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Abstract: In this manuscript, the equilibrium problem for a flexoelectric one-dimensional composite
material is studied. The two-scales asymptotic homogenization method is used to derive the
homogenized formulation of this problem. The manuscript offers a step-by-step methodology to
derive effective coefficients and to solve local problems. As an illustrative example, results reported in
the literature for piezoelectric composites are obtained as a particular case of the formulation derived
here. Finally, three flexoelectric/piezoelectric composites are studied to illustrate the influence of the
flexoelectric property on the effective coefficients and the global behavior of the structure.
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1. Introduction

In the last 35 years, the study of piezoelectric composites has increased because of their use in
several areas of engineering [1], contributing to the development of new mechanical structures that are
used in high-technology devices [2,3]. The wide range of applications of piezoelectric composites has
advanced the development of mathematical, experimental, and computational models related to the
study of the properties of these materials, see for instance References [4–6]. Piezoelectric composites
have been extensively studied, but only in very recent years, flexoelectric materials have taken an
important place in the new scientific works, see Reference [7].

Piezoelectricity is usually expressed as an interaction between mechanical strain and one of
the electrical variables: the electric field, the electric displacement, or the electric polarization.
In Reference [8], the author examines the consequences of considering an additional, linear,
electromechanical effect: an interaction between the strain and the polarization gradient. Experiments
have shown that when large amplitude mechanical disturbances propagate through a dielectric
medium a voltage is developed across the ends of the sample, see Reference [9]. Some of these
experiments with nonpiezoelectric elements have been shown to produce a polarization charge upon
shock loading. Strain-gradient-induced polarization is known as the flexoelectric effect. According to
Reference [10], flexoelectricity is an electromechanical effect of dielectric materials whereby they exhibit
a spontaneous electrical polarization induced by a strain gradient (inhomogeneous deformation).
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The flexoelectric effect can be considered as a high-order electromechanical phenomenon with respect
to the piezoelectric effect [7].

Flexoelectricity was first theoretically predicted in the 1950’s and described from a phenomenological
standpoint in the 1960’s [11]. Recently, flexoelectric materials have gained prominence due to the
development of new methods for manufactured materials with coupled mechanical and electrical
behavior [11] and their applications in membrane structures [12–14].

In References [15,16], important contributions to the study of flexoelectric materials have been
presented highlighting the differences between piezoelectric and flexoelectric structures. The authors
emphasize the significance of the flexoelectric effect discussing several applications which include
materials with large flexoelectric coefficients as well as cases in which electromechanical coupling of
piezoelectricity is not present and in applications related to soft materials. Moreover, some important
applications of the flexoelectric effect are focused on the study of biological membranes and the
development of piezoelectric structures without using piezoelectric materials, sensing, actuating,
or energy harvesting.

Many authors have studied the flexoelectric mechanical equilibrium equations (for instance
References [11,17]), bringing together different approaches to solve the problem at hand. One of the
most common methods in solid mechanics to approximate the solution of the equilibrium problem
of a solid (elastic, piezoelectric, flexoelectric, etc.) is the two-scales asymptotic homogenization
method (AHM) [18,19]. The multiscale asymptotic homogenization method has been widely used
to derive the effective properties of composite materials with different mechanical properties.
In References [18,20–22], the AHM is used to derive the effective properties of elastic composites
(laminates, fibrous, wavy, etc.). These ideas are extended to the study of piezoelectric structures [23];
viscoelastic composites [24]; and thermo-piezoelectric materials [25]. To the best of the authors
knowledge, a methodology to find the effective properties of flexoelectric materials has not been
presented before. For that reason, this work acts to extend those methodologies (that find
effective properties) to include the case of flexoelectric materials using the two-scales asymptotic
homogenization method, which provides the first step to subsequently study three-dimensional
curvilinear flexoelectric structures.

In general, the two-scale asymptotic homogenization method is used to find the effective
properties of periodic composites, i.e., for any mechanical property p(x), x ∈ Rn, there is a T ∈ Rn s.t.
p(x + T) = p(x) for all x ∈ Rn. For non-periodic media, statistical and numerical methods have been
developed to find representative volume elements and the associated effective properties [26–28].
In Reference [29], the self-consistent method in explicit form (effective field) and implicit form
(effective medium) as well as the AHM are used to derive the effective piezoelectric properties
of fibrous composites with randomly positioned fibers and periodically distributed fibers, showing
good agreement among the different methods.

The work is organized as follows. In Section 2, a theoretical framework for the equilibrium of
a one-dimensional periodic flexoelectric composite material is presented. The asymptotic expansions
of the displacement and the electric potential are introduced in Section 3, using the two-scales
asymptotic homogenization method, and a methodology to derive the expression of the effective
coefficients depending on the so-called local function expressions is illustrated. The process to obtain
the analytic solutions of the local problems is shown. A variational formulation of the local problem is
proposed and the system is solved using the classical finite element method (FEM). As an important
benchmark, the model reproduces the solution of the local problems reported in Reference [30] for
a one-dimensional piezoelectric structure. Finally, in Section 4, the theoretical results derived in
the previous sections are used to study some numerical cases. The effective coefficients reported in
References [19,30] for a two-material piezoelectric structure made of lead zirconate titanate (PZT)
C91 and P-82 are derived using the model developed here, which makes use of the solution of the
local problem variational formulation (FEM). In order to extend the study for the case of randomly
distribute one-dimensional flexoelectric composites, a two-constituents structure ΩN is considered for
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which the materials properties are randomly distributed along the rod with a binomial probability.
Using the concept of correlation length for the particular case of one-dimensional binomial distributed
structure, as reported in Reference [31], the methodology is then extended to the case of non-periodic
structures. As it is shown in Reference [29], the effective properties of random composites converge
to the effective properties of periodic structures when the length of ΩN increases. In addition,
the combination of flexoelectric/piezoelectric/non-piezoelectric composites are studied in order
to illustrate the influence of the flexoelectricity on the effective properties. One of the composites is
considered as the combination of two flexoelectric materials, barium titanate (BaTiO3) and strontium
titanate (SrTiO3) [32–34]. Other composites are combinations of these two flexoelectric materials
with a exclusively piezoelectric material, polyvinylidene fluoride (PVDF) [35,36], a non-piezoelectric
polymer described in Reference [37] and PZT-7A reported in Reference [38]. From these material
combinations important conclusions are derived with respect to the influence of the flexoelectric
property in the global behavior of the composites. Finally, a comparison between the solutions of
a heterogeneous and homogeneous problem for a one-dimensional flexoelectric structure is presented.
The finite element method is used to solve the problems of two different examples considering the
same prescribed boundary conditions but different external forces.

2. Flexoelectric One-Dimensional Problem

A one-dimensional flexoelectric composite rod Ω is considered. The constitutive relations between
stress σ and electrical displacement D with strain ε and electric field E are written in the following
form (see Reference [17]),

σ(x) = C(x)ε(x)− e(x)E(x) + µ(x)
dE(x)

dx
, (1)

D(x) = e(x)ε(x) + µ(x)
dε(x)

dx
+ κ(x)E(x), (2)

where C(x), e(x), κ(x), and µ(x) denote the stiffness, piezoelectric, permittivity, and flexoelectric
tensors, respectively. Linear deformations of the composite, the strain, and the electric field are studied
in terms of the displacement u and the electric potential φ as

ε(x) =
du(x)

dx
, (3)

E(x) = −dφ(x)
dx

. (4)

Assume the material parameters C, e, κ, µ are rapidly oscillating periodic functions along the rod
with respect to the variable y, i.e.,

C(y) ≡ C
( x

ε

)
, e(y) ≡ e

( x
ε

)
,

κ(y) ≡ κ
( x

ε

)
, µ(y) ≡ µ

( x
ε

)
,

where y = x/ε ∈ Y is the local variable, since 0 < ε << 1 is a very small parameter that characterizes
the periodicity of the structure, and Y is the periodic cell. The composite has the structure presented in
Figure 1.

To simplify the equations, material parameters and functions are considered to depend on the
position variable x or local variable y, i.e., u ≡ u(x), φ ≡ φ(x), C ≡ C(y), e ≡ e(y), κ ≡ κ(y),
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µ ≡ µ(y). The equilibrium equations presented in Reference [17] for one-dimensional solids take the
following expression:

dσ

dx
+ f =

d
dx

(
C

du
dx

+ e
dφ

dx
− µ

d2φ

dx2

)
+ f = 0 in Ω, (5)

dD
dx

=
d

dx

(
e

du
dx

+ µ
d2u
dx2 − κ

dφ

dx

)
= ρ in Ω, (6)

with boundary conditions

u(0) = u0,
du
dx

(0) = w0, φ(0) = ϕ0, (7)

σ(1) = S1, µ(1)
dE
dx

(1) = −r1, D(1) = −τ1, (8)

where the functions f and ρ are the external forces and body charge density, respectively. On the
other hand, the values u0, S1, w0, r1, ϕ0, and τ1 are the prescribed displacement, traction, displacement
derivative, high-order traction, electric potential and charge, respectively. Perfect contact conditions at
the interface are considered, i.e., function displacement u is differentiable and classical stress Cε + eE,
higher order stress µ dE

dx (see Reference [17]), electric potential φ and electric displacement D are
considered continuous functions at the interfaces of the materials. The boundary value problem (5)–(8)
is cast as a linear system of third order ordinary differential equations for which, under the perfect
contact conditions as mentioned above, existence and uniqueness of the solution on the interval [0, 1]
is guaranteed [39,40].

Y1 Y2

V

V1 V2

x

W

Y

Figure 1. One-dimensional flexoelectric rod and the corresponding periodic cell.

3. Asymptotic Homogenization Method

The boundary value problem (5)–(8) has rapidly oscillating coefficients. In order to approach
the solution of the problem, an equivalent homogenized problem must be obtained. To derive the
expression of the homogenized system, the two-scales asymptotic homogenization method is used.
In Reference [19], the asymptotic expansion to the solution of the piezoelectric problem is reported as

u(x, y) = v0 +
∞

∑
k=1

εk

[
Nk(y)

dkv0

dxk + Πk(y)
dkφ0

dxk

]
, (9)

φ(x, y) = φ0 +
∞

∑
k=1

εk

[
Ψk(y)

dkv0

dxk + Θk(y)
dkφ0

dxk

]
, (10)
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where v0(x) and φ0(x) only depend on the global variable x and the functions Nk, Πk, Ψk, and Θk
are ε-periodic continuous functions that only depend on the local variable y, i.e., Nk(y + ε) = Nk(y),
Πk(y + ε) = Πk(y), Ψk(y + ε) = Ψk(y), and Θk(y + ε) = Θk(y).

Now, the expansions (9)–(10) are introduced into the equilibrium Equations (5)–(6), for which one
needs to consider the derivative operator

du
dx

= ux +
1
ε

uy ,
dφ

dx
= φx +

1
ε

φy ,

where (·)x and (·)y denote the partial derivative with respect to x and y, respectively. After some
simple manipulations, (5) and (6) take the following expressions:

∞

∑
k=−1

∞

∑
m=1

εk
[

Lkm
dmv0

dxm + Pkm
dmφ0

dxm

]
+ f = 0, (11)

∞

∑
k=−1

∞

∑
m=1

εk
[

Qkm
dmv0

dxm + Rkm
dmφ0

dxm

]
= ρ, (12)

respectively, where Lkm, Pkm, Qkm, and Rkm denote the coefficient of the m derivative of v0 and φ0 that
multiplies εk. For instance, L−11 is the coefficient of the first derivative of v0 that multiplies ε−1. As
a result of the continuity requirements, when ε → 0, the coefficients of k = −1 are equated to zero.
The non-identical zero coefficients are the so-called local problems. In what follows, we characterize
these problems.

3.1. Local Problems

The following local problems have to be considered. The system of local problems (LQ):

L−11 ≡
d

dy

(
C + C

dN1

dy
+ e

dΨ1

dy

)
= 0, (13)

L−12 ≡ −
d

dy

(
µ

d2Ψ2

dy2 + 2µ
dΨ1

dy

)
− µ

d2Ψ1

dy2 = 0, (14)

Q−11 ≡
d

dy

(
e + e

dN1

dy
− κ

dΨ1

dy

)
= 0, (15)

Q−12 ≡
d

dy

(
µ + µ

d2N2

dy2 + 2µ
dN1

dy

)
+ µ

d2N1

dy2 = 0, (16)

with interface conditions

[[
C + C dN1

dy + e dΨ1
dy

]]
=
[[

µ d2Ψ2
dy2 + 2µ dΨ1

dy

]]
=
[[

e + e dN1
dy − κ dΨ1

dy

]]
=
[[

µ + µ d2 N2
dy2 + 2µ dN1

dy

]]
= 0,

where [[·]] = (·)(+) − (·)(−) denotes the jump at the interface.
Furthermore, the system of local problems (PR):

P−11 ≡
d

dy

(
e + C

dΠ1

dy
+ e

dΘ1

dy

)
= 0, (17)

P−12 ≡ −
d

dy

(
µ + µ

d2Θ2

dy2 + 2µ
dΘ1

dy

)
− µ

d2Θ1

dy2 = 0, (18)

R−11 ≡ −
d

dy

(
κ + κ

dΘ1

dy
− e

dΠ1

dy

)
= 0, (19)

R−12 ≡
d

dy

(
µ

d2Π2

dy2 + 2µ
dΠ1

dy

)
+ µ

d2Π1

dy2 = 0, (20)
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with interface conditions[[
e + C dΠ1

dy + e dΘ1
dy

]]
=
[[

µ + µ d2Θ2
dy2 + 2µ dΘ1

dy

]]
=
[[

κ + κ dΘ1
dy − e dΠ1

dy

]]
=
[[

µ d2Π2
dy2 + 2µ dΠ1

dy

]]
= 0.

The LQ system is derived from the coefficients multiplying the derivatives of v0 in each equation
and it relates the local functions N1, Ψ1, N2, and Ψ2. Similarly, the PR system is obtained from the
coefficients of the derivatives of φ0 and it relates the local functions Θ1, Π1, Θ2, and Π2.

3.2. Methodology to Solve Local Problems Using a System of Linear Equations

To obey conditions (13)–(20), the LQ and PR systems need to be solved. More specifically,
the functions dN1

dy , dΨ1
dy , d2 N2

dy2 , d2Ψ2
dy2 , dΠ1

dy , dΘ1
dy , d2Π2

dy2 , and d2Θ2
dy2 need to be obtained. Later, we show that

the local functions N1, N2, Ψ1, Ψ2, Π1, Π2, Θ1, and Θ1 are not necessary to find the homogenized
problem.

The system of local problems is solved using ideas described in Reference [20]. Here, we
summarize the methodology. Let us focus on the LQ system. Integrating Equations (13) and (15) the
following system is derived: (

C e
e −κ

)( dN1
dy

dΨ1
dy

)
=

(
λ1 − C
λ3 − e

)
,

where λα ≡ λα(x), α = 1, 3. Thus, the solutions of the system are

dN1

dy
=

κ

e2 + Cκ
λ1 +

e
e2 + Cκ

λ3 − 1, (21)

dΨ1

dy
=

e
e2 + Cκ

λ1 −
C

e2 + Cκ
λ3. (22)

To find expressions for λα in terms of the materials parameters C, e, κ and µ, one needs to use the
average operator with respect to the local variable. This average operator is given by

〈·〉 = 1
VY

∫
Y
(·)dy, (23)

where VY = |Y|. From the periodicity of N1 and Ψ1 and taking the average operator in both sides of
the Equations (21) and (22), the following system for λα is obtained:〈

κ

e2 + Cκ

〉
λ1 +

〈
e

e2 + Cκ

〉
λ3 = 1, (24)

〈
e

e2 + Cκ

〉
λ1 −

〈
C

e2 + Cκ

〉
λ3 = 0. (25)

It follows that λ1 and λ3 are solutions of the system (24) and (25). Considering C, e, κ, and µ to be

constant functions along each material, one gets that d2 N1
dy2 = d2Ψ1

dy2 = 0. Then, Equations (14) and (16)
are transformed into

d
dy

(
µ

d2Ψ2

dy2 + 2µ
dΨ1

dy

)
= 0, (26)

d
dy

(
µ + µ

d2N2

dy2 + 2µ
dN1

dy

)
= 0, (27)

respectively. Finally, solutions of the LQ system are given by (21), (22) and

d2N2

dy2 = −2k
∆

λ1 −
2e
∆

λ3 +
1
µ

λ4 + 1, (28)
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d2Ψ2

dy2 = −2e
∆

λ1 +
2C
∆

λ3 +
1
µ

λ2, (29)

where ∆ = e2 + Cκ and λi, i = 1, 2, 3, 4, satisfy the system of equations
〈κ/∆〉 0 〈e/∆〉 0
−2〈κ/∆〉 0 −2〈e/∆〉 〈1/µ〉
〈e/∆〉 0 −〈C/∆〉 0
−2〈e/∆〉 〈1/µ〉 2〈C/∆〉 0




λ1

λ2

λ3

λ4

 =


1
−1
0
0

 . (30)

Similarly, solutions of the PR system (17)–(20) are obtained. Expressions for these solutions are
given in Appendix A.

3.3. Variational Formulation of the LQ System. Finite Element Method (FEM)

The finite element method is a strong and convenient numerical tool to solve systems of ordinary
or partial differential equations. It is an alternative method to approximate the solution for the LQ
systems (13)–(16). This is the procedure. Let us take Y = [0, γ) ∪ [γ, 1], where γ ∈ (0, 1). Consider the
test functions vi, i = 1, 2, 3, 4, multiplying the LQ problem. Integrating along Y, using integration by
parts and taking into account the continuity of the function at the interface, the following variational
formulation for the LQ system is derived:

∫
Y

(
C + C

dN1

dy
+ e

dΨ1

dy

)
∂v1

∂y
dy = 0, (31)∫

Y

(
µ

d2Ψ2

dy2 + 2µ
dΨ1

dy

)
∂v2

∂y
dy = 0, (32)∫

Y

(
e + e

dN1

dy
− κ

dΨ1

dy

)
∂v3

∂y
dy = 0, (33)∫

Y

(
µ + µ

d2N2

dy2 + 2µ
dN1

dy

)
∂v4

∂y
dy = 0. (34)

Periodic conditions for the local functions and perfect contact at the interface are considered.
Now, using Equations (31)–(34) and the standard finite element method [41] on the domain Y, the local
functions are approximated.

3.4. Effective Coefficients and Homogenized Problem

To find the effective coefficients, the average operator is used on the coefficients of ε0 in
Equations (11) and (12), i.e., one deals with L0m, P0m, Q0m, and R0m. Taking into account the periodicity
of the local functions as well as C, µ, e, and κ, the non-identical zeros are

〈L02〉 =
〈

C + C
dN1

dy
+ e

dΨ1

dy

〉
, (35)

〈L03〉 =
〈

2µ
dΨ1

dy
+ µ

d2Ψ2

dy2

〉
, (36)

〈P02〉 =
〈

e + C
dΠ1

dy
+ e

dΘ1

dy

〉
, (37)

〈P03〉 =
〈

µ + 2µ
dΘ1

dy
+ µ

d2Θ2

dy2

〉
. (38)
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〈Q02〉 =
〈

e + e
dN1

dy
− κ

dΨ1

dy

〉
, (39)

〈Q03〉 =
〈

µ + 2µ
dN1

dy
+ µ

d2N2

dy2

〉
, (40)

〈R02〉 =
〈

κ + κ
dΘ1

dy
− e

dΠ1

dy

〉
, (41)

〈R03〉 =
〈

2µ
dΠ1

dy
+ µ

d2Π2

dy2

〉
. (42)

Substituting the expressions of the solutions of the LQ and PR systems, which are given
in (21), (22), (28), (29), and the Appendix Equations (A1)–(A4), into the Equations (35)–(42),
the following relations are obtained

〈L03〉 ≡ 〈R03〉 ≡ 0; 〈P03〉 ≡ 〈Q03〉 ; 〈P02〉 ≡ 〈Q02〉 .

Therefore, the effective coefficients of Equations (11) and (12) are

Ĉ =

〈
C + C

dN1

dy
+ e

dΨ1

dy

〉
, (43)

ê =
〈

e + C
dΠ1

dy
+ e

dΘ1

dy

〉
≡
〈

e + e
dN1

dy
− κ

dΨ1

dy

〉
, (44)

κ̂ =

〈
κ + κ

dΘ1

dy
− e

dΠ1

dy

〉
, (45)

µ̂ =

〈
µ + 2µ

dΘ1

dy
+ µ

d2Θ2

dy2

〉
≡
〈

µ + 2µ
dN1

dy
+ µ

d2N2

dy2

〉
. (46)

The original problem (5) and (6), by means of the homogenization technique, is transformed into
the following homogenized problem (in terms of the effective coefficients):

d
dx

(
Ĉ

dv0

dx
+ ê

dφ0

dx
− µ̂

d2φ0

dx2

)
+ f = 0 in Ω, (47)

d
dx

(
ê

dv0

dx
+ µ̂

d2v0

dx2 − κ̂
dφ0

dx

)
= ρ in Ω, (48)

v0(0) = u0,
dv0

dx
(0) = w0, φ0(0) = ϕ0, (49)

σ0(1) = S1, µ̂(1)
E0

dx
(1) = r1, D0(1) = −τ1, (50)

where σ0, E0, and D0 are the effective stress, effective electric field, and effective electrical
displacement, respectively.

4. Analysis of Numerical Results

4.1. Model Validation with the Particular Case of Piezoelectric Materials

To validate the model, our goal is to reproduce the results of the one-dimensional piezoelectric
composite analyzed in Reference [30]. The constituents of this one-dimensional piezoelectric structure
are lead zirconate titanate (PZT) C-91 and P-82. The materials properties are given in Table 1 of
Reference [30]. For this particular case, the flexoelectric coefficient µ associated with the components
of the structure is considered zero. Therefore, the equilibrium problems (5)–(8) take the expression (1)
and (2) of Reference [30]. Using the asymptotic expansion (9) and (10) and following the methodology
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described in the previous section, the non-vanishing local problems are (13), (15), (18), and (20), which
corresponds with Equations (23) and (24) in Reference [30]. Finally, the expressions of the effective
coefficients for this piezoelectric composite are given by Equations (43), (44), and (45).

In Table 1, the values reported for the effective coefficients Ĉ, ê, κ̂ of this piezoelectric composite
considered in References [19,30] are compared with the results obtained using the present model
(Section 3) and the results obtained using FEM (solving the variational formulation of the LQ
and PR systems). The volume fraction of C-91, for the numerical calculation, is considered to be
V1 ∈(0, 0.4, 0.8, 1). To avoid singularities of solutions of LQ and PR systems, the value of flexoelectric
property for the piezoelectric composites is taken as µ = 10−20. Suffice to say that the results reported
in Reference [19,30] are reproduced using both the AHM (present model) and FEM (variational
formulation) methods. Therefore, the piezoelectric composite results are obtained as a particular case
of the flexoelectric composite formulation developed here.

Table 1. Comparison of the effective coefficients Ĉ, ê, κ̂ for a piezoelectric composite computed using
the methodology described in Section 3, the finite element method (FEM), and the results reported in
References [19,30].

Effective Coefficient Ĉ (109 N/m2)

V1 Present Model FEM Ref. [30] Ref. [19]

0.0 118.300 118.300 118.299 118.300
0.4 116.953 116.953 116.952 116.953
0.8 115.401 115.401 115.400 115.401
1.0 114.500 114.500 114.499 114.500

Effective Coefficient ê (C/m2)

0.0 26.400 26.400 26.399 26.400
0.4 24.806 24.806 24.805 24.806
0.8 22.634 22.863 22.633 22.634
1.0 21.200 21.200 21.199 21.200

Effective Coefficient κ̂ (10−10 F/m)

0.0 110.900 110.900 110.899 110.900
0.4 148.056 148.056 148.054 148.056
0.8 200.835 200.836 200.832 200.835
1.0 236.600 236.600 236.595 236.600

4.2. Flexoelectric Composite Rod without Ideal Periodicity

It is interesting to study the the above-described methodology for the case of random composites,
i.e., composites without periodicity. A two-elements flexoelectric rod where the constituents are L1

(BaTiO3) and L2 (SrTiO3) with a fixed length of 1 unit is considered. Assume ΩN = [0, N], for every
0 ≤ n < N, n ∈ N, the region [n, n + 1] is occupied by the layer L1 with probability p = 0.7146.
The numbers N1 and N2 represent the amount of components L1 and L2 in ΩN , respectively, and
N = N1 + N2. The average operator is considered

〈·〉N =
1
N

∫
ΩN

(·)dx =
N1

N
(·)(1) + N2

N
(·)(2). (51)

This average operator is a particular case of the Equation (2.2.1) of Reference [31] for one-dimensional
structures. From the results described in Section 3 and considering the average operator (51),
the effective properties (43)–(46) are easily computed for a structure without periodicity. To compare
the behavior of the effective properties for random composites with the ones for periodic structures,
a periodic composite Ω is considered. The constituents of Ω are BaTiO3 with volume fraction p = 0.7146
and SrTiO3 with volume fraction 1− p. In Table 2, the material properties of BaTiO3 and SrTiO3 are
given. Figure 2 illustrates the behavior of three experiments with random composites considering
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a probability p = 0.7146 for L1 and a composite with periodicity and a volume fraction of p = 0.7146
for BaTiO3 for N ∈ [1, 225]. The three random composites were randomly generated with MATLAB
using the so-called rand function.

Figure 2 shows that the values of effective properties for non-periodic composites coincide with the
values of the effective coefficients for a periodic structure when the number of layers increase. It follows
that the methodology is valid for structures with no periodicity, making it possible to approximate
the effective properties for random composites considering the periodic structures. Similar results are
obtained in Reference [42], for the particular case of an elastic Fibonacci laminate composite.
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Figure 2. Effective properties and structures of three random flexoelectric composites with
ideal periodicity.

4.3. Influence of the Flexoelectric Property on the Effective Coefficients

In this section, the influence of the flexoelectric property on the effective coefficients is studied.
A bi-material one-dimensional composite is considered. In Table 2, the properties of the flexoelectric
materials barium titanate (BaTiO3) and strontium titanate (SrTiO3), the active piezoelectric materials
polyvinylidene fluoride (PVDF) and PZT-7A, and soft non-piezoelectric polymer are shown. To
illustrate the effective coefficients of flexoelectric/piezoelectric structures, several combinations of
flexoelectric composite with other well-known piezoelectric materials are considered.

Table 2. Material properties of barium titanate (BaTiO3), strontium titanate (SrTiO3), PVDF,
non-piezoelectric polymer, and PZT-7A are given. C, e, κ, and µ denote the elastic, piezoelectric,
dielectric and flexoelectric tensors, respectively. The materials with µ = 0 are called non-flexoelectric
(PVDF, polymer, PZT-7A).

Materials C (109 N/m2) e (C/m2) κ (10−10 F/m) µ (10−4 C/m)

BaTiO3 162 [32] 17.36 [33] 4000 [32] 5 [32]
SrTiO3 350 [32] 8.82 [34] 300 [32] 1 [32]
PVDF 2.7 [35] 30 [36] 10 [36] 0

Polymer 3.86 [37] 0 [37] 0.7965 [37] 0
PZT-7A 131.4 [38] 9.522 [38] 0.372 [38] 0
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In Figure 3, the influence of the flexoelectricity in combination with an active polymer PVDF
which has piezoelectric properties on the effective characteristics is studied using three composites.
The first composite is made of the flexoelectric material BaTiO3 and the piezoelectric active polymer
PVDF; the second one is the composition of the flexoelectric composite SrTiO3 and PVDF; the materials
of the third composite are the piezoelectric constituents PZT-7A and PVDF (see Reference [38]). With
the values given in Table 2 and the methodology described in Section 3, the effective coefficients
for each composite are obtained. Figure 3 illustrates the behavior of the effective coefficients for
different volume fractions of the composites. The effective coefficient Ĉ continues increasing for
the three combinations of materials. In addition, as is shown in the figure, the influence of the
flexoelectric materials on the piezoelectric and the dielectric effective coefficients is remarkable. For
both BaTiO3-PVDF and SrTiO3-PVDF, the piezoelectric effective coefficient ê increases until V1 = 0.9
and V1 = 0.8, respectively, from which the property decays. On the other hand, for PZT-PVDF,
the piezoelectric effective tensor decreases for all values of V1. Similarly to Ĉ, the dielectric effective
coefficient κ̂ increases with the volume fraction for the three combinations of materials, although for
the composites formed by a flexoelectric material this property is greater than that of the PZT-PVDF
composite. The effective flexoelectric coefficient µ̂ varies only for the composites with a flexoelectric
component (either BaTiO3 or SrTiO3).
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Figure 3. Values of different effective coefficients for three composites: i) flexoelectric material BaTiO3

and the piezoelectric active polyvinylidene fluoride (PVDF) polymer; ii) composition of the flexoelectric
composite SrTiO3 and PVDF; and iii) the piezoelectric constituents PZT-7A and PVDF vs. values of
volume fraction.

To study the influence of non-flexoelectric and non-piezoelectric constituents in the effective
properties for composites with a flexoelectric component, three structures are studied. One of the
structures is the combination of the flexoelectric materials BaTiO3 and SrTiO3; the constituents for the
second structure are SrTiO3 and a non-piezoelectric polymer; the last structure is made of strontium
titanate (SrTiO3) and a piezoelectric material PZT-7A. In Figure 4, the effective properties of these three
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composites for different volume fractions are shown. An important detail to highlight is that for all
the effective properties in Figure 4, the values of the effective coefficients of the SrTiO3-polymer are
lower than the values of the effective coefficients of the other two combinations. The non-piezoelectric
polymer properties diminish the values of the composite effective coefficients, compared with the other
composites. On the other hand, the combination of the two flexoelectric materials reinforce the values
of Ĉ, ê, κ̂, and µ̂, compared with the composite made of the non-piezoelectric polymer. It is shown in
Figure 4 that the effective piezoelectric property ê is almost zero for the combination of SrTiO3 with
a non-piezoelectric polymer. A similar situation is shown for the flexoelectric parameter, i.e., ê remains
close to zero for the composites that involve a non-flexoelectric component (either SrTiO3-polymer
or SrTiO3-PZT). Therefore, it can be concluded that for composites made of flexoelectric material
with non-flexoelectric material, the global behavior of the effective coefficients of the structure is
similar to a non-flexoelectric material. A parallel situation occurs when considering the composition of
a piezoelectric with a non-piezoelectric structure as it is illustrated in Figure 4. Hence, for composites
made of a piezoelectric material with a non-piezoelectric material the global behavior of the effective
coefficients of the structure is similar to a non-piezoelectric material.
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Figure 4. Values of different effective coefficient of three composites made of the combination of
two flexoelectric material SrTiO3-BaTiO3, a non-piezoelectric polymer with SrTiO3, and piezoelectric
PZT-7A with a flexoelectric material SrTiO3 vs. values of volume fraction.

The dependence of the effective coefficients Ĉ, ê, and κ̂ on the local functions dN1
dy , dΨ1

dy , dΘ1
dy , dΠ1

dy is
shown in Equations (43)–(45). From Equations (21), (22), the Appendix Equations (A1), (A3), and the
solutions of the systems (30), (A5), the non-influence of the µ parameter in the local functions is derived.
Therefore, the effective coefficients Ĉ, ê, and κ̂ are not affected by the flexoelectric component in the
case of non-flexoelectric materials. From the homogenized problem (47)–(50), it can be followed that
the influence of the effective flexoelectric component in the effective stress and electric displacement
cannot be underestimated.

The investigation of the flexoelectric effect goes beyond the theoretical analysis of the materials
properties to include real measurements [43]. Recent papers have established detailed descriptions of
their experiments to determine the flexoelectric properties of PVDF. More precisely, References [44]
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and [45] describe experiments to find the effective flexoelectric components µ1123 and µ2312 of the
fourth order tensor µijkl for polyvinylidene fluoride. On account of the great difficulty in obtaining
some experimental measurements, the relationship between the strain gradient and torque is deduced
theoretically and further verified with finite element analysis. The approach is applied to test responses
in bars machined from bulk polyvinylidene fluoride [45]. On the other hand, in Reference [46],
the flexoelectricity of prototypical semicrystalline polymer, α-phase PVDF, films are investigated.
The paper presents a step-by-step description of the experiment highlighting the direct flexoelectric
effect in the α-phase PVDF films.

4.4. Solution of the Heterogeneous and Homogenized Problems

In this section, the homogenized problem (47)–(50) is solved for a flexoelectric one-dimensional
structure. In order to compare the approximation between the solution of the heterogeneous problem
and the homogenized problem, the finite element method is used. Consider Ω a two-element structure
made of barium titanate (BaTiO3) and strontium titanate (SrTiO3) periodically distributed along Ω.
In order to illustrate the example, the prescribed conditions for the heterogeneous (5)–(8) and the
homogeneous (47)–(50) problems are given as follows: u0 = 1, w0 = 1, ϕ0 = 0, S1 = 0, r1 = 0, and
τ1 = 0. Two different volume fractions for BaTiO3 are considered V1 = 0.5, case 1, and V1 = 0.8,
case 2. The external forces are taken as f (x) = e−x for case 1 and f (x) = sin(x) for case 2. The body
charge density ρ is considered identically zero along Ω. The values of the effective coefficients of the
homogenized problem are computed using the methodology described in Section 3 and are shown in
Table 3.

In Figure 5, a comparison of the stress obtained from the solution of the heterogeneous
problem (5)–(8) and the homogeneous equivalent problem (47)–(50) for ε = 1/5 is shown. As a result
of the continuity of the coefficients of the homogeneous problem, the stress function has a smooth
behavior along Ω. On the other hand, the discontinuity of the coefficients in the heterogeneous problem
leads to the obstacles in the solution, see Reference [47].
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Figure 5. Values of the stress function σ, solutions of the heterogeneous (5)–(8) and
homogeneous (47)–(50) problems for different external forces functions: f (x) = e−x and f (x) = sin(x).
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Table 3. Coefficients of the homogenized flexoelectric composite made of barium titanate (BaTiO3) and
strontium titanate (SrTiO3) for V1 = 0.5 and V1 = 0.8.

Materials Ĉ (109 N/m2) ê (C/m2) κ̂ (10−10 F/m) µ̂ (10−4C/m)

V1 = 0.5 221.8664 6.8629 560.04 1.6667
V1 = 0.8 181.8374 8.0288 1158.11 2.7778

5. Conclusions

In this manuscript, the equilibrium equation for a flexoelectric composite has been studied.
The two-scales asymptotic homogenization method is used to find the homogenized problem
formulation. The work presents the expressions of the effective coefficients for the case of a flexoelectric
structure. The local problems are derived along with their corresponding variational formulations.
The manuscript offers a detailed description to solve the local problems for one-dimensional structures.
The effective coefficients reported in References [19,30] for piezoelectric composite are computed here as
particular cases of both the present model (Section 3) and the finite element method. The methodology
is used to find the effective properties of random structures. The results illustrate the convergence
of the effective coefficients for random structures to the case of a composite with ideal periodicity.
In addition, the influence of the flexoelectric parameter on the global behavior of composites has
been studied. The effective properties of three bi-materials (composites) made of combinations of
BaTiO3, SrTiO3, PVDF, a soft non-piezoelectric polymer, and PZT-7A were obtained. The influence
of the flexoelectric parameter (µ) on the effective stress and electric displacement was shown. As an
example, a comparison between the solutions of the heterogeneous and homogeneous problem for
a flexoelectric structure is presented. A good approximation between the solutions can be appreciated
when ε is zero. The results presented in this manuscript can be extended to more complex structures
with wavy behavior and three-dimensional composites.
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The following abbreviations are used in this manuscript:

BaTiO3 Barium titane
SrTiO3 Strontium titanate
PVDF Polyvinylidene fluoride
PZT Lead zirconate titanate
AHM two-scales Asymptotic Homogenization method
FEM Finite Element method

Appendix A. Solutions of the (PR) System

The solutions of the (PR) system (17)–(20) are

dΠ1

dy
=

k
∆

λ5 −
e
∆

λ7, (A1)
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d2Π2

dy2 = −2k
∆

λ5 +
2e
∆

λ7 +
1
µ

λ8, (A2)

dΘ1

dy
=

e
∆

λ5 +
C
∆

λ7 − 1, (A3)

d2Θ1

dy2 = −2e
∆

λ5 −
2C
∆

λ7 +
1
µ

λ6 + 1, (A4)

where ∆ = e2 + Cκ and λi for i = 5, 6, 7, 8, satisfy the following system of equations
〈κ/∆〉 0 −〈e/∆〉 0
−2〈κ/∆〉 0 2〈e/∆〉 〈1/µ〉
〈e/∆〉 0 〈C/∆〉 0
−2〈e/∆〉 〈1/µ〉 −2〈C/∆〉 0




λ5

λ6

λ7

λ8

 =


0
0
1
−1

 . (A5)
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