way:

ψ(Vα, ξ) = ψ
(
Ṽα, 0

)
, (2)

where Vα is the set of state variables describing actual state of the multi-phase material at a macroscale.
According to the total energy equivalence hypothesis, all the energy constituents are equivalent, thus
for the elastic part ψe we have:

ψe =
1
2
σi jε

e
i j =

1
2
σ̃i jε̃

e
i j, (3)

where εe
i j is the elastic strain tensor. The current tensors (σi j, εe

i j) and the effective tensors (̃σi j, ε̃e
i j) satisfy

the Hooke law:
σi j = Ei jkl(ξ)ε

e
kl, σ̃i j = EM

ijklε̃
e
kl. (4)

In the above equation Ei jkl(ξ) means the inclusion affected elasticity tensor of a composite material,
while EM

ijkl is the elasticity tensor of the matrix material.
To relate the actual stress and strain tensors (σi j, εi j) referred to the heterogeneous composite

volume element, to the “effective” stress and strain tensors (̃σi j, ε̃i j) referred to a pseudo-homogeneous
RVE of the same energy, the inclusion-effect operator is applied. A linear dependency for two second
order tensors is assumed to take the most general form:

σ̃i j =
[
Ni jkl(ξ)

]−1
σkl, ε̃

e
i j =

[
Ni jkl(ξ)

]T
εe

kl. (5)

In the above equations Ni jkl(ξ) is a fourth-order operator function of the inclusion volume fraction
ξ. Operator Ni jkl(ξ) should:

1. be symmetric, positive definite and monotonic function of the volume fraction variable ξ;
2. be reduced to the fourth-rank unit tensor in the absence of inclusions, ξ = 0;
3. transform the properties of the matrix material into the properties of the inclusion material when

the volume fraction variable ξ reaches unity.

2.3. Effective Elastic Properties of Isotropic Composite Material

By substituting Equation (5) into Equation (3) and using Hooke’s law (4) the inclusion-affected
elasticity tensor of a real representative volume element material, Ei jkl(ξ), can be expressed taking into
account the suitable elasticity tensor of a matrix material, EM

ijkl, by the following form:

Ei jkl(ξ) = Ni jpq(ξ)E
M
pqrsNrskl(ξ). (6)

In the present research concerning the isotropic composites, the inclusion effect tensor is assumed
to take the most general form of an isotropic fourth-order tensor:

Ni jkl(ξ) = f1(ξ)δikδ jl + f2(ξ)δilδ jk + g(ξ)δi jδkl, (7)

where fi(ξ), i = 1, 2 and g(ξ) are scalar functions of the inclusion volume fraction. Taking into account
Equations (6) and (7) the subsequent elasticity tensor of a real non-homogeneous composite material
is achieved:

Ei jkl(ξ) = λ(ξ)δi jδkl + µ(ξ)
(
δikδ jl + δilδ jk

)
, (8)
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where λ(ξ) and µ(ξ) are effective Lamé constants, expressed by the Lamé constants of matrix material,
λM and µM and by scalar functions fi(ξ) and g(ξ):

λ(ξ) = λM
[
( f1 + f2)

2 + 9g2 + 6( f1 + f2)g
]
+ µM[4( f1 + f2) + 6g]g2 (9)

µ(ξ) = µM( f1 + f2)
2 (10)

From Equations (9) and (10) it can be seen that the number of functions fi(ξ) may be reduced to
one and expression (7) may be reduced to ( f2 = f1 = f ):

Ni jkl(ξ) = f (ξ)
(
δikδ jl + δilδ jk

)
+ g(ξ)δi jδkl. (11)

To eliminate the influence of the first stress invariant in relation (5a), the general expression for
the inclusion effect tensor may be furtherly simplified to the following form ( f2 = f1 = f , g = 0):

Ni jkl(ξ) = f (ξ)
(
δikδ jl + δilδ jk

)
. (12)

However, neglecting the last term in (11) will result in disregarding the inclusions influence on
the Poisson ratio. The comparison of the effective Lamé characteristics for approximation Equations
(11) and (12) is presented in Table 2.

Table 2. Effective Lamé constants.

Inclusion Effect Tensor Effective Lamé Constants

Ni jkl = f
(
δikδ jl + δilδ jk

)
+gδi jδkl

f = 1
2

(√
µI

µM − 1
)
ξ+ 1

2

g = − 1
3

(√
µI

µM −

√
KI

KM

)
ξ

λ = λM

2
(√

µI

µM −

√
KI

KM

)((
1− 1

2

(√
µI

µM +
√

KI

KM

))
ξ2
− ξ

)
+

((√
µI

µM − 1
)
ξ+ 1

)2
+ 4

3µ
M
(√

µI

µM −

√
KI

KM

)((
1− 1

2

(√
µI

µM +
√

KI

KM

))
ξ2
− ξ

)
µ =

[(√
µI

µM − 1
)
ξ+ 1

]2

µM

Ni jkl = f
(
δikδ jl + δilδ jk

)
f = 1

2

(√
µI

µM − 1
)
ξ+ 1

2

g = 0

λ =

[(√
µI

µM − 1
)
ξ+ 1

]2

λM

µ =

[(√
µI

µM − 1
)
ξ+ 1

]2

µM

For simplicity, functions f (ξ) and g(ξ) are here assumed to be linear:

fi(ξ) = a1ξ+ b1, g(ξ) = a2ξ+ b2, (13)

while coefficients ai, bi (i = 1,2) follow from boundary conditions in two appropriate points, so ξ = 0
(matrix material with elastic stiffness tensor EM

ijkl) and ξ = 1 (inclusion material, characterized by elastic

stiffness tensor EI
i jkl):

Ei jkl(ξ = 0) = EM
ijkl, Ei jkl(ξ = 1) = EI

i jkl. (14)

Additionally, for ξ = 0 the fictitious and real configurations are the same, (F) ≡ (R), consequently
the stresses and strains are also identical:

σ̃i j = σi j, ε̃e
i j = εe

i j. (15)

This suggests that the inclusion-effect tensor is the fourth-rank symmetrized unit tensor,
Ni jkl(0) =

1
2

(
δikδ jl + δilδ jk

)
. For ξ = 1, and in the boundary case when the properties of inclusions

have a tendency to the properties of a matrix material, condition (15) should also be fulfilled. These
conditions allow to uniquely identify functions f (ξ) and g(ξ) [5].
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3. Comparison with Classical Averaging Schemes

3.1. Concentration Factors

Analytical methods are based on certain simplifying assumptions so as to achieve an explicit
analytical solution. A comparison of the numerical computations and the analytical estimates such
as Voigt (V), Reuss (R), Hashin–Shtrikman (HS) and other can be found in References [14,26,27]. To
compare the proposed approach with the most common averaging schemes the isotropic bulk and
shear moduli, K(ξ) and µ(ξ), will be expressed in a general form [26]:{

K(ξ) = ξαIKI + (1− ξ)αMKM

µ(ξ) = ξβIµI + (1− ξ)βMµM , (16)

where
(
αI, βI

)
and

(
αM, βM

)
are pairs of concentration factors that define the fourth-order strain

concentration tensor, AI, which relates the average strain of the inclusion phase, εI
i j, to that of the

composite (or, equally, the representative volume element), εi j, through εI
i j = AI

i jkl : εkl [28]. The
formulae for the concentration factors for a two-phase isotropic composite resulting from different
averaging schemes are collected in Table 3.

Table 3. Concentration factors for chosen different averaging schemes: (in MT spherical shape of
inclusions was assumed).

αI αM βI βM

V 1 1 1 1

R KM

ξKM+(1−ξ)KI
1−ξαI

1−ξ
µM

ξµM+(1−ξ)µI
1−ξβI

1−ξ

HS (U) KM+ 4
3µ

max

ξKM+(1−ξ)KI+ 4
3µ

max
1−ξαI

1−ξ
Kmax(2µM+3µmax)+ 4

3µ
max(3µM+2µmax)

Kmax(2µ∗+3µmax)+ 4
3µ

max(3µ∗+2µmax)
1−ξβI

1−ξ

HS (L) KM+ 4
3µ

min

ξKM+(1−ξ)KI+ 4
3µ

min
1−ξαI

1−ξ
Kmin(2µM+3µmin)+ 4

3µ
min(3µM+2µmin)

Kmin(2µ∗+3µmin)+ 4
3µ

min(3µ∗+2µmin)
1−ξβI

1−ξ

MT KM+ 4
3µ

M

ξKM+(1−ξ)KI+ 4
3µ

M
1−ξαI

1−ξ
5
2

µM

ξ(µM−µI)+ 3
2µ

M+µI
1−ξβI

1−ξ

TEE ξ
√

KI+(1−ξ)
√

KM
√

KI

ξ
√

KI+(1−ξ)
√

KM
√

KM

ξ
√
µI+(1−ξ)

√
µM

√
µI

ξ
√
µI+(1−ξ)

√
µM

√
µM

µ∗ = ξµM + (1− ξ)µI .

For the majority of the existing models the concentration factors fulfil the following conditions:{
ξαI + (1− ξ)αM = 1
ξβI + (1− ξ)βM = 1

, (17)

while for the present mechanical equivalence-based model it is:{
ξαI + (1− ξ)αM

→ 1
ξβI + (1− ξ)βM

→ 1
if

{
KI
→ KM

µI
→ µM . (18)

3.2. Parametric Studies

This section provides a comparison between the analytical estimates considered in Table 3 through
parametric studies. The predictions of all the considered averaging schemes are simulated for different
stiffness ratios of the matrix and inclusion materials. The overall bulk modulus and shear modulus
are examined (see Figure 2). It can be seen that the results of the new TEE method exhibit a correct
behaviour (the predicted moduli are placed within Voigt’s and Reuss’ bounds) and in the whole
stiffness ratio range considered they are placed close to the Hashin-Shtrikman upper bound.
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Figure 2. Effective bulk and shear moduli versus volume fraction of inclusions, obtained with the use 
of the proposed method (TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, 
HS(U)—Hashin–Shtrikman Upper, HS(L)—Hashin–Shtrikman Lower. 

Figure 2. Effective bulk and shear moduli versus volume fraction of inclusions, obtained with the
use of the proposed method (TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka,
HS(U)—Hashin–Shtrikman Upper, HS(L)—Hashin–Shtrikman Lower.

3.3. Validation

The effective elastic properties achieved by the presented method (TEE) were confronted with
the results of the experiment and of averaging approaches presented in Table 3, for carbon short-fibre
reinforced polyacetal (see Figure 3) and hydroxyapatite reinforced PE (Figure 4). Tables 4 and 5 contain
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the material data for the composite phases. It can be seen that the proposed TEE method gives better
effective Young’s modulus predictions than other averaging schemes considered in Table 3.Materials 2019, 12, x FOR PEER REVIEW 9 of 17 

 

 

Figure 3. Comparison of effective Young’s modulus obtained with the use of the proposed method 
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman 
Upper, HS(L)—Hashin–Shtrikman Lower for carbon short-fibre reinforced polyacetal. 

 

Figure 4. Comparison of effective Young’s modulus obtained with the use of the proposed method 
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman 
Upper, HS(L)—Hashin–Shtrikman Lower) for hydroxyapatite reinforced PE. Data adapted from 
References [29,30]. 

Table 4. Material properties of matrix polyacetal POM T-300 and carbon short-fibre "Fortafil F-3.” 

Material 
Young Modulus E 

(GPa) 
Poisson Ratio ν (-

) 

Lamé 
Constant 
λ (GPa) 

Lamé 
Constant 
μ (GPa) 

POM T-300 3.42 0.350 2.96 1.27 
CF Fortafil F-

3 
227.00 1 0.320 2 152.86 85.98 

1 adapted from Reference [31]; 2 adapted from Reference [32]. 

Table 5. Material properties of matrix polyethylene PE and inclusions HAp. 

Material Young Modulus E (GPa) Poisson Ratio ν (-) Lamé Constant 
λ (GPa) 

Lamé Constant 
μ (GPa) 

PE 1.30 1 0.400 1.86 0.46 
HAp 15.95 2 0.140 2 2.72 7.00 

1 adapted from Reference [30]; 2 adapted from Reference [29]. 

Figure 3. Comparison of effective Young’s modulus obtained with the use of the proposed method
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman
Upper, HS(L)—Hashin–Shtrikman Lower for carbon short-fibre reinforced polyacetal.

Materials 2019, 12, x FOR PEER REVIEW 9 of 17 

 

 

Figure 3. Comparison of effective Young’s modulus obtained with the use of the proposed method 
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman 
Upper, HS(L)—Hashin–Shtrikman Lower for carbon short-fibre reinforced polyacetal. 

 

Figure 4. Comparison of effective Young’s modulus obtained with the use of the proposed method 
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman 
Upper, HS(L)—Hashin–Shtrikman Lower) for hydroxyapatite reinforced PE. Data adapted from 
References [29,30]. 

Table 4. Material properties of matrix polyacetal POM T-300 and carbon short-fibre "Fortafil F-3.” 

Material 
Young Modulus E 

(GPa) 
Poisson Ratio ν (-

) 

Lamé 
Constant 
λ (GPa) 

Lamé 
Constant 
μ (GPa) 

POM T-300 3.42 0.350 2.96 1.27 
CF Fortafil F-

3 
227.00 1 0.320 2 152.86 85.98 

1 adapted from Reference [31]; 2 adapted from Reference [32]. 

Table 5. Material properties of matrix polyethylene PE and inclusions HAp. 

Material Young Modulus E (GPa) Poisson Ratio ν (-) Lamé Constant 
λ (GPa) 

Lamé Constant 
μ (GPa) 

PE 1.30 1 0.400 1.86 0.46 
HAp 15.95 2 0.140 2 2.72 7.00 

1 adapted from Reference [30]; 2 adapted from Reference [29]. 

Figure 4. Comparison of effective Young’s modulus obtained with the use of the proposed method
(TEE) and other approaches: V—Voigt, R—Reuss, MT—Mori-Tanaka, HS(U)—Hashin–Shtrikman
Upper, HS(L)—Hashin–Shtrikman Lower) for hydroxyapatite reinforced PE. Data adapted from
References [29,30].

Table 4. Material properties of matrix polyacetal POM T-300 and carbon short-fibre “Fortafil F-3.”

Material Young Modulus E
(GPa)

Poisson
Ratio ν (-)

Lamé Constant
λ (GPa)

Lamé Constant
µ (GPa)

POM T-300 3.42 0.350 2.96 1.27
CF Fortafil F-3 227.00 1 0.320 2 152.86 85.98

1 adapted from Reference [31]; 2 adapted from Reference [32].
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Table 5. Material properties of matrix polyethylene PE and inclusions HAp.

Material Young Modulus E
(GPa)

Poisson
Ratio ν (-)

Lamé Constant
λ (GPa)

Lamé Constant
µ (GPa)

PE 1.30 1 0.400 1.86 0.46
HAp 15.95 2 0.140 2 2.72 7.00

1 adapted from Reference [30]; 2 adapted from Reference [29].

4. Optimal Distribution of Reinforcement in Circular Bar Subjected to Torsion

4.1. Problem Formulation

Optimization of a composite structural member relies on the selection of proper content and
distribution of the reinforcement. The new method of effective properties estimation described in the
previous sections will now be used to discuss the optimal distribution of the reinforcement in a circular
bar subjected to torsion in an elastic range, see Figure 5 [33].
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Figure 5. Circular bar subjected to torsion.

To illustrate the results quantitatively, an aluminium alloy reinforced with a ceramic phase
(ZrO2 + Y2O3) will be examined. Table 6 contains the material data of aluminium and ceramic phase.
The yield stress of the aluminium τM

0 = 95 MPa is assumed.

Table 6. Material properties of metallic matrix and ceramic phase [34,35].

Material Lamé Constant
λ (GPa)

Lamé Constant
µ (GPa)

Al 42.12 28.08
ZrO2 + Y2O3 138.05 77.65

4.2. Linear Distribution of Inclusions

In the present example it is assumed that the distribution of inclusions is not uniform and their
volume fraction ξ changes along the radius of the shaft. The simplest linear approximation of functions
ξ(ρ) is considered first:

ξ(ρ) = Aρ+ B; 0 ≤ ξ ≤ 1, (19)

where ρ is the distance from the cross-section centroid and A, B are linear function coefficients. The
optimal values of these coefficients (which minimize the angle of twist for a given torque) will be
looked for under the constraint that the total volume of inclusions in the bar is constant.
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In accordance with the assumed equivalence of Helmholtz’ free energy, the expression for

Kirchhoff’s modulus µ(ξ) is (see Table 2) µ(ξ) =
[(√

µI/µM − 1
)
ξ+ 1

]2
µM. This expression can be

transformed to the following form:

µ(ξ) = aξ2 + bξ+ c, a =
(√

µI −

√
µM

)2
, b = 2

√
µM

(√
µI −

√
µM

)
, c = µM. (20)

In the linear elasticity theory, the dependence between torque T and the angle of twist per unit
length θ is obtained from the global equilibrium equation:

T =
x

A

τρdA = 2πθ
∫ R

0
µ(ρ)ρ3dρ = k

(
A, B,µI,µM

)
θ, (21)

where k
(
A, B,µI,µM

)
is the function of inclusion distribution coefficients and Kirchhoff’s moduli of

component materials. Parameter B can furtherly be eliminated from Equation (21) by the use of the
constant total inclusion volume fraction constraint:

p =
VI

V
=

1
V

y

V

ξdV =
2
3

AR + B = const, (22)

where p is the parameter describing the total volume fraction of reinforcing inclusions, VI in the volume
of the shaft, V = πR2L, where R and L are respectively the shaft radius and length (see Figure 5). Using
Equations (19)–(22), the algebraic relation between the external torque, the unit angle of twist, the total
volume fraction of inclusions and the slope coefficient of their linear distribution may be obtained by
expressing function k

(
A, p,µM,µI

)
in the following form:

k = πR4
(
C1R2 + C2R + C3

)
,

C1 = 1
3

(√
µI −

√
µM

)2
A2,

C2 = 4
5

(√
µI −

√
µM

)2
A
(
p− 2

3 AR +

√
µM

√
µI−
√
µM

)
,

C3 = 1
2

(√
µI −

√
µM

)2
(p− 2

3 AR
)2
+

2
√
µM

√
µI−
√
µM

(
p− 2

3 AR
)
+

( √
µM

√
µI−
√
µM

)2.
(23)

For the simplest linear approximation of function ξ(ρ) the optimal value of linear function
coefficient A (see Equation (19)) was looked for. The application of constraint that p = 0.3, results
in the range of possible values of linear function coefficient A, −0.90 ≤ A ≤ 0.45. The distribution of
inclusion volume fraction ξ for different chosen values of A is shown in Figure 6a.
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Corresponding relations between dimensionless torque T (T = T/TM), where TM is the elastic
limit load of the matrix material, that is, the torque that results in the maximum shearing stress in the
bar equal to the yield stress of the matrix material, and the angle of twist are plotted in Figure 6b.

To illustrate the influence of slope coefficient A on the resulting angle of twist per unit length θ,
the relation between A and θ is plotted in Figure 7a for a chosen constant value of the external torque,
T = 0.35. As it can be noticed also in Figure 6b, the minimum unit angle of twist is reached for the
maximum possible value of A = 0.45 (i.e., the reinforcement is maximum possible distant from the
section centroid). Similarly, the effect of A on the external torque needed to obtain a certain value of
the angle of twist (here for θ = 0.001) is shown in Figure 7b.
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It should be noticed that the optimal value of A (minimizing the angle of twist) does not minimize
the shearing stress (see Figure 8). However, when a functionally graded composite material is
considered, the optimal stress distribution is not the one that exhibits the smallest maximum stress,
since the allowable stresses of component materials are different.
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4.3. Nonlinear Distribution of Inclusions

The analogical reasoning was performed for the quadratic approximation:

ξ(ρ) = Aρ2 + Bρ; 0 ≤ ξ ≤ 1 (24)

The formulae corresponding to Equations (22) and (23) are shown below:

p =
VI

V
=

(1
2

AR +
2
3

B
)
R = const, (25)
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k = πR4
(
D1R4 + D2R3 + D3R2 + D4R + D5

)
,

D1 = 1
4

(√
µI −

√
µM

)2
A2,

D2 = 6
7

(√
µI −

√
µM

)2
A
( p

R −
1
2 AR

)
,

D3 = 1
3

(√
µI −

√
µM

)2
[

9
4

( p
R −

1
2 AR

)2
+

2
√
µM

√
µI−
√
µM

A
]
,

D4 = 6
5

√
µM

(√
µI −

√
µM

)( p
R −

1
2 AR

)
,

D5 = 1
2µ

M.

(26)

In this case, for the same constraints as in the linear distribution case, function coefficient A has to
be in the range −1.80 ≤ A ≤ 0.60. The corresponding distributions of inclusion volume fraction ξ along
the radius of the circular bar have been plotted in Figure 9a, while Figure 9b shows the corresponding
relation between dimensionless torque T and the unit angle of twist.
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In Figure 10a the unit angle of twist is presented as a function of function coefficient A.
Corresponding relation between the external torque and A is presented in Figure 10b.
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Figure 10. (a) Unit angle of twist and (b) dimensionless external torque versus square function
coefficient A.

In this case, the minimum unit angle of twist for a given torque value (T = 0.35) was reached for
coefficient A = −1.80. For linear elastic material considered here the same value of A will always result
in the maximum torque for a given angle of twist. The distribution of shearing stress along the radius
of a shaft is shown in Figure 11.
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5. Conclusions

In this paper the innovative method of establishing the effective properties of a composite material
is discussed. The impact of the inclusions on the macroscopic properties of a composite is evaluated by
mapping the real multi-phase configuration into a fictitious but mechanically equivalent homogeneous
material. The approach allows to express the mechanical characteristics of a composite in function of
the characteristics of component materials and the volume fraction of inclusions in the representative
volume element. The model results fit very well into the experimental data in comparison with chosen
classical approaches.

The method was then applied to analyse the optimal distribution of inclusions in a functionally
graded circular bar subjected to torsion in the elastic range. Two cases of linear and quadratic
distribution of inclusions volume fraction along the cross-section radius were considered. The optimal
distribution function that minimizes the unit angle of twist for a given external torque, under the
constraint that the inclusions volume is constant, was indicated in each case.

The presented analysis illustrates the usefulness of the innovative method for determining the
effective properties of isotropic composite materials, for the design of optimal functionally graded
structural components. The approach seems to have clear advantages. While assuring the correct Voigt
and Reuss boundary values of elastic parameters, it provides a simple way of estimating them through
analytical functions of the reinforcement volume fraction and the properties of constituent materials,
without the necessity of performing computationally expensive calculations. The predicted elastic
properties exhibit a very good agreement with the available experimental data. In the current research,
only the isotropic composites are considered; however, the theory can also be applied to anisotropic
materials, when tensorial measures of the amount and distribution of reinforcement are used instead
of the scalar volume fraction measure. What is more, also the effective plastic characteristics can be
estimated, when the inelastic part of the internal energy is regarded in the analysis.
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