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Abstract: Gellable composite materials (GCM) were prepared from a smelting slag of copper and
nickel deposits and cement, and activated using gypsum and chemical activators. The effects of
material ratio, dosage of chemical activators, and gypsum on the mechanical properties of GCM
were studied. Our results showed that the chemical activators of Na2SO4, Na2SiO3, NaOH, and
Na2CO3 could improve the compressive strength of the GCM. Considering the market cost and
ease operation, the compressive strength of the GCM could be significantly improved with 2%
Na2SO4. The experiment results also showed that the compound chemical activator could improve
the compressive strength of gelled material. The strength of GCM reaches 41.6 MPa when 2% gypsum
and 80% of smelting slags of copper and nickel deposits were used, which met the national standards
requirements of GCM. As such, it is expected that a large amount of copper and nickel mining
smelting slag could be utilized for the production of cementitious materials.

Keywords: smelting slag of copper and nickel deposits; gellable materials; chemical activation;
sodium sulfate

1. Introduction

In the process of utilizing mineral resources, a series of environmental problems could arise,
such as production of larger amounts of waste rock and gob, waste of resources, and security risks.
The stacking of tailings and smelting slag from metallurgical process produced a serious pollution to
the environment. Filling the gobs with tailings and other solid waste can not only control solid waste
pollution and improve the utilization of the land, but also prevent the surface subsidence and improve
the mining index. However, if tailings and other solid waste are directly used to fill the gobs, they will
be subject to chemical oxidation and ion release under rain, sun, and other natural stresses.

Nonferrous smelting slag is the waste residue in the smelting process of nonferrous metals and
minerals [1,2]. China is the largest non-ferrous smelting country in the world [3]. At present, the slag
of the non-ferrous smelting industry reaches 128 million tons in China [4], and its comprehensive
utilization is 22.4 million tons [5], accounting for only 17.5%, which is far lower than that of developed
countries. The nonferrous smelting industry has made a great contribution to China’s economic
development, but also caused serious environmental problems, like occupation of land, and pollution
of the environment and groundwater [6–8]. Filling technology was developed rapidly as an effective
way to overcome the mining problems in the past 20 years [9–11]. On the other hand, fundamental
scientific research is very important and urgent to improve the use of filling mineral resources and to
solve the stability of current mining filling material and high processing cost [12–14].
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An effective way to use nonferrous smelting slag is to prepare filling cementitious material from
large amounts of solid waste produced in mining and metallurgy [15–18]. The low gelling activity and
difficulty in stimulating the nonferrous smelting slag are the main factors restricting the large-scale
utilization of nonferrous smelting slag in China [19–21].

The cementitious material of chemically activated smelting slag is a kind of cementitious material
that uses nonferrous smelting slag as raw material and produces the cementitious property through
the process of chemical activation [22–25]. Due to different types of chemical activators and differences
in composition and structure of smelting slags, the chemical reaction and hardening process of
hydration would be very complex, and the composition and structure of hydration products are quite
different [26–29]. As such, it is difficult to get a unified rule. In this study, the effects of four chemical
activators on the smelting slag of copper and nickel deposits (SSCND)–cement system in Xinjiang
province were studied [30,31]. Our results provided a best scenario for the comprehensive utilization
of SSCND for the production of cementitious materials.

2. Material and Methods

2.1. Materials

The SSCND was provided by Xinjiang Kalatongke Mining Co., LTD. (Altay, China) Due to their
larger particle size, samples were ball-milled for 7 h before being used. Their chemical composition is
shown in Table 1.

Table 1. Chemical composition of smelting slag of copper and nickel deposits (SSCND).

Composition CaO SiO2 Al2O3 MgO Fe2O3 S K2O Na2O P2O5 CuO NiO

Content (%) 2.73 26.75 2.63 3.61 60.63 1.00 0.60 0.25 0.07 0.51 0.43

Portland cement made of silicate cement clinker tricalcium silicate, dicalcium silicate, tricalcium
aluminate, and tetracalcium ferroaluminate was used as the benchmark cement. It was provided by
China United Cement Group Co., LTD. It has a strength grade higher than 42.5 MPa after grinding
with addition of gypsum, whose main component is calcium dihydrate CaSO4·2H2O.

The chemical activators were sodium hydroxide (NaOH), anhydrous sodium sulfate (Na2SO4),
anhydrous sodium carbonate (Na2CO3), and sodium silicate (Na2SiO3·9H2O). All were of pure
analytical grade.

2.2. Characterizations

SSCND at 90%, 80%, 70%, 60%, or 50% was premixed with 10%, 20%, 30%, 40%, or 50% of cement,
respectively, for 30 s, according to GB/T17671-1999 “cement mortar strength testing method (ISO)
made of cement mortar specimen”, followed by demolding after 24 h standard curing with the mold
size of 20 mm × 20 mm × 20 mm, at 23 ± 1 ◦C and 90% humidity [32]. The specimen was continuously
cured under standard conditions for 28 days.

The strength tests were conducted using an electrohydraulic servo pressure test machine under
microcomputer control manufactured by Changchun New Testing Machine Co., LTD. (Changchun,
China) The main technical parameters included (i) high vacuum mode at resolutions of 1.0 nm-15
kV (TLD-SE, FEI company, Hillsboro, OR, USA), 1.4 nm-1 kV (TLD-SE); (ii) low vacuum mode at
resolutions of 1.5 nm-10 kV (HelixTM detector, FEI company, Hillsboro, OR, USA), 1.8 nm-3 kV
(HelixTM detector), and (iii) landing voltage of 50~30 kV. The morphological observation was made
using the Nova NanoSEM50 series of ultra-high resolution scanning electron microscopy produced
by FEI company (Hillsboro, OR, USA). X-ray diffraction (XRD) analyses were performed with CuKα

radiation under 40 kV and 100 mA and a scanning speed at 8◦/min.
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2.3. Experiment

Tests for specimen strength were conducted on the 3rd and 28th days [33], and were recorded
as T1-X. The ratio of SSCND to cement that meets the required strength was then selected. Different
chemical activators were used to activate the SSCND–cement samples with this ratio. The strength of
the samples on the 3rd and 28th days was measured, denoted as T2-X. The chemical activator with the
best activation effect was then selected. Different amounts of chemical activator were used to activate
smelting slag–cement samples, and the strength of the samples at the 3rd and 28th days was measured
and denoted as T3-X, to determine the optimal amount of chemical activator. Desulphurization
gypsum with different proportions was added to conduct composite activation of SSCND–cement
samples with gypsum and chemical activator added, and the strength of the samples at the 3rd and
28th days was measured and recorded as T4-X.

3. Results and Discussion

3.1. Preparation of GCM from SSCND

For the study of comprehensive performance of SSCND–cement, the experimental conditions
listed in Table 2 were used. The samples were premixed for 30 s, and foaming ensured by adding
water. Then, the slurry was mixed, and specimens prepared. After 3 and 28 days, the compressive
strength was measured [34].

Table 2. Proportion of SSCND and cement used for the preparation of gellable composite materials
(GCM) (wt %).

Sample Number SSCND Cement

T1-1 90 10
T1-2 80 20
T1-3 70 30
T1-4 60 40
T1-5 50 50

The compressive strength of samples with 100% cement and 100% slag on the 28th day reached
78.9 MPa and 2.2 MPa, respectively. Figure 1 showed that when the content of cement increases, the
compressive strength increases continuously. This is because cement is a good gelling material [35] and
has a good compressive strength after hardening. When the dosage of cement was 50%, the compressive
strength of the GCM reached a maximum value of 57.7 MPa after 28 days of curing. When the dosage
of cement was 20%, the compressive strength of the gelled material was 22.5 MPa on the 28th day,
which would be close to the national standard of 32.5 MPa after chemical activation. Due to the high
production cost of cement, chemical activators were added in the following experiments, which would
also increase the strength of the GCM. In accordance with the principle of saving production cost and
taking full use of smelting slag, T1-2 mixture ratio was adopted as the optimal experimental proportion
for subsequent experiments.
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Figure 1. Compressive strength of samples of different SSCND–cement ratios after 3 and 28 days of 
curing. 
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Figure 1. Compressive strength of samples of different SSCND–cement ratios after 3 and 28 days
of curing.

3.2. The Effects of Different Chemical Activators on the Performance of the GCM

In order to evaluate the role of activation under different chemical activators for GCM,
the experimental scheme in Table 3 was used for further experiments. The chemical activators of sodium
sulfate, sodium silicate, sodium carbonate, and sodium hydroxide, with a dosage of 6%, were used to
activate GCM. Then, the compressive strength was tested, and the best activating reagent confirmed.

Table 3. The ratio of four activators added to the gelled materials (wt %).

Sample Number SSCND Cement Chemical Activator

T2-1 80 20 6% Na2SO4
T2-2 80 20 6% Na2SiO3·9H2O
T2-3 80 20 6% Na2CO3
T2-4 80 20 6% NaOH

The SSCND was premixed with cement for 30 s before water was added to guarantee molding.
The slurry was stirred and cured for 3 and 28 days to obtain the experimental samples. The compressive
strength of the samples tested is shown in Figure 2.

The compressive strength of GCM activated with 6% Na2SO4 as an external chemical activator
reached 24.2 MPa after 3 days, which is the highest of the four samples. This is because Na2SO4 was
often used as the main components of concrete early-strength agent, which plays an important role in
improving the structure and performance of cement concrete. In addition, the compressive strength
of samples with NaOH as an additional chemical activator after curing for 3 days reached a value of
16.3 MPa (Figure 2). This is because NaOH is a strong alkali, which has an obvious effect on accelerating
the early hydration of cement [36]. The hydration rate of the GCM activated by Na2CO3 is also faster,
which is due to the fact that Na2CO3 with low incorporation can effectively accelerate the hydration
reaction. The hydration rate of Na2SiO3 is slow. Although the strength of the GCM with Na2SO4 and
NaOH added as the activator for 28 days met the requirements of the national standard (32.5 MPa),
NaOH chemical activator has many drawbacks, like high cost, strong alkaline, highly corrosive, low
operability, and non-suitability for industrial production [37]. When Na2SO4 was used as the activator,
the compressive strength of the GCM reached the highest and conformed to the strength requirements
of the GCM [38,39]. At the same time, Na2SO4 is low in cost and high in operability, with good actual
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activation effects. It is a neutral salt that has low corrosion. For comprehensive consideration, Na2SO4

was selected as the chemical activator.
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3.3. The Effect of the Dosage of Na2SO4 on GCM

In order to further study the effect of the dosage of Na2SO4 on the GCM of SSCND–cement system,
1%, 2%, 3%, 6%, 9%, and 12% Na2SO4 was used to activate the GCM (Table 4). The compressive
strength of the GCM further confirmed the best dosage of Na2SO4 (Figure 3).

Table 4. Proportion of Na2SO4 use for preparing the GCM (wt %).

Sample Number SSCND Cement Na2SO4 Activator

T3-1 80 20 1%
T3-2 80 20 2%
T3-3 80 20 3%
T3-4 80 20 6%
T3-5 80 20 9%
T3-6 80 20 12%

It can be illustrated that when the added amount of Na2SO4 was between 1% and 6%,
the compressive strength for the 3rd and 28th days increased. At 6% Na2SO4, the compressive strength
was 36.9 MPa. By contrast, when mixed with 2% Na2SO4, the compressive strength for the 3rd and 28th
days were 22.5 and 35.8 MPa, respectively. The compressive strength still increased, but the increase
was not obvious when mixed with 6% Na2SO4. Therefore, on the premise of saving costs and meeting
the national standards for cementing materials, 2% Na2SO4 as the chemical activator was used.
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3.4. The Activation Effect of Na2SO4 and Gypsum on GCM

The GCM of SSCND–cement system had better strength performance when the dosage of
Na2SO4 was 2%. To explore the activation effect of Na2SO4 and gypsum collectively on the GCM of
SSCND–cement system, this section was carried out using the following experiments, with the dosage
of Na2SO4 kept as 2% and, to the SSCND–cement system, 2%, 4%, 6%, 8%, 10%, and 12% of gypsum
as plaster was added to activate the GCM, and then the compressive strength of the samples was
measured to determine the optimum ingredient ratio. The ratios of Na2SO4 and gypsum activator are
shown in Table 5 (Na2SO4 chemical activator was externally added).

Table 5. Proportion of Na2SO4 and gypsum content (wt %).

Sample SSCND–Cement = 80:20 Gypsum Na2SO4 Activator

T4-1 98 2 2%
T4-2 96 4 2%
T4-3 94 6 2%
T4-4 92 8 2%
T4-5 90 10 2%
T4-6 88 12 2%

It can be seen from Figure 4 that when the gypsum content was 2%, the compressive strength of
the GCM in the SSCND–cement system activated by the composite activator was higher than that of
Na2SO4 used as the chemical activator alone. The compressive strength of the GCM at 28 days reached
41.6 MPa. When the amount of gypsum in the activator changed, the compressive strength of the GCM
changed in a wide range, indicating that the composition of the composite activator had a significant
impact on the properties of the gelled material. Gypsum can improve the activity of smelting slag,
but if only gypsum is added as the activator, the activity of the smelting slag cannot be well activated.
Only in the presence of chemical activator can a certain amount of gypsum activate the smelting slag.
In addition, gypsum has the advantage of being low cost. The use of composite activator can reduce
the cost of material preparation, which is cost-effective from an economic point of view. Therefore,
a compound activator made of 2% gypsum and 2% sodium sulfate was selected as the optimal ratio.
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3.5. SEM and XRD Analyses

Calcium silicate hydrate (C-S-H) and ettringite (AFt) in gel form were generated after curing the
sample T3-2 for 28 days (Figure 5a). The addition of Na2SO4 resulted in formation of fine AFt crystals,
which was one of the reasons for the early strength improvement. The morphology of AFt is related to
the environmental alkalinity. The addition of sodium sulfate increased the environmental alkalinity,
which leads to the decrease of Ca2+ content. AFt grows into relatively small crystals [40].
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The proposed mechanism in SSCND–cement system is that, when cement is added into SSCND
with water, the primary hydration reaction between minerals C3S (tricalcium silicate) and C2S
(dicalcium silicate) in cement and water resulted in formation of Ca(OH)2:
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Na2SO4, when used as the activator, can catalyze the hydration of SSCND and increase the
reaction speed.

It can be seen in Figure 5b–d, the fine grains consisting of gel C-S-H were disorderly. In the
massive calcium hydroxide (CH) crystals, and the hydration products in GCM in the SSCND–cement
were similar to the cement gelled materials. The needle-shaped AFt crystals and flocculation C-S-H
gel overlap each other to form space net structure, and populate the hardening of the phase surface,
hole, crack, the unreacted dihydrate gypsum, and smelting slag particles knot together to form an
integrated part, thus improving the strength of the GCM [41,42].

The XRD diffraction pattern of sample T4-2 after being cured for 28 days showed the production
of calcium silicate hydrate (C-S-H), Aft, and fayalite (Figure 6), consistent with the SEM observations.
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4. Conclusions

(1) Among the four different chemical activators, the compressive strength with NaOH as the
activator meets the requirements of national standards. However, its price is high. Considering the
market cost and simple operation, Na2SO4 with lower price and better activation effect was selected as
the activator.

(2) When the dosage of Na2SO4 is 2%, 3%, and 6%, the compressive strength in the later
stage reaches the highest and the strength change is not obvious. Considering the market cost,
2% Na2SO4 was selected to evaluate the addition amount of chemical activator for the GCM of the
SSCND–cement system.
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(3) It was found that the use of composite activator could optimize or improve the compressive
strength of the gelled material, and when the gypsum content in the composite activator changed,
the compressive strength of the prepared GCM varied widely, and the composition of the composite
activator had a significant impact on the performance of GCM. Through experiments, gypsum with a
mass ratio of 2% was selected and added into the GCM of SSCND–cement system.

(4) The addition of Na2SO4 provided the necessary alkaline environment for slurry, thus
generating conditions for dispersion, dissolution, and hydration of SSCND. Gypsum acted as an
activator to synergize with Na2SO4 to promote the activation of slag activity, resulting in hydration of
backfill and further increase of strength.

(5) The final strength of the GCM reached 41.6 MPa, which meets the national GCM standard.
The dosage of SSCND reached 80%. It is expected to be able to achieve bulk utilization of China’s
SSCND, if full-scale industrial production took place after the pilot tests.
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