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Abstract: To effectively perform the probabilistic fatigue/creep coupling optimization of a turbine
bladed disk, this paper develops the fuzzy multi-extremum response surface method (FMERSM) for
the comprehensive probabilistic optimization of multi-failure/multi-component structures, which
absorbs the ideas of the extremum response surface method, hierarchical strategy, and fuzzy theory.
We studied the approaches of FMERSM modeling and fatigue/creep damage evaluation of turbine
bladed disks, and gave the procedure for the fuzzy probabilistic fatigue/creep optimization of a
multi-component structure with FMERSM. The probabilistic fatigue/creep coupling optimization
of turbine bladed disks was implemented by regarding the rotor speed, temperature, and density
as optimization parameters; the creep stress, creep strain, fatigue damage, and creep damage
as optimization objectives; and the reliability and GH4133B fatigue/creep damages as constraint
functions. The results show that gas temperature T and rotor speed ω are the key parameters that
should be controlled in bladed disk optimization, and respectively reduce by 85 K and 113 rad/s
after optimization, which is promising to extend bladed disk life and decrease failure damages.
The simulation results show that this method has a higher modeling accuracy and computational
efficiency than the Monte Carlo method (MCM). The efforts of this study provide a new useful method
for overall probabilistic multi-failure optimization and enrich mechanical reliability theory.

Keywords: fuzzy theory; multi-extremum response surface method; bladed disk; fatigue creep;
probabilistic optimization

1. Introduction

Mechanical structures are usually assembled by a several components; for example, the rotor
system of an aero engine is assembled by a spindle, disk, blade, and other components [1]. If we directly
establish the reliability optimization design model of an overall structure involving multi-material,
multi-disciplinary, and multi-physics structures, the computational burden will become very large in
analysis, so that computational efficiency is unacceptable [2]. Therefore, it is significant to propose an
efficient method for an overall reliability optimization design of multi-component and multi-failure
modes, to make computational precision and efficiency satisfy engineering requirements.

Recently, numerous methods on structural reliability optimization design have emerged [3–5].
The response surface method (RSM) is widely used in reliability optimal design for high efficiency
and precision. Zhang et al. [6] firstly proposed an extremum response surface method to complete
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the reliability optimization of a two-link flexible manipulator; Fei et al. [7–9] studied an importance
degree model with the extremum response surface method for the dynamic reliability optimization
design of a mechanical assembly relationship such as turbine blade-tip radial clearance. However, the
traditional RSM can’t meet the reliability optimization design of complex mechanical structures in
modeling accuracy and simulation efficiency. To solve this issue, advanced response surface methods
were developed recently. Song et al. [10] established a multiple response surface model by using back
propagation-artificial neural network to construct a limit state function and establish a multi-objective
reliability-based optimization model with a dynamic multi-objective particle swarm optimization
algorithm for a reliability optimization design of an aero-engine blisk under fluid–thermal–structure
coupling. Hamzaoui et al. [11] proposed an integrated method for estimating the resonance stress
of blades with super high strength by combining the inverse of artificial neural network inverse
(ANNI) with the Nelder–Mead optimization method. Rodríguez et al. [12] applied a probabilistic
design procedure to a group of 10 blades of a low pressure (LP) stage steam turbine of 110 MW, in
order to compute the stress changes and reliability due to variations in: damping, natural frequencies,
vibration magnitude, and density. The computed vibration stresses were analyzed by applying
probability distributions and statistical parameters of input and output to compute the useful life.
Wang et al. [13] introduced evidence variables and fuzzy variables to describe cognitive uncertainty
parameters and presented a novel dual-stage reliability analysis framework where the first stage
incorporates the evidence information by the belief and plausibility measures and the second stage
incorporates the fuzzy information by a membership function-like formula. Gao et al. [14] proposed
an accurate and efficient fatigue prognosis based on a distributed collaborative response surface
method, a substructure-based distributed collaborative probabilistic analysis method (SDCPAM), and
a substructure analysis method. Ai et al. [15] discussed a probabilistic framework for fatigue reliability
analysis. These works implement reliability-based optimization for many analytical objectives, through
analyzing the submodels and then processing the response of submodels to carry out the overall
design and analysis. The basic thought in the above works for handling multi-objective design
problems provides an enlightened insight to reveal the overall reliability-based optimization design of
turbine bladed disks with many failure modes, such as stress failure, strain failure, fatigue damage,
creep damage, and so forth. However, since scientific research has its own development laws, the
reliability optimization design was carried out in one failure mode at that time, without considering
the correlation between the failure modes, and the fuzziness of the constraint boundary conditions.

Most works on aero-engine turbine blades regard the randomness of variables (parameters).
Alongside the randomness, actually, some parameters in blade models, such as density, temperature,
elastic modulus, boundary conditions, and so forth, possess obvious fuzziness centering on a certain
value [16]. In fact, the probabilistic fatigue/creep optimization design of turbine bladed disks involves
an obvious fuzziness for design parameters and constraint conditions as well as the coupling among
many failure modes such as stress failure, strain failure, creep damage, fatigue damage, and so
on [15–18]. Meanwhile, the fuzziness and coupling seriously negatively influence the design precision
and efficiency of multi-object optimization when the above methods are directly applied. Therefore, it
is urgent to propose an effective method for multi-object reliability-based optimization, in which the
fuzziness for design parameters and constraint conditions as well as the coupling among many failure
modes are fully considered in order to improve the modeling accuracy and simulation efficiency.

The objective of this paper is to attempt to propose a fuzzy multi-extremum response surface
method (FMERSM) regarding failure correlation and parameter fuzziness, to improve the accuracy
and efficiency of the overall dynamic reliability optimization design for a multi-component structure
with multi-failure mode, by reasonably handling the transients. Then, the probabilistic fatigue/creep
optimization design of an aero-engine bladed disk was effectively implemented with respect to this
method, and the developed FMERSM is validated by a comparison of methods.

The remainder of this paper is organized as follows. The fuzzy multi-extremum response
surface method (FMERSM) is studied in Section 2, comprising the FMERSM modeling approach,
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fatigue/creep theory, and the basic thought of the comprehensive probabilistic optimization of a
bladed disk with FMERSM. Section 3 implements the fuzzy reliability-based optimization of bladed
disk fatigue/creep damage including a parameters selection, finite element (FE) modeling, surrogate
modeling, probabilistic fatigue/creep analysis, and method validation. In Section 4, some main
conclusions are summarized.

2. Methods and Models

The extremum response surface method (ERSM) was firstly developed to simplify the modeling
complexity for the transient probabilistic design of mechanical structures by considering the
extreme values of the response process in sample extraction [6]. ERSM has been validated to
have high-computational efficiency and acceptable accuracy relative to RSM, in the probabilistic design
and optimization of aerospace structures/components [7,8,19–22]. The multi-extremum response
surface method was proposed to handle the multi-model problem in the transient probabilistic
analysis of multi-component structures, multi-discipline, and multi-failure modes by assimilating
ERSM [19,23–25]. In most of the structural probabilistic designs, in fact, influential parameters and
constraint conditions hold obvious fuzziness and seriously influence design precision. Therefore, it is
reasonable to consider the fuzziness of design parameters and constraint conditions to improve the
probabilistic design of structures, especially with multi-failure modes or multi-component structures.
In respect of the heuristic thought of MERSM, this paper develops FMERSM with the consideration of
fuzzy parameters and constraints to implement the fuzzy reliability-based optimization of bladed disk
fatigue/creep damage.

2.1. FMERSM Modeling

Assuming that a structure system includes m components and one component has n failure modes
(m,n∈Z) (the sample number of failure models is assumed in this study), as well as Xij indicating the
input random variables of the jth failure mode in the ith component (for instance, the creep failure of a
blade in a bladed disk system) and y(ij)(t,X(ij)) is the corresponding output response, enough of a data
set {yij

max(t, X(ij)): j∈Z+} consisting of the maximum output responses of y(ij)(t,X(ij)) in the time domain
is employed to fit the extremum output response y [24]:

y = f (X) =
{

y(i j)
max

(
X(i j)

)}
i=1,2,··· ,m; j=1,2,··· ,n

(1)

When the quadratic polynomials are considered, Equation (1) is rewritten as:

y = a0 + BX + XTCX (2)

Regarding the fuzziness and randomness of data in Equation (2), the model comprising numerous

sub-models (ỹ(11)
max, ỹ(12)

max, · · · , ỹ(i1)max, ỹ(i2)max, · · · , ỹ(i j)
max), the FMERSM model, for multi-failure structure,

can be structured as:

ỹ(11)
max = f

(
X(11)

)
= Ã(11)

0 + B̃
(11)

X(11) +
(
X(11)

)T
C̃
(11)

X(11)

ỹ(12)
max = f

(
X(12)

)
= Ã(12)

0 + B̃
(12)

X(12) +
(
X(12)

)T
C̃
(12)

X(12)

...

ỹ(i j)
max = f

(
X(i j)

)
= Ã(i j)

0 + B̃
(i j)

X(i j) +
(
X(i j)

)T
C̃
(i j)

X(i j)

(3)

in which X̃
(i j)

is the fuzzy random input variable vector of the jth failure mode in the ith component,

and ỹ(i j)
max is the corresponding extremum output response. Ã(i j)

0 , B̃
(i j)

and C̃
(i j)

are the constant term,
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linear term, and quadratic term of the jth failure mode in the ith component, respectively. B̃
(i j)

, C̃
(i j)

and X̃
(i j)

are denoted by:

B̃
(i j)

=
[
bi j

1 , bi j
2 , · · · , bi j

k

]
(4)

C̃
(i j)

=


c(i j)

11 . . . 0
...

. . .
...

c(i j)
k1 · · · c(i j)

kk

 (5)

X̃
(i j)

=
[
X(i j)

1 , X(i j)
2 , · · · , X(i j)

k

]T
(6)

where bi j
m, c(i j)

mn , X(i j)
m (m, n = 1, 2, . . . , k) are elements (or components) in B̃

(i j)
,C̃

(i j)
and X̃

(i j)
respectively.

The modeling process of Equation (3) regards the randomness and fuzziness of design parameters
and constraints based on FMERSM. Therefore, this model (Equation (3)) is called a FMERSM model in
this paper.

2.2. Fatigue/Creep Modeling for Probabilistic Optimization of Bladed Disks

Under fatigue/creep coupling failure mode, this paper adopts FMERSM to complete the fuzzy
probabilistic fatigue/creep optimization of bladed disks. For a structure system with m components,
x̃i indicates the fuzzy optimization parameters of the ith component. The main plan is to minimize
the objective function f (x̃1, x̃2, · · · , x̃n) subject to the overall reliability performance R(x, w, Dc, Df)
and coupling critical damage Dcr, which is a single-objective constrained optimization problem. The

sub-plan is to maximize the reliability Ri (Ri = R
(
R(1)

i , R(2)
i , · · · , R(k)

i

)
) of the ith component subject to

mechanical load and constraints, which is a multi-objective constrained optimization problem. By
introducing pseudo-variables [26], the cyclic optimization between the main plan and sub-plans is
done until the convergence condition is satisfied. The fuzzy probabilistic optimization model is shown
in Equation (7).

find x̃ = (x1, x2, · · · , xn)
T

min f (x̃1, x̃2, · · · x̃n) = E

 l∑
i=1

fi(x̃i)

 x̃i
→

subject to

 R
(
x,ω, Dc, D f

)
= R(R1, R2 · · ·Rm) ≥ R0

Ri
←

Dc + D f ≤ Dcr



find x̃i = [xi1, xi2, · · · , xin]

max Ri = R
(
R(1)

i , R(2)
i · · ·R

(k)
i

)
subject to

 g̃ j
(
x j

)
⊆ G̃ j

xL
i1 ≤ xi ≤ xU

in

(7)

where x̃i is the ith design variable; and w is the random parameters of mechanical load and material
property. xL

i1, xU
in represent the lower and upper limit of the ith fuzzy design variables; Dc is the total

amount of creep damages; Df is the total amount of fatigue damages; Dcr is fatigue–creep coupled
critical damage; g̃ j(xi) denotes the stress and deformation of a component; and G̃ j is the allowable
range of g̃ j(xi). By the λ level-cut method, the fuzzy subset G̃ j is decomposed into the common set
Gj(λ*), as explained in Equation (8); then, the problem of fuzzy probabilistic constrained optimization
can be transformed into the conventional probabilistic optimization design problem [27].

G j(λ
∗) =

{
g
∣∣∣∣∣uG̃ j

(g) ≥ λ∗, j = 1, 2, · · · , J
}

(8)

where uG̃ j
(g) is allowable constraint of the jth component stress and deformation; and λ* is optimal

horizontal cut set.
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2.3. Miner Linear Accumulation Damage Law

Under the interaction between fatigue and creep, the overall damage of the structure is equal to
the sum of fatigue damage and creep damage, which is the Miner linear cumulative damage law [28]
as follows: 

D f + Dc ≤ Dcr

D f =
n f∑
j=1

n j
N j f

Dc =
nc∑

i=1

ti
Tic

(9)

in which nf is the number of stresses acting on a component; nj is the number of cycles acted by the jth
stress; Njf is the fatigue life under the jth acting stress; nc is the number of stress levels; ti is the hold
time of the ith stress; and Tic is the creep failure time of the ith stress.

When the structure is destroyed (Dcr = 1), the relationship between Df and Dc [29] is:

D f = F(Dc) = 2− eθ1Dc +
eθ1 − 2

e−θ2 − 1

(
e−θ2Dc − 1

)
(10)

where θ1 and θ2 are fatigue–creep characteristic parameters.
The strain fatigue life prediction model is used to predict the low-cycle fatigue life.

∆ε
2

=
σ f

E

(
2N f

)b
+ ε f

(
2N f

)c
(11)

in which ∆ε is the amplitude of total strain; N f is the fatigue life; σ f is the fatigue strength coefficient;
ε f is the fatigue ductility coefficient; b is the fatigue strength index; and c is the fatigue ductility index.

The creep life prediction equations commonly used in material manuals include creep life
prediction equations and thermal strength parameter synthesis equations. The persistence equation is
expressed in the form of the thermal intensity parameter synthesis equation.

lgσ = a0 + a1p + a2p2 + a3p3 (12)

p = (lgti + c)C (i = 0, 1, 2, 3) (13)

in which σ is durable strength; ar(r = 0, 1, 2, 3) is the undetermined coefficient in which r indicates the
subscript of the rth coefficient in Equation (12); p is the thermal intensity parameter; ti is the hold time
of the ith stress; and c and C are the constants related to fatigue ductility and temperature, respectively,
which were generally gained by experiments.

2.4. Basic Thought of Probabilistic Fatigue/Creep Optimization with FMERSM

The basic thought of probabilistic fatigue/creep optimization with FMERSM is illustrated below.
(1) Regard material density, gas temperature, pneumatic pressure, elastic modulus, and thermal
expansion coefficient as input variables, and the maximum creep stress, maximum creep strain,
maximum fatigue damage, and maximum creep damage as output responses. (2) Carry out the
deterministic analysis of a bladed disk based on FE models with the consideration of design parameters.
(3) Obtain the fatigue damage and creep damage of a bladed disk under each load by the fatigue–creep
damage equation of GH4133B discussed in Section 2.2 and Miner linear damage accumulation law
introduced in Section 2.3. (4) Considering the randomness and fuzziness of input variables, enough
samples of input random variables are extracted by the Latin hypercube sampling technique [30].
(5) Calculate the dynamic responses of bladed disk creep stress, creep strain, creep damage, and fatigue
damage in the time domain for all input samples by FE models, and extract the maximum values of
dynamic output responses as new output responses to establish the FMERSM function. (6) Perform a
probabilistic analysis of a bladed disk based on the FMERSM function. (7) Complete the probabilistic
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fatigue/creep optimization of a turbine bladed disk by the fuzzy probabilistic optimization model with
FMERSM and decoupling coordination iterative solution. The flowchart is shown in Figure 1.
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Figure 1. Flow chart of reliability optimization based on the fuzzy multi-extremum response surface
method (FMERSM) method.

3. Fuzzy Probabilistic Fatigue/Creep Optimization of Turbine Bladed Disk

In this section, the fuzzy probabilistic fatigue/creep optimization of a turbine bladed disk is
performed with respect to the proposed FMERSM and established probabilistic optimization model in
Section 2.

3.1. Parameters Preparation

With respect to the material test, the fatigue/creep material parameters θ1 and θ2 of an aero-engine
turbine bladed disk with a GH4133B superalloy at the temperature of 600 ◦C and experimental load
of 18 KN is 0.36 and 6.5, respectively. The fatigue–creep damage curve of GH4133B superalloy
(Ni–Cr-based precipitation hardening-type deformation high-temperature alloy) is shown in Figure 2.
In this study, we selected a 1/40 turbine bladed disk of an aero-engine as the object of study, and a
GH4133B superalloy as the material of the bladed disk [31]. Density ρ, rotational speed ω, temperature
T, pneumatic pressure p, elastic modulus E, and thermal expansion coefficient α are considered as
fuzzy variables. Moreover, in respect of engineering practice, the length of the fuzzy region is defined
as 0.05 times the mean value, as shown in Table 1. The parameters in Table 1 are assumed to obey
normal distribution, and are mutually independent.Materials 2019, 12, x FOR PEER REVIEW 7 of 16 

 

 

Figure 2. Curves of GH4133B fatigue–creep damage. 

Table 1. Distribution characteristics of input random variables. 

Random Variables Mean Length of Fuzzy Zone Distribution 

Density, ρ, kg·m−3 8210 410.5 Normal 

Rotor speed, ω, rad·s−1 1168 58.4 Normal 

Temperature T, K 873.15 43.658 Normal 

Pneumatic pressure p, MPa 0.1 0.005 Normal 

Elastic modulus E, MPa 163000 8150 Normal 

Thermal expansion coefficient α, ×10−6 °C−1 9.4 0.47 Normal 

3.2. Deterministic Analysis of Bladed Disk 

The finite element (FE) models of the blade and disk are shown in Figures 3 and 4. The FE 

model of the blade consists of tetrahedrons with 39,547 elements, and the FE model of the disk 

consists of tetrahedrons with 58,271 elements. The number of cells (meshes) is required by the 

convergence analyses of the responses [15,32,33]. The FE basic equations of the bladed disk 

comprising a shape function of the tetrahedron in Equation (14) [34], geometric equation in Equation 

(15) [35], physical equation in Equation (16) [36], and Norton implicit creep equation in Equation (17) 

[37] are analyzed with regard to the means of the parameters in Table 1. From this analysis, the 

distributions of the creep stress and creep strain of the bladed disk are drawn in Figures 5–8. As seen 

in Figures 5–8, the maximum creep stress and maximum creep strain of the bladed disk are at the 

blade-root and disk tenon groove tip, respectively. 

( )
1

1,2,3,4
6

i i i i iN a b x c y d z i
v

= + + + =，
 

(14) 

, ,

, ,

x y z

xy yz zx

u v w

x y z

u v v w w u

y x z y x z

  

  

  
= = =   


      = + = + = +

      

 (15) 

   [ ]= D   (16) 

32 /

1

C TC

c c e  −
=  (17) 

where v is the volume of the tetrahedron; ai, bi, ci and di are the related coefficients of node geometry; 

εx, εy, εz and γxy, γyz, γzx are the elastic line strains and shear strains along the x, y and z directions, 

respectively; [σ] = [σx, σy, σz, τxy, τyz, τzx] (σ-structural stress) and [ε] = [εx, εy, εz, γxy, γyz, γzx] are the 

stress and strain of the components; [D] is the elastic matrix; c1, c2, and c3 stand for experimental 

coefficients. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F
a
ti
g

u
e

 d
a

m
a

g
e

,D
f

Creep damage,Dc

Dcr

Figure 2. Curves of GH4133B fatigue–creep damage.



Materials 2019, 12, 3367 7 of 14

Table 1. Distribution characteristics of input random variables.

Random Variables Mean Length of Fuzzy Zone Distribution

Density, ρ, kg·m−3 8210 410.5 Normal
Rotor speed, ω, rad·s−1 1168 58.4 Normal

Temperature T, K 873.15 43.658 Normal
Pneumatic pressure p, MPa 0.1 0.005 Normal

Elastic modulus E, MPa 163,000 8150 Normal
Thermal expansion coefficient α, ×10−6 ◦C−1 9.4 0.47 Normal

3.2. Deterministic Analysis of Bladed Disk

The finite element (FE) models of the blade and disk are shown in Figures 3 and 4. The FE model
of the blade consists of tetrahedrons with 39,547 elements, and the FE model of the disk consists
of tetrahedrons with 58,271 elements. The number of cells (meshes) is required by the convergence
analyses of the responses [15,32,33]. The FE basic equations of the bladed disk comprising a shape
function of the tetrahedron in Equation (14) [34], geometric equation in Equation (15) [35], physical
equation in Equation (16) [36], and Norton implicit creep equation in Equation (17) [37] are analyzed
with regard to the means of the parameters in Table 1. From this analysis, the distributions of the
creep stress and creep strain of the bladed disk are drawn in Figures 5–8. As seen in Figures 5–8, the
maximum creep stress and maximum creep strain of the bladed disk are at the blade-root and disk
tenon groove tip, respectively.

Ni =
1

6v
(ai + bix + ciy + diz), i = 1, 2, 3, 4 (14)

 εx = ∂u
∂x , εy = ∂v

∂y , εz =
∂w
∂z

γxy = ∂u
∂y + ∂v

∂x ,γyz =
∂v
∂z +

∂w
∂y ,γzx = ∂w

∂x + ∂u
∂z

(15)

{σ} = [D]{ε} (16)

εc = c1σ
C2e−C3/T (17)

where v is the volume of the tetrahedron; ai, bi, ci and di are the related coefficients of node geometry;
εx, εy, εz and γxy, γyz, γzx are the elastic line strains and shear strains along the x, y and z directions,
respectively; [σ] = [σx, σy, σz, τxy, τyz, τzx] (σ-structural stress) and [ε] = [εx, εy, εz, γxy, γyz, γzx] are
the stress and strain of the components; [D] is the elastic matrix; c1, c2, and c3 stand for experimental
coefficients.
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Based on the low-cycle load spectrum described in [34], the Miner linear cumulative damage law
in Equation (9) and fatigue-creep damage relation in Equation (10) of GH4133B [38] were resolved by
programming in MATLAB (R2017a) simulation environment. When the number of cyclic loads is 5530,
the fatigue damage Df and creep damage Dc of bladed disk under a cyclic load are shown in Table 2.

Table 2. Results of bladed disk fatigue-creep damage.

Fatigue Damage Df Creep Damage Dc

Blade 0.36363 0.0039
Disk 0.40859 0.0041

3.3. FMERSM Modeling

By the Latin hypercube sampling technique [30], 100 samples on fuzzy input random variables
were extracted in respect of the max creep stress, max creep strain, max fatigue damage, and max
creep damage of the bladed disk, to acquire model parameters and establish the FMERSM model in
Equations (18) and (19).



ỹ(11) = −257.3754− 0.0444ρ− 0.1486ω+ 2.3354× 103T + 1.1507p + 1.4334× 10−4E− 0.2077a
+6.5536× 10−4ρ2 + 0.0132ω2 + 3.6612× 105T2 + 0.0102p24.2577× 10−5E2

− 4.8668× 10−4a2

ỹ(12) = 0.0099− 1.6579× 10−6ρ− 1.3072× 10−5ω− 0.0599T − 9.8795× 10−6p + 1.4733× 10−9E− 1.8500× 10−6a
+2.8940× 10−6ρ2 + 14.4810ω2 + 7.4616× 10−7T2 + 5.3444× 10−4p2 + 4.4308× 10−6E2 + 3.7239× 10−72a2

ỹ(13) = 1.5805× 10−4
− 1.3288× 10−8ρ− 1.0181× 10−7ω− 2.7108× 10−4T − 6.7492× 10−8p + 4.3108× 10−12E− 1.3172× 10−8a

+2.8445× 104ρ2 + 0.0027ω2 + 0.1975T2
− 6.5354p2

− 2.6096E2 + 0.0043a2

ỹ(14) = 3.0155× 10−4 + 3.2551× 10−8ρ− 1.0601× 10−7ω+ 0.0016T − 7.4068× 10−8p + 5.8844× 10−12E− 1.2685× 10−7a
+2.9205× 10−5ρ2 + 6.7736× 10−6ω2 + 1.2254× 10−4T2 + 1.8214× 10−4p2

− 8.1228× 10−7E2 + 6.6609× 10−8a2

(18)



ỹ(21) = 4.6236× 103
− 0.0477ρ− 0.3303ω− 2.4545× 103T − 9.4539p + 1.9172× 10−4E− 0.2481α

−23.2706ρ2 + 0.0031ω2 + 11.0768T2 + 5.9537× 10−5p2 + 6.8958× 10−4E2 + 3.8867× 10−4α2

ỹ(22) = 0.1404 + 1.4686× 10−7ρ− 2.4194× 10−5ω+ 0.1010T − 3.1221× 10−4p + 2.1079× 10−9E− 1.5086× 10−5α
+2.7152× 10−11ρ2

− 1.1026× 10−11ω2 + 5.5067× 10−9T2 + 2.0951× 10−9p2
− 8.5852× 10−12E2

− 4.0029× 10−11α2

ỹ(23) = −8.7299× 10−5
− 2.6642× 10−9ρ− 5.0414× 10−8ω− 1.9935× 10−4T + 3.5076× 10−7p + 7.8942× 10−12E− 3.7701× 10−8α

+4.0029× 10−4ρ2 + 3.1495× 10−6ω2 + 7.2796× 10−5T2 + 6.8958× 10−4p2
− 9.4331× 10−5E2 + 3.8867× 10−4α2

ỹ(24) = 0.0059 + 6.2600× 10−8ρ− 1.0922× 10−6ω+ 0.0140T − 4.3691× 10−6p + 3.2447× 10−11E + 1.8682× 10−6α
+1.9739× 10−9ρ2 + 3.6047× 10−12ω2 + 3.3291× 10−10T2 + 0.0046p2 + 0.0048E2

− 7.3346× 10−4α2

(19)

The FMERSM models in Equations (18) and (19) are used to perform the probabilistic
fatigue/creep optimization of a bladed disk involving sensitivity analysis and reliability analysis
in the following subsection.

3.4. Probabilistic Fatigue/Creep Optimization of Bladed Disk

Regarding the FMERSM models in Equations (18) and (19), the reliability sensitivity index of
input random variables for a bladed disk was obtained in Table 3 and Figure 9 by sensitivity analysis
with MC simulation.
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Table 3. Sensitivity index of a bladed disk.

Blade Disk

Variables Sensitivity Effect Probability % Variable Sensitivity Effect Probability %

ρ 0.09855 10.55 ρ 0.22067 24.04
ω 0.477722 51.14 ω 0.386637 40.99
T 0.241222 25.82 T 0.252026 26.72
p 0.073895 7.91 p –0.0121 1.28
E 0.032676 3 0.02191 2.32
α −0.01 1.07 α 0.043787 4.64
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As shown in the sensitivity analysis of a bladed disk, rotor speed w and temperature T are the
main factors and greatly influence the coupling failure of a bladed disk as the two largest sensitivity
degrees and effect probabilities, while the other parameters have little impact on the coupling failure of
a bladed disk as smaller sensitivity degrees and effect probabilities. We extract high-sensitivity input
random variables as design variables to conduct the fuzzy probabilistic fatigue/creep optimization of a
bladed disk. In the main planning model, the reliability product of R1·R2 and the coupling critical
damage Dcr for the bladed disk are taken as the constraints. In the sub-planning model, the parameters
(ω,T) with a high-sensitivity index are regarded as the design variables. The creep stress σc, creep strain
εc, fatigue damage Df, creep damage Dc, maximum blade reliability R1, and maximum disk reliability
R2 were evaluated. The allowable comprehensive reliability of the bladed disk is R0 = 0.99. The optimal
level λ* is solved by the fuzzy comprehensive evaluation method [13,23,39], and the substitution of
λ* into the asymmetric fuzzy optimized conversion condition (Equation (8)). The allowable means
of a bladed disk with the corresponding failure modes are shown in Table 4. The fuzzy probabilistic
fatigue/creep optimization model of a bladed disk was established as illustrated in Figure 10, and the
optimization models were solved by the MATLAB program and iteratively solved for all levels. The
optimization results are listed in Table 5.

Table 4. Optimal level threshold and allowable mean of a bladed disk.

Blade Disk

Optimal Level Threshold Allowable Mean Optimal Level Threshold Allowable Mean

λ∗σc1
0.3558 σ̃c10 677.92 λ∗σc2

0.6008 σ̃c20 654.94
λ∗εc1

0.8051 ε̃c10 2.010824 λ∗εc2
0.8516 ε̃c20 1.0076991

λ∗Dc1
0.6720 D̃c10

0.2039 λ∗Dc2
0.1608 D̃c20

0.2041
λ∗D f1 0.0260 D̃ f10

0.96363 λ∗D f2 0.8392 D̃ f20
0.90895
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Table 5. Optimized results of a bladed disk.

Design Variable Original Data Optimization Results

ω, rad·s−1 1168 1055.1
T, K 873.15 788.15

3.5. FMERSM Validation

To verify the effectiveness of FMERSM, the reliability-based optimization of a bladed disk was
completed with MCM and FMERSM, based on the same variables in Table 1 and computing conditions.
For dynamic probabilistic analyses under different simulations (102, 103, 104, and 105), the computing
time and reliability degrees of a bladed disk are listed in Table 6. The optimization results of object
functions under different simulations are listed in Table 7.

Table 6. Dynamic probabilistic computational results with different methods. FMERSM: fuzzy
multi-extremum response surface method, MC: Monte Carlo.

Number of Samples
Computational Time, s Reliability Degree % Precision of

FMERSMMC Method FMERSM MC Method FMERSM

102 32400 0.203 99 98.6 0.996
103 72000 0.279 99.7 99.5 0.998
104 432000 0.437 99.83 99.60 0.9977
105 - 4.43 - 99.962 -

Table 7. Results of bladed disk optimization design with different methods.

Objective
Function

Before
Optimization

MCM FMERSM

After Optimization Reduction After Optimization Reduction

σc1 , MPa 607.92 548.66 9.8% 487.08 19.9%
σc2 , MPa 454.94 423.03 7% 368.8 18.93%
εc1 , m/m 0.010824 0.001298 88% 0.0073988 31.64%
εc2 , m/m 0.0076991 0.0076629 0.47% 0.0065652 14.77%

Df1 0.36363 0.30452 16.25% 0.24822 31.74%
Df2 0.40859 0.39375 4.52% 0.29315 28.3%
Dc1 0.0039 0.0036 7.69% 0.0025 35.9%
Dc2 0.0041 0.00409 0.24% 0.0032 21.95%
R 95 99.515 - 99.635 -
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As shown in Table 6, the following conclusions were obtained from the probabilistic failure
analysis of a bladed disk. (1) The MC method does not have computing time at 105 simulations, because
the MC method cannot perform the calculation for a too-large computational burden for a probabilistic
analysis of bladed disk FE models. Thus, it is inefficient for the MC method to conduct the design
analysis of a complex structure with large-scale simulations. (2) The time-cost for the probabilistic
analysis of a bladed disk increases with the increase of MC simulations. (3) The time consumption of
the FMERSM is far less than that of the MC method for the same number of simulations. For instance,
the FMERSM only spends 0.437 s for 10,000 simulations, which is only about 1/106 that of the MC
method. Meanwhile, the strength of the FMERSM in time computation is more obvious with increasing
simulations. Thus, it is demonstrated that the efficiency of the FMERSM is far higher than that of
the MC method in calculation, and the FMERSM is an efficient approach replacing FE models for the
probabilistic analysis of a complex structure with many components or multi-failure modes. (4) For
the same simulations, the reliability degrees of bladed disk coupling dynamic failure probability with
FMERSM are almost consistent with those of the MC method. Moreover, the reliability degree of
the bladed disk increases and becomes higher with the rise of simulations. It is illustrated that more
precise results such as the reliability degree can be gained by increasing the number of MC simulations
against the response surface models, for structure design analysis from a probabilistic perspective.

As revealed in Table 7, summarized from the probabilistic fatigue/creep optimization of a bladed
disk, the creep stress, creep strain, fatigue damage, and creep damage of the blade in respect of
FMERSM are reduced by 19.9%, 18.93%, 31.64%, and 14.77%, respectively. Meanwhile, the MC method
reduces the creep stress, creep strain, fatigue damage, and creep damage of the disk by 9.8%, 7%, 88%,
and 0.47%, respectively. The comprehensive reliability index of the bladed disk was increased from
99.515% to 99.635%. It is verified that the FMERSM is workable for the fuzzy probabilistic fatigue/creep
optimization of complex structures, similar to a turbine bladed disk.

In summary, the developed FMERSM has high modeling precision and simulation efficiency for the
comprehensive reliability optimization design for multi-component structures with multi-failure modes.

4. Conclusions

The objective of this study is to develop a high-efficient reliability-based optimization method,
called the fuzzy multi-extremum response surface method (FMERSM), for the probabilistic fatigue/creep
coupling optimization of a turbine bladed disk. This paper has investigated the theory and modeling
of FMERSM, and gives the procedure of probabilistic optimization of a multi-component structure
with multi-failure modes for the fuzzy probabilistic fatigue/creep optimization of a turbine bladed
disk with the considerations of the correlation of the failure modes and the fuzziness of the constraint
boundary conditions. Through the works in this study, some conclusions are summarized as follows:

(1) With regard to the probabilistic failure analysis of a bladed disk, we find that the FMERSM
costs less analytical time (0.437 s for 10,000 simulations), and thus has high computational efficiency
relative to the Monte Carlo (MC) method (432,000 s for 10,000 simulations), but has an acceptable
computational precision (99.77%) of the reliability degree, which is almost consistent with the FE
method based on MC simulation with a reliability degree of 0.9983. Moreover, the strengths of the
proposed FMERSM in modeling and simulation become more obvious with the increase of simulations.

(2) In terms of the probabilistic fatigue/creep optimization of a bladed disk, it is illustrated that the
developed FMERSM is more workable than the MC method. The reason is that the optimal parameters,
including design parameters and optimization objects, are preferable by larger reductions (19.9%,
18.93%, 31.64%, and 14.77% for the creep stress, creep strain, fatigue damage, and creep damage of the
blade, respectively), and a higher reliability degree of 99.635%.

The efforts of this paper provide a useful way for high-precise modeling and high-efficient
simulation for the fuzzy comprehensive probabilistic optimization of multi-failure/multi-component
structures, because the accuracy of the model is close to that of the MC method, while the calculation
time is only 1/106. Meanwhile, this work enriches the theory of mechanical reliability.
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