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Abstract: Detection of formaldehyde is very important in terms of life protection, as it can cause
serious injury to eyes, skin, mouth and gastrointestinal function if indirectly inhaled. Researchers are
therefore putting effort into developing novel and sensitive devices. In this work, we have fabricated
an electro-chemical sensor in the form of a field effect transistor (FET) to detect formaldehyde over a
wide range (10 nM to 1 mM). For this, ZnO nanosheets (NS) were first synthesized by hydrothermal
method with in-situ deposition on cleaned SiO2/Si (100) substrate. The synthesized materials were
characterized for morphology and purity and surface area (31.718 m2/g). The developed device
was tested for formaldehyde detection at room temperature that resulted in a linear (96%) and
reproducible response with concentration, sensitivity value of 0.27 mA/M/cm2 with an error of ±2%
and limit of detection (LOD) as 210 nM.
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1. Introduction

Among the metal oxides, ZnO [1–8], SnO2 [9–11], TiO2 [12,13], Fe2O3 [14,15] and WO3 [16,17] are
attractive materials due to their unique properties such as high electron mobility, fast electron transfer
rate, material stability and so forth. One of them, ZnO has been widely used in many optoelectronic and
sensing devices owing to its optical/electrical properties. Zinc oxide nanomaterial-based electrodes
also exhibit excellent electrochemical activity against chemicals, biomolecules and gases due to their
high electron transfer characteristics and photochemical stability.

Detection of formaldehyde is very important in terms of life protection, as it can cause serious
injury to eyes, skin, mouth and gastrointestinal function if indirectly inhaled [18–22].

Xing et al. used convenient solution combustion method for the synthesis of Ag-loaded ZnO
and reported as hierarchically porous heterojunction nanocomposites and varied the Ag contents
and used it for the detection of formaldehyde in gaseous form at 240 ◦C [23]. Wei et al. synthesized
hollow nanofibers of SnO2-ZnO, for formaldehyde detection sensing properties and reported optimum
performance at 260 ◦C down to 0.1 ppm with good selectivity and stability, rapid response-recovery
time and high sensitivity [24]. In another report, Chen et al. used pure ZnO and graphene doped
ZnO with different morphologies synthesized by hydrothermal process at 150 ◦C for formaldehyde
gas sensing performance, in the range of 2 to 2000 ppm and delivered good selectivity and fast
response/recovery time and at 200 ◦C [25]. Shi et al. used ZnO architectures in a three dimensional
(3D) center-hollow form and studied to photoelectric gas-sensing that exhibited good selectivity to
formaldehyde and excellent sensitivity at 365 nm light irradiation by conducting the measurement at
room temperature [26]. Chung et al. published a review on formaldehyde gas sensing with sufficient
literature survey and mentions that many methods based on spectrophotometric, fluorometric,
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piezoresistive, amperometric or conductive measurements have been proposed for detecting the
concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are
bulky and expensive and require the services of highly-trained operators [27]. This has inspired us to
explore the possibility of an electrochemical detection of formaldehyde in the form of a FET device
that can deliver better performance at room temperature.

Mei et al. have detected formaldehyde in liquid form using a Fe/Pt modified glassy carbon
electrode (GCE) showing a linear response in the range of 12.5 µM to 15.4 mM with a detection limit of
3.75 µM and a sensitivity of 40.18 µA mM−1cm−2 which was improved as compared to a Pt modified
glassy carbon electrode without Fe [28]. D. Trivedi J and co-workers detected formaldehyde using Ni
modified carbon electrode having linear response in the concentration range of 1 × 10−5–1 × 10−3 M
with a sensitivity of 22.7 ± 3.8 µA/mM having limit of detection (LOD) of 6 µM [29]. Similarly,
Nachaki and colleagues have prepared Ni-Pd modified GCE for electrochemical detection of aqueous
formaldehyde, which exhibits a linear range between 10 mM to 1 mM with a sensitivity of 17 mA cm−2

and a detection limit of 5.4 mM [30].
In this work, we synthesized zinc oxide nanostructures using a simple hydrothermal method

and fabricated a chemical sensor that detects formaldehyde. For sensor fabrication, synthesized
nanostructures were deposited on a Si/SiO2 substrate using chemical bath deposition (CBD) that
resulted into a uniformly aligned nanosheet electrodes. The electrochemical sensor was fabricated
in the form of a FET device and the electrochemical characteristics were determined with various
concentrations of formaldehyde (10 Nm–1 mM in 0.1 M) in phosphate buffer (PBS) to determine the
sensing properties.

2. Experimental Details

2.1. ZnO NS Synthesis

In this work, ZnO NS was synthesized by hydrothermal synthesis using zinc nitrate hexahydrate
(Zn(NO3)2·6H2O, ≥99.0%, Sigma Aldrich, St. Louis, MO, USA) and Urea (NH2CONH2, ≥99%, Sigma
Aldrich, St. Louis, MO, USA). In a typical reaction, 0.02 M zinc nitrate hexahydrate and ~16.67% urea
was dissolved in 100 mL of distilled water and stirred well for 30 min. This solution was used for
synthesis of ZnO which was loaded in the Teflon coated vessel of hydrothermal reactor. In order to
deposit films of ZnO during hydrothermal synthesis, the pre-coated Si/SiO2 substrate were dipped in
the solution and vessel was sealed [31].

Before loading the substrate into the hydrothermal reactor, cleaned substrates were coated with
a thin layer of silver through thermal evaporator that can be used as one of the electrodes of FET.
The hydrothermal reaction was then carried out at 80 ◦C for 5 h. After cooling the reactor to room
temperature, the substrates were removed and thoroughly washed with distilled water, ethanol and
acetone to remove impurities and unreacted reactants. The substrate on which ZnO NS was deposited
was dried in an oven at 60 ◦C for 12 h and then sintered at 200 ◦C for 2 h.

2.2. Material Characterization

The synthesized ZnO NS were characterized for morphology by Field Emission Scanning Electron
Microscopy (FESEM, Hitachi S-4700, Tokyo, Japan) and Transmission Electron Microscopy (TEM,
JEM-ARM200F, JEOL, Tokyo, Japan). Elemental analysis was done by Energy Dispersive Spectroscopy
(EDS, Hitachi, Tokyo, Japan), X-ray diffractometer (XRD, Ultima IV, Rigaku, Tokyo, Japan) and Fourier
Transform Infrared Spectroscopy (FTIR, Nicolet, IR 300, ThermoFisher, Waltham, MA, USA), other
than the analysis of the crystallinity and component properties. The optical properties were studied
by obtaining Ultraviolet-visible spectra (UV-vis, JASCO, V-670, Easton, MD, USA). Specific surface
area analysis was performed to investigate the specific surface area of nanostructures using the
Brunauer-Emmett-Teller (BET) Technique (Micromeritics, ASAP 2010, Norcross, GA).
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2.3. ZnO NS FET Sensor Fabrication and Detection of Formaldehyde

For the fabrication of ZnO NS FET-sensor, p-type Si wafer with (100) orientation was cleaned
by acetone, ethanol and DI water, followed by drying with nitrogen (N2) gas. For source and drain
electrode, silver (Ag) was deposited to a thickness of ∼100–150 nm by thermal evaporation mounted
with a thickness monitor. The ZnO NS layer was deposited using CBD method for 5 h at 80 ◦C and
annealed at 200 ◦C for 2 h, with an expected thickness of about 20–30 µm. Zn NS was applied as
channeling materials in between source and drain of the FET. In last step, the deposited Zn NS over
Au-Si/SiO2 based FET was used for the detection of formaldehyde using the reported method [28].

For electrochemical detection experiments to be performed, various concentrations of
formaldehyde was prepared in the range of 10 nM–1 mM in phosphate buffer solution (PBS, 0.1 M)
with Ag/AgCl electrode as a counter electrode. The gate voltage (VG) was varied from 0 to 2 V and
the resulting drain current (ID) value was recorded. The sensitivity was then calculated through the
drain current value. The wiring diagram with electrode configuration of measurement setup is shown
as Figure 1.
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Figure 1. Electrode configuration and wiring diagram of the measurement setup.

3. Result and Discussion

FE-SEM was used to analyze surface morphology and size of ZnO NS, which also gave an idea
about the uniform coating of ZnO film. The micrographs in Figure 2 indicates that the ZnO NS
are of sheet like structure and uniformly deposited on the substrate (Figure 2a,b, low magnification
images). The thickness estimated from the image is 6 to 8 µm. The insets show the larger area view
where the uniform layer and thickness is seen. Figure 2c shows the high resolution image and the
element mapping (inset) obtained with EDS to investigate the composition of ZnO NS, where Zn and
O elements are seen uniformly distributed and no other impurities/elements are noticed. The ZnO NS
was also observed by using transmission electron microscope (TEM), high resolution transmission
electron microscope (HR-TEM) and selected area diffraction pattern (SAED). Low- magnification TEM
image of a ZnO NS (Figure 2d) shows that a uniform lattice without any disorders indicating pure
material quality. Further, high-resolution TEM, SAED and Fast Fourier Transform (FFT) was used
to confirm the lattice characteristics, which shows that the lattice grew at 0.27 nm intervals on the
(011) plane.

To investigate the specific surface area of hydrothermally synthesized ZnO NS, a specific surface
area analysis was carried out, that was measured by using physical adsorption and chemical adsorption
of nitrogen gas which showed a specific surface area of 31.718 m2/g, which is fairly large specific surface
area as compared with zinc oxide of other nanostructures [32,33]. It is well know that nanostructures
with larger specific surface area would have greater sensitivity owing to large surface area available
for interaction/adsorption [34].
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Figure 2. Field Emission Scanning Electron Microscopy (FESEM) image (a) cross section image (b),
energy dispersive spectroscopy (EDS) mapping image (c) and transmission electron microscope (TEM)
image (d) (inner HR TEM and selected area diffraction (SAED) pattern) of ZnO NS.

Table 1 shows specific surface area analysis of ZnO by Brunauer-Emmett-Teller (BET).
The prepared sample (ZnO NSs) has the largest area value (31.718 m2/g) due to related large
pore diameter.

Table 1. Specific surface area analysis of ZnO.

Sample BET Surface
Area (m2/g)

Average Pore
Diameter (nm) Reference

ZnO particle 2.3485 8.96 [32]
ZnO microflower 10.47 18.62 [33]

ZnO NSs 31.718 33.982 (present)

Fourier transform infrared spectroscopic spectrum (FTIR, Figure 3a) shows a strong IR band
at 557 cm−1, indicating the bonding of Zn–O, which is a metal oxide. It corresponds to the
scissile vibration of water molecules and the stretching mode of O–H at 1633 cm−1 and 3452 cm−1,
respectively [35]. The FTIR results showed that the synthesized material is of high purity analogous to
the HRTEM results.

Phase and crystallinity of ZnO NS was confirmed by obtaining an X-ray diffraction pattern (XRD,
Rigaku, CuKa, λ = 1.54178 Å) which is shown in Figure 3b. The diffraction peaks are observed at
the Bragg angle of 31.73◦ (010), 34.329◦ (002), 36.19◦ (011), 47.44◦ (012), 56.52◦ (110), 62.70◦ (013),
66.28◦ (020), 67.382◦ (112), 68.98◦ (021), 72.35◦ (004) and 76.82◦ (014). Our ZnO Wurzite structure data
agrees well with the Joint Committee on Powder Diffraction Standard (JCPDS) card no JCPDS PDF
no 36-1451 [36]. Diffraction peaks other than the main peak of ZnO were not detected, which again
confirmed a pure ZnO. It was found that the synthesized ZnO NS had a good crystallinity and mainly
a (011) plane orientation. Figure 3c shows the absorbance spectra of the synthesized material acquired
ultraviolet spectroscopy (UV-vis). It is seen that the peak absorption is at 362 nm. The optical band
gap, as calculated from the absorption spectrum, is ~3.4 eV, which is the known optical band gap of
the ZnO nanomaterial. Figure 3d shows the Photo Luminescence spectrum of ZnO NS obtained at
room temperature, where the absorption peak is observed at 371 nm.
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Sensing Characteristics

A field effect transistor (FET) device was fabricated to develop and electrochemical sensing device
for formaldehyde using ZnO NS as channel material (1 cm2) for drain and source and silver a gate
electrode. The electrode configuration used for sensing is shown in Figure 4a. The gate voltage
(VG) was varied from 0 to 2V and the resulting drain current (ID) value was recorded. The device
parameters such sensitivity, minimum detection limit and regression coefficient were then calculated
through the drain current value. A typical drain current (VSG–ID) curve as a function of gate voltage
with and without formaldehyde is show in Figure 4b which shows a remarkable difference in the
current response as magnitude of current without the formaldehyde is low, while the current observed
after addition of the formaldehyde (10 nM) is higher. The data clearly shows the potential sensing
characteristic of the synthesized material. Inspired with this observation, the I–V curve were then
obtained with varying concentrations of formaldehyde (10 nM, 100 nM, 1µM, 10 µM, 100 µM and
1 mM in 0.1 M PBS) which are shown in Figure 4c. It can be seen that the current increases with the
increasing concentration amount due to increased electron movement resulting out of the reduction
of ZnO NS with formaldehyde. At the same time the current values of each curve have changed
with concentration that can be used a measure of the indirect sensitivity value of the device for
formaldehyde detection. For each concentration of formaldehyde, three sets of measurement were
made to find the variation in the response and found that sensor was able to reproduce the result
within ±2%, as shown in the Figure 4d. To estimate the sensitivity, the drain current value at the gate
voltage of 1.5V was plotted with concentration, which is shown as Figure 4d. The slope of the curve is
taken as the sensitivity per unit area of the deposited gate electrode. This curve was used to determine
the sensitivity which is estimated as ~0.27 mA/M/cm2. It can be seen that the developed device is able
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to deliver a linear response to formaldehyde concentration to an extent of 96% (regression coefficient).
The limit of detection value was calculated using Equation (1) and found as is 210 nM.

LOD =
3.3 × standard deviation of the regression

slope
(1)
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As it is observed from the sensing studies that the sensor is able to produce a detectable change in
current with formaldehyde concentration that can be translated into a calibration curve (Figure 4d).
In case of the proposed metal oxide based sensor, we believe that the physical adsorption phenomenon
dominates the sensing mechanism. The reason for increased current with formaldehyde concentration
is expected to be due to release of an electron from surface of ZnO due to reaction with pre-adsorbed
oxygen creating an oxygen species on application of gate voltage. With increasing concentration,
the amount of electron release increases resulting in increased current as observed in Figure 4c.
The sensing mechanism is shown schematically in Figure 5.

The performance of the developed device is compared with the reported sensors, some of which
are listed in Table 2, which clearly shows that the developed sensors has better sensitivity values
and lower detection limit, indicating the superiority of the developed sensor device compared to the
reported aqueous/gas mode detection.
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Table 2. Comparison of formaldehyde sensing responses of various electrodes.

Sample Sensitivity (mA mM−1 cm−2) Limit of Detection Reference

Fe/Pt/glassy carbon electrode 40.18 × 10−3 3.75 µM [28] aqueous
Ni/glassy carbon electrode 22.7 ± 3.8 × 10−3 6 µM [29] aqueous

Ni–Pd/GCE 17 5.4 mM [30] aqueous
ZnO nanotubular 21.7 × 10−4 1 µM [37]

ZnO nanoballs 4.72 × 10−2 500 µM [38]
ZnO nanorods 105.5 × 10−4 5 nM [39]

lotus-leaf-like ZnO 139.8 × 10−4 260 µM [40]
ZnO NSs 2.7 × 10−4 210 nM (present) aqueous

4. Conclusions

Zinc oxide nanosheet like structure was directly grown on pre-cleaned Si (100) substrate by
hydrothermal synthesis at 80 ◦C. The synthesized materials structure was confirmed with FESEM and
TEM observations while purity was confirmed with FTIR and HRTEM. With nanosheet like structure,
we were able to get a specific surface area of ~31.718 m2/g that delivered reproducible response good
sensitivity for formaldehyde in the form of a FET device at room temperature. The detection sensitivity
of the formaldehyde is found as 0.27 mA/M/cm2 with an error of ±2% and the device is offering a
detection limit up to 210 nM which is a fairly low value as comparted to reported value, indicating the
possibility of using the developed FET as a commercial detection device.
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