
materials

Article

Predictive Modeling of Machining Temperatures
with Force–Temperature Correlation Using Cutting
Mechanics and Constitutive Relation

Jinqiang Ning * and Steven Y. Liang *

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive,
Atlanta, GA 30332-0405, USA
* Correspondence: jinqiangning@gatech.edu (J.N.); steven.liang@me.gatech.edu (S.L.)

Received: 12 December 2018; Accepted: 11 January 2019; Published: 16 January 2019
����������
�������

Abstract: Elevated temperature in the machining process is detrimental to cutting tools—a result
of the effect of thermal softening and material diffusion. Material diffusion also deteriorates the
quality of the machined part. Measuring or predicting machining temperatures is important for the
optimization of the machining process, but experimental temperature measurement is difficult and
inconvenient because of the complex contact phenomena between tools and workpieces, and because
of restricted accessibility during the machining process. This paper presents an original analytical
model for fast prediction of machining temperatures at two deformation zones in orthogonal cutting,
namely the primary shear zone and the tool–chip interface. Temperatures were predicted based
on a correlation between force and temperature using the mechanics of the cutting process and
material constitutive relation. Minimization of the differences between calculated material flow
stresses using a mechanics model and a constitutive model yielded an estimate of machining
temperatures. Experimental forces, cutting condition parameters, and constitutive model constants
were inputs, while machining forces were easily measurable by a piezoelectric dynamometer.
Machining temperatures of AISI 1045 steel were predicted under various cutting conditions to
demonstrate the predictive capability of each presented model. Close agreements were observed
by verifying them against documented values in the literature. The influence of model inputs and
computational efficiency were further investigated. The presented model has high computational
efficiency that allows real-time prediction and low experimental complexity, considering the easily
measurable input variables.

Keywords: machining temperatures at two deformation zones; force–temperature correlation
through analytical modeling; high computational efficiency; real-time prediction

1. Introduction

Machining is one of the most widely used manufacturing processes because of its fast speed and
applicability to a broad class of materials. Karpat et al. studied the machining process of steel and
aluminum alloys [1]. Danish et al. studied the machining process of magnesium alloy under dry
and cryogenic cutting conditions [2]. Ning et al. studied the machining process of ultra-fine-grained
titanium [3]. Machining temperature has a significant influence on tool performance and the quality
of a machining part as a result of the softening effect and diffusion. Coolant [4], laser power [5],
and magnetic flux [6] have been utilized to effectively control temperature in the machining process.
The capabilities of temperature measurement and prediction are critical for optimizing the machining
process. Predicted temperatures can be utilized to further explore machining forces, tool wear, material
diffusion, etc.

Materials 2019, 12, 284; doi:10.3390/ma12020284 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-2598-650X
http://www.mdpi.com/1996-1944/12/2/284?type=check_update&version=1
http://dx.doi.org/10.3390/ma12020284
http://www.mdpi.com/journal/materials


Materials 2019, 12, 284 2 of 14

Different experimental methods have been used to measure machining temperatures. Embedded
thermocouples [7], tool–work thermocouples [8], infrared photography and pyrometers [9],
a metallographic technique based on microstructure and hardness [10], and a metallographic technique
using powders with known melting temperature [11] have been utilized in the past to measure
machining temperatures. Unfortunately, experimental measurement is difficult and inconvenient to
record due to the complex contact phenomena between cutting tools and workpieces, and because of
restricted accessibility during the machining process [12].

Numerical methods using finite element (FE) analysis and analytical methods were developed to
predict temperatures, and numerical methods using FE models have made considerable progress in
their ability to predict machining processes, including machining forces, temperatures, residual stress,
and chip morphology. Umbrello et al. developed an FE model to predict conventional high-speed
machining processes [13]. Liu et al. developed another FE model to predict sequential machining
processes [14]. Yen et al. investigated the influence of tool geometry on machining prediction using an
FE model to optimize tool edge design [15]. Özel et al. investigated the influence of tool coating on
machining prediction using an FE model to demonstrate the advantages of coated tool design [16].
Umbrello et al. demonstrated that machining prediction using an FE model was very sensitive to
the materials constitutive model constants [17]. Arrazola et al. demonstrated that consideration of
the friction coefficient at the tool–chip-work interface results in improved accuracy of machining
prediction using an FE model [18]. Unfortunately, the high computational cost and low computational
efficiency of numerical methods have been major limitations preventing real-time prediction and
optimization with process-parameter planning.

To overcome these limitations, analytical methods were developed that could predict machining
processes with comparable accuracy along with considerably high computational efficiency [19,20].
The chip formation model was modified primarily to predict machining forces in orthogonal cutting,
in which the Johnson–Cook constitutive model (J–C model) is employed to calculate material flow stress.
Temperatures in the J–C model, specifically at the primary shear zone (PSZ) and tool–chip interface
(alternatively named secondary shear zone or SSZ), are calculated using heat partition equations
as intermediate variables for force prediction [21]. Temperatures at the PSZ can also be explicitly
determined by observing the energy balance between plastic works caused by shear deformation and
generated heat [22]. Komanduri et al. developed a temperature model that used two heat sources
at the PSZ and SSZ to predict temperature distribution at the chip formation zone [23]. The heat
source caused by shear deformation at the PSZ was observed using a moving heat source solution
with boundary conditions defined by appropriate image sources. The heat source caused by the
friction between the tool and chip at the SSZ was observed by comparing the equivalence between
two heat source solutions, namely a moving heat source in the chip and a stationary heat source in the
tool. This model was further developed by considering the thermal properties of tools and tool-wear
under oblique cutting conditions [24,25]. Improved prediction accuracy was reported after results
were validated against experimental measurements. Shalaby et al. developed a temperature model to
predict machining temperatures by considering shear deformation and friction at two precision-turning
deformations zones [26]. However, these developed analytical models need temperature-dependent
material properties of the workpiece that must be obtained from extensive material property tests,
which are inconvenient. The shear angle and strain rate constants in the chip formation model are
determined iteratively with complex mathematical calculations, which limits optimal computational
efficiency, and thus restricts real-time temperature prediction.

In this work, the machining temperatures at two deformation zones were predicted by an original
temperature model using the correlation between machining forces and temperatures. Machining
forces can be easily and reliably measured using a piezoelectric dynamometer as reported in the
literature [27]. The temperatures were correlated to forces using a constitutive model and a mechanics
model with stress calculations at the PSZ and SSZ, respectively. AISI 1045 steel was chosen to test
the presented models under various cutting conditions. The predicted temperatures were validated



Materials 2019, 12, 284 3 of 14

against documented values in the literature [21,28]. For comparison, the analytical model reported in
the previous work used the chip-thickness and constant-material-flow-rate assumption that prevents
real-time temperature prediction and optimized prediction accuracy [29]. More details of the previous
model and its predictive capability can be found in reference [30]. The experimental techniques and
developed models used to investigate the machining process are summarized in Table 1. In addition,
sensitivity analyses were conducted to investigate the influence of input forces and J–C model constants
on prediction accuracy.

Table 1. Summary of experimental and modeling methods in the investigation of the machining process.

Methods Experimental Techniques Numerical Methods Analytical Methods

Embedded thermocouple [7],
tool–work thermocouple [8],

infrared technique [9],
graphic techniques [10,11]

FEA for machining forces,
temperature distribution,
residual stress, and chip

morphology [13,14]

Chip formation model [21],
Komanduri’s model [23],

Shalaby’s model [26],
Ning’s model [29]

Major advantage Sufficient accuracy for in-situ/
post-processing measurement Sufficient prediction capability High computational efficiency

Major disadvantage High experimental complexity High computational cost Complex input requirement;
high mathematical complexity

2. Methodology

Machining temperatures were predicted at the PSZ and SSZ in orthogonal cutting with machining
forces used as inputs. Machining temperatures and forces were correlated using the mechanics of the
cutting process and material constitutive relation. An orthogonal cutting configuration is illustrated as
in Figure 1, where Fc and Ft are the cutting force and thrust force, respectively, that can be measured
using a piezoelectric dynamometer. α,β, and φ are the tool–rake angle, friction angle, and shear angle,
respectively. Vc, Vs, and V are the chip velocity, shear velocity, and cutting velocity, respectively. w is
the cutting width that is not shown. Steady-state condition and plane-strain condition were enforced
in the temperature prediction.
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The stresses at two shear zones were calculated using the mechanics of the orthogonal cutting
process with the given cutting force and thrust force, (see the Appendix A, Table A1, Table A2).
The shear stresses at the PSZ (kAB) and SSZ (τint) can be expressed using a mechanics model as

kAB =
Fs

lABw
(1)

τint =
F

hw
(2)

where Fs and F can be calculated with determined by the rake angle (α), friction angle (β), shear angle
(φ), and experimental forces (Fc, Ft). lAB and h are the length of the PSZ and SSZ, respectively.

The friction angle (β) can be calculated from the force circle as

β− α = atan
(

Ft

Fc

)
(3)

The shear angle was determined by minimizing the cutting work according to the shear angle
solution presented by Ernst and Merchant [31]. The cutting work was proportional to the cutting force,
which can be expressed as

Fc = τ
wt1

sin φ

cos(β− α)

cos(φ + β− α)
(4)

where τ is the shear stress, w is the width of cutting, and t1 is the depth of cutting.
The shear angle (φ) can then be expressed by differentiating the above equation as

φ =
π

4
− β

2
+

α

2
(5)

The angle between shear force and resultant force (θ) can be calculated from the force circle as

θ = φ + β + α (6)

The lengths of the PSZ (lAB) and SSZ (h) can be expressed as

lAB =
t1

sinφ
(7)

h =
t1sinθ

cosλsinφ

(
1 +

C0neq

3
(
1 + 2

(
π
4 − φ

)
− C0neq

)) (8)

The stresses at the two shear zones can also be calculated using the constitutive relation.
The Johnson–Cook constitutive model (J–C model) was chosen for the calculation with consideration
of the strain hardening effect, the strain-rate hardening effect, and the thermal softening effect. The J–C
model can be expressed as

σ = (A + Bεn)

[
1 + C ln

( .
ε
.

ε0

)][
1−

(
T − Tr

Tm − Tr

)m]
(9)

where A, B, C, m, and n are five material constants that can be determined by various approaches
such as Split–Hopkinson Pressure Bar (SHPB) tests [32], numerical methods [33], and analytical
methods [34]. The analytical methods have less experimental complexity and high computational
efficiency compared to the experimental tests and numerical methods, respectively, as discussed in
the literature [35,36].
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The shear stresses at the PSZ
(
k′AB

)
and SSZ (kint) can be calculated using the J–C model with the

von Mises yield criterion as

k′AB =
σAB√

3
=

1√
3
(A + Bεn

AB)

(
1 + Cln

.
εAB

.
ε0

)(
1−

(
TAB − Tr

Tm − Tr

)m)
(10)

kint =
1√
3
(A + Bεn

int)

(
1 + C ln

.
εint

.
ε0

)(
1−

(
Tint − Tr

Tm − Tr

)m)
(11)

where strains and strain rates are calculated as

εAB =
γAB√

3
=

cosα

2
√

3sinφ cos(φ− α)
(12)

.
εAB =

.
γAB√

3
= C0

Vs√
3lAB

(13)

εint =
γint√

3
= 2εAB +

h
2
√

3δt2
(14)

.
εint =

.
γint√

3
=

Vc√
3δt2

(15)

The temperatures were determined by minimizing the difference between the stress calculated
using the mechanics model and the same stress calculated using the J–C model at each shear zone
as illustrated in Figure 2. Iterations with a defined temperature range, specifically a range between
room temperature (Tr) and material melting temperature (Tm), were used in the minimization for
temperature prediction. The cutting condition parameters, J–C model constants, and experimental
forces were given as the inputs, and the average temperatures at the PSZ and SSZ were calculated as
the outputs.

The machining temperature was predicted in the presented model using the correlation between
the forces and temperature with the given forces as inputs, permitting it less mathematical complexity
and thus higher computational efficiency compared to the chip formation model. The presented model
also had less experimental complexity because of the following: (1) Experimental forces were reliable
and easily measurable using a three-axial piezoelectric dynamometer. (2) Temperature-sensitive
material properties such as thermal conductivity and specific heat (which require extensive material
property tests to be obtained) were not needed in the presented model. In addition, the high
computational efficiency allowed real-time temperature prediction with real-time force data. However,
there were some limitations of the presented model: (1) The presented model only predicted the
average temperatures at the PSZ and SSZ. (2) Prediction accuracy relied on accurate model inputs,
such as forces and J–C model constants.

To further investigate the advantages and disadvantages of the presented model, machining
temperatures were predicted in the orthogonal cutting of AISI 1045 steel under various cutting
conditions. The following tasks were performed: (1) An investigation of prediction accuracy was
conducted by validating against documented values in the literature. (2) An investigation was
conducted into computational efficiency in terms of computational time. (3) An investigation was
conducted on the influence of input machining forces on prediction accuracy. (4) An investigation was
conducted on the influence of multiple sets of available J–C model constants on prediction accuracy.
(5) A discussion was carried out on the usefulness of the predicted temperature data and future works.
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3. Results and Discussion

In this work, machining temperatures were predicted in the orthogonal cutting of AISI 1045 steel
under various cutting conditions. The model inputs of cutting condition parameters and machining
forces were adopted from the literature [21,28] as presented in Table 2. The documented values in
tests 1–4 were calculated using an improved chip formation model, in which machining temperatures
were calculated with heat partition equations at two shear zones. The documented values in tests
5–8 were calculated using an extended chip formation model, in which machining temperatures were
calculated based on two heat sources at the PSZ and SSZ. The J–C model constants of AISI 1045 steel
were adopted from the literature [32], in which SHPB tests were conducted.

Table 2. Cutting condition parameters in the orthogonal machining of AISI 1045 steel (w = 2 mm,
α = −7◦, T0 = 25 ◦C) [21,28].

Test V (m/min) t1 (mm) FcR(N) FtR(N) TABR (◦C) TintR (◦C)

1 200 0.15 625.42 439.86 407.39 895.07
2 200 0.3 1077.7 637.19 383.1 992.44
3 300 0.15 574.55 364.74 393.31 947.81
4 300 0.3 1003.6 531.84 374.64 1049.8
5 200 0.15 576 500 385 942
6 200 0.3 1007 740 367 1042
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Table 2. Cont.

Test V (m/min) t1 (mm) FcR(N) FtR(N) TABR (◦C) TintR (◦C)

7 300 0.15 533 478 374 1017
8 300 0.3 1041 628 387 1025

Note: Temperature and force values in Tests 1–4 were adopted from the literature [28] using an improved chip
formation model, and Tests 6–8 were adopted from the literature [21] using an extended chip formation model.
Subscript R denotes documented values.

In the presented model, the temperature at the PSZ (TAB) was determined by minimizing the
difference between the stress (kAB) and the stress (k′AB), while the temperature at the SSZ (Tint) was
determined by minimizing the difference between the stress (τint) and the stress (kint). The predicted
temperatures were validated by the documented values in the literature as presented in Table 3.
The documented values were validated through force comparison against experimental measurements
using a three-axial piezoelectric dynamometer in orthogonal cutting tests [27] (the temperatures
are intermediate variables in calculating machining forces). Good agreements were observed upon
force validation. Other calculated variables of the shear angle and stresses are shown in Table 4.
The temperature prediction was carried out using a MATLAB program on a personal computer running
at 2.8 GHz. To investigate the computational efficiency, the computational time for each prediction
was recorded as shown in Table 3. The average computational time was 0.27 s, which allowed
real-time temperature prediction during the machining process and cutting-parameter planning with
a trial-and-error method.

Table 3. Temperature prediction and validation in the orthogonal machining of AISI 1045 steel.

Test TAB (◦C) Tint (◦C) TAB Deviation (%) Tint Deviation (%) t (s)

1 402.81 981.33 1.12 9.64 0.389
2 446.86 982.63 16.64 0.99 0.252
3 434.20 834.04 10.40 12.00 0.258
4 467.29 1089.66 24.73 3.80 0.243
5 424.04 1091.96 10.14 15.92 0.293
6 458.62 962.50 24.96 7.63 0.239
7 448.55 974.66 19.93 4.16 0.240
8 428.82 1094.65 10.81 6.79 0.242

Note: TAB and Tint denote the average temperatures at the PSZ and SSZ respectively.

Table 4. Calculated shear angle and stresses at the PSZ and SSZ.

Test φ (degs) kAB (MPa) k
′
AB (MPa) τint (MPa) kint (MPa)

1 27.44 541.25 541.37 455.90 455.90
2 29.70 496.39 496.50 400.62 400.62
3 28.80 512.32 512.43 358.80 358.80
4 31.04 480.25 480.39 330.97 330.97
5 28.85 528.96 529.10 397.45 397.45
6 31.05 490.90 491.01 361.49 361.49
7 30.23 505.30 505.42 311.87 311.86
8 31.08 478.63 478.75 296.56 296.56

Good agreements were observed between the predicted temperatures and documented values
as shown in Figure 3. The predicted temperatures at the PSZ and SSZ were generally larger than the
documented values because of the assumption of a perfectly sharp cutting edge in the chip formation
model; underestimated machining forces and temperatures were reported with this assumption in
the literature, which affected the literature’s predictions and experimental measurements [21,37].
The deviations between predicted temperatures and documented values might also have been affected
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by the deviation of input machining forces due to vibrations, which were frequently observed in
heavy-duty operations [38] and in machining difficult-to-cut materials [39]. A study of the influence of
input forces on the accuracy of temperature prediction is needed.
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To investigate the influence of input experimental forces on the predicted temperatures, the input
cutting force and thrust force were deliberately changed (separately) up to ±20% from their original
values under the test 1 cutting condition. The prediction error was calculated by comparing to the
documented values from the literature [28], as shown in Figure 4. For the temperature at the PSZ,
the prediction error using input forces was found at the global minima. For the temperature at the
SSZ, the prediction error using input forces was found near the local minima, with relatively larger
values. The temperature prediction at the PSZ was more sensitive than the temperature at the SSZ
in the orthogonal machining of AISI 1045 steel. The temperature deviations at the PSZ were much
larger than that at the SSZ with the same amount of input-force deviations. In addition, the predicted
temperatures at the PSZ were more sensitive to input-cutting-force deviations.
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Figure 4. Sensitivity analyses of (a) cutting force and (b) thrust force on the temperature prediction.

Multiple sets of J–C constants are available for AISI 1045 steel (shown in Table 5). They were
determined using different methods. To investigate the influence of J–C model constants on the
accuracy of temperature prediction, different sets of J–C constants were used for prediction as
shown in Table 5. The predicted temperatures were validated against documented values under
the test 7 cutting condition as illustrated in Figure 5. Acceptable agreements were observed upon
temperature validation.

Table 5. Johnson–Cook constitutive model constants of AISI 1045 steel (Tm = 1460 ◦C;
.

ε0 = 1 ).

Set Method A (MPa) B (MPa) C m n

1 SHPB [32] 553.1 600.8 0.0134 1 0.234
2 FEA [40] 546 487 0.03 0.672 0.25
3 Analytical Modeling [41] 451.6 819.5 0.0000009 1.0955 0.1736
4 PSO [42] 646.19 517.7 0.0102 0.94054 0.24597
5 PSO-c [42] 731.63 518.7 0.00571 0.94054 0.3241
6 CPSO [42] 546.83 609.35 0.01376 0.94053 0.2127

Note: SHPB: Split–Hopkinson pressure bar; PSO: particle swarm optimization algorithm; CPSO: corporative particle
swarm optimization algorithm.
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(a) the primary shear zone; and (b) the secondary shear zone. The predicted temperatures under sets
1–6 were predicted using adopted J–C constants that were determined using different methodologies.
The temperatures under sets 7 and 8 were adopted from the literature [21,28].

The predicted temperatures at the PSZ and SSZ are sufficient for the further investigation of
machining forces [1], tool wear [43], and material diffusion [44], as reported in the literature. High
computational efficiency allows process-parameter planning with a trial-and-error calculation to
determine the desired temperature conditions. AISI 1045 steel was chosen for this study because of
the ready availability of machining data and J–C model constants. Other metal materials should be
investigated to extend the applicability of the presented model in future works.

4. Conclusions

This work presents an original analytical model for temperature prediction in the machining
process. Machining temperatures and forces were correlated with the mechanics of the cutting
process and constitutive relation. The stresses at two shear zones were calculated with the input
cutting force and thrust force using a mechanics model. The same stresses were also calculated
with unknown temperatures using the J–C model. The minimization between calculated stresses
yielded an estimation of unknown temperatures at the PSZ and SSZ. Good agreements were observed
based upon validation against the documented temperatures in the literature. The presented model
improved an understanding of the force–temperature relationship in the machining process using
mathematical calculation. The influence of input-force deviations and J–C model constants on the
accuracy of temperature prediction was investigated with sensitivity analyses. Temperature prediction
at the PSZ was more susceptible to input-force deviations than temperature prediction at the SSZ.
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Acceptable predicted accuracy was achieved with multiple sets of available J–C constants. In addition,
the average computational time for temperature prediction using the presented model was about
0.27 s, which allowed for real-time temperature prediction and process-parameter planning using
trial-and-error calculations. Having achieved a high level of prediction accuracy, high computational
efficiency, and low experimental complexity, this presented temperature model can be employed in
the future for investigating temperature in the machining process. The applicability of the presented
temperature model can further be used for prediction in machining different metals.
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provided general guidance.

Funding: No funding was received for this work.
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Nomenclature

PSZ = primary shear zone (with subscript AB)
SSZ = secondary shear zone or tool–chip interface (with subscript int)
A; B; C; m; n = yield strength; strength coefficient; strain rate coefficient; thermal softening coefficient; and
strain hardening coefficient in the J–C model
Tm; Tr; T = melting temperature; room temperature; temperature
V; Vc; Vs = cutting velocity; chip velocity; shear velocity
α; φ; λ; θ = rake angle; shear angle; friction angle at the SSZ; angle between resultant force R and the PSZ
w; t1; t2 = width of cut; depth of cut; and chip thickness
lAB; h = length of the PSZ; the length of the SSZ (tool–chip contact length)
εAB;

.
εAB; εint;

.
εint = strains and strain rates at the PSZ and SSZ

C0 = Oxley constants (ratio of the shear plane length to the thickness of the PSZ)
δ = strain rate constant (ratio of the thickness of the SSZ to chip thickness)
neq = strain hardening constant
kAB = calculated shear stress at the PSZ using the J–C model
k′AB = calculated shear stress at the PSZ using a mechanics model
kint = calculated shear stress at the SSZ using the J–C model
τint = calculated shear stress at the SSZ using a mechanics model
σN = calculated normal stress at the SSZ using a mechanics model
σ′N = calculated normal stress at the SSZ using the J–C model
Fc = cutting force
Ft = thrust force
Fs = shear force at the PSZ
Ns = normal force at the PSZ
F = shear force at the SSZ
N = normal force at the SSZ
R = resultant force

Appendix A

Table A1. Variables in sensitivity analysis of cutting force under test 1 cutting condition.

Fc Variation (%) TAB (◦C) Tint (◦C) kAB (MPa) k
′
AB (MPa) τint (MPa) kint (MPa)

20 54.00 668.30 716.74 716.85 496.92 496.92
15 142.80 708.86 672.02 672.14 489.05 489.05
10 230.80 703.98 627.83 627.96 477.84 477.84
5 317.40 760.19 584.22 584.37 467.56 467.56
−5 402.81 981.33 541.25 541.37 455.90 455.90
−10 486.92 782.91 498.98 499.12 440.89 440.89
−15 569.44 983.53 457.50 457.64 424.49 424.49
−20 650.07 859.45 416.88 417.02 408.30 408.30
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Table A2. Variables in sensitivity analysis of thrust force under test 1 cutting condition.

Ft Variation (%) TAB (◦C) Tint (◦C) kAB (MPa) k
′
AB (MPa) τint (MPa) kint(MPa)

20 520.11 698.60 484.26 484.37 481.07 481.07
15 492.60 711.75 497.56 497.70 477.07 477.07
10 463.90 745.24 511.48 511.62 471.94 471.94
5 434.10 728.80 526.03 526.17 463.62 463.62
−5 402.81 981.33 541.25 541.37 455.90 455.90
−10 370.22 826.86 557.18 557.32 444.73 444.73
−15 336.24 797.16 573.84 573.97 431.95 431.95
−20 300.46 803.64 591.29 591.42 419.36 419.36
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