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Abstract: A fully-unsupervised learning algorithm for reaching self-organization in neuromorphic
architectures is provided in this work. We experimentally demonstrate spike-timing dependent
plasticity (STDP) in Oxide-based Resistive Random Access Memory (OxRAM) devices, and propose
a set of waveforms in order to induce symmetric conductivity changes. An empirical model is
used to describe the observed plasticity. A neuromorphic system based on the tested devices is
simulated, where the developed learning algorithm is tested, involving STDP as the local learning
rule. The design of the system and learning scheme permits to concatenate multiple neuromorphic
layers, where autonomous hierarchical computing can be performed.
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1. Introduction

The implementation of electronic synapses is nowadays one of the challenges of hardware-based
neuromorphic engineering, which aims to design electronic circuits with a similar architecture and
behavior to the one found in biological brains. Within this context, the conductivity of an electronic
device with memristive characteristics is identified as the weight or strength of a connection between
two neurons (Figure 1), usually within a crossbar array which implements the synaptic matrix layer of
an electronic neural network (Figure 2a). An analog behavior of the electronic synapse is desirable to
improve the robustness of the network [1–3], showing a large window between its higher and lower
conductivities and displaying many accessible conductivity levels in between. The conductivity of an
analog synaptic device is then finely tuned according to some learning rule during the training stage
of a learning algorithm. Among the different technologies that have been proved to be suitable for
synaptic applications, the oxide-based resistive random access memory (OxRAM) technology stands
out when analog conductivity changes are required [1–7].
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Figure 1. Electronic synapses can be implemented with memristive devices. The electronic neural 
network is implemented in a synaptic matrix layer. 

1.1. Spike-Timing Dependent Plasticity (STDP) in Memristive Electronic Synapses 

The synaptic weight updating process is therefore the basis for the application of any learning 
algorithm in a neural network, and is related to the capability of the synapse to adapt its conductivity 
through experience, namely its property of plasticity. In the case of electronic synapses, this feature 
involves the modulation of the conductivity (G) of an electronic device, where changes (ΔG) can be 
induced by applying the appropriate voltage drop between its two terminals (Figure 2b). These 
updates in the conductivity of the device are applied according to the recent activity of the neurons 
it connects. For instance, temporal correlations and causality between the recent activity of the input 
and output neurons can determine the magnitude and direction of the relative synaptic weight 
change, ΔG/G. The so-called spike-timing dependent plasticity (STDP) has been reported in 
biological systems [8–16], and is a popular bio-inspired learning rule implemented in artificial neural 
networks and computational neuroscience [10–15], where ΔG/G is described as a function of the time 
delay Δt between the pre (input) and post-synaptic (output) neurons spike firing, respectively (Figure 
2c). The nature of the synaptic change is what depends on the causality between the input and output 
neurons activations. 

 

Figure 2. (a) Neuromorphic memristive array. Each node within the crossbar corresponds to the 
weighted connection (synapse) between two neurons, implemented with a memristor. (b) The 
conductivity of the device can be changed according to the activity of the neurons it connects. (c) 
STDP function. 

In order to demonstrate the plasticity property of memristive devices, the input and output 
activities are assumed to be in the form of voltage pulses, and the significant change in ΔG/G occurs 
when these pulses meet at the terminals of the synaptic device, overlapping in time, causing a 
significant voltage drop (Figure 2b). In this case, the STDP function (Figure 2c) can be tuned by 
changing the shape of the input and output neuron pulses [12–15]. The most popular shape of the 
STDP, resembling the one reported in a biological culture by Bi and Poo [16] (Figure 2c shows the 

Figure 1. Electronic synapses can be implemented with memristive devices. The electronic neural
network is implemented in a synaptic matrix layer.

1.1. Spike-Timing Dependent Plasticity (STDP) in Memristive Electronic Synapses

The synaptic weight updating process is therefore the basis for the application of any learning
algorithm in a neural network, and is related to the capability of the synapse to adapt its conductivity
through experience, namely its property of plasticity. In the case of electronic synapses, this feature
involves the modulation of the conductivity (G) of an electronic device, where changes (∆G) can be
induced by applying the appropriate voltage drop between its two terminals (Figure 2b). These updates
in the conductivity of the device are applied according to the recent activity of the neurons it connects.
For instance, temporal correlations and causality between the recent activity of the input and output
neurons can determine the magnitude and direction of the relative synaptic weight change, ∆G/G.
The so-called spike-timing dependent plasticity (STDP) has been reported in biological systems [8–16],
and is a popular bio-inspired learning rule implemented in artificial neural networks and computational
neuroscience [10–15], where ∆G/G is described as a function of the time delay ∆t between the pre
(input) and post-synaptic (output) neurons spike firing, respectively (Figure 2c). The nature of the
synaptic change is what depends on the causality between the input and output neurons activations.
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Figure 2. (a) Neuromorphic memristive array. Each node within the crossbar corresponds to the weighted
connection (synapse) between two neurons, implemented with a memristor. (b) The conductivity of the
device can be changed according to the activity of the neurons it connects. (c) STDP function.

In order to demonstrate the plasticity property of memristive devices, the input and output
activities are assumed to be in the form of voltage pulses, and the significant change in ∆G/G occurs
when these pulses meet at the terminals of the synaptic device, overlapping in time, causing a significant
voltage drop (Figure 2b). In this case, the STDP function (Figure 2c) can be tuned by changing the shape
of the input and output neuron pulses [12–15]. The most popular shape of the STDP, resembling the
one reported in a biological culture by Bi and Poo [16] (Figure 2c shows the average of the experimental
data), has already been reported in many electronic devices [12,13,17–21]. However, the possibility
to tune the STDP function shape, concerning the electronic synapse electrical characteristics, is often
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skipped. Variety in STDP functions appears in biological synapses [8,12–15]. This variety extends the
application of the STDP as a local learning rule in artificial intelligence learning schemes [12], especially
in those based on unsupervised techniques.

1.2. Unsupervised Learning and Self-Organizing Neural Networks

Unsupervised learning involves a methodology where the training stage does not require the
calculation of any error made by the system for a certain input, in order to improve its performance.
That is, both user and system are not meant to know the actual solution of the problem entered to the
network, nor detailed information about the input dataset properties, in contraposition with supervised
learning techniques. Unsupervised learning implementation would be beneficial for neuromorphic
architectures, since on the one hand, it does not rely on the error computation and correction as the
supervised learning techniques do, so extra circuitry specialized for this purpose could be avoided.
Furthermore, unsupervised learning models, such as the above mentioned STDP learning rule, are
considered to be biologically plausible. By reverse engineering simple and primitive biological nervous
systems as a first approach, the neuromorphic community would take advantage and inspiration
because of the simplicity of their design, compared to the ones found in artificial deep learning neural
networks, which present an extremely high density of synapses, neural layers and complex pathways
and dynamics. Applications of unsupervised learning algorithms are related to classification, symbolic
representation, and associative tasks, usually by extracting the relevant statistical features of the input
dataset. Examples of bio-inspired unsupervised learning implementations based on memristive devices
for image recognition tasks can be found in [17–21]. However, the hardware-based implementation of
other unsupervised learning applications remains unexplored.

A particular example of bio-inspired unsupervised learning is the self-organizing map (SOM),
also called Kohonen network [22]. Applications of SOM extend to financial predictions, medical
diagnosis, or data mining, among others [22–24]. The aim of this learning algorithm consists in
mapping the input dataset onto a regular and usually two-dimensional grid, which corresponds to
the output layer, under an unsupervised and competitive learning scheme. A diagram of a Kohonen
network is depicted in Figure 3a. In here, the input layer is unidimensional and consists of three nodes
(input neurons). The output layer is bidimensional, and each node corresponds to an output neuron.
Output neurons can communicate to their immediate neighbors. All of the input nodes have a weighted
connection (synapse) with every output node. The weight of the synapse determines how strong an
output neuron responds to the activation of a particular input. These neural networks are inspired in
the topological maps found in the sensory-processing areas of the brain (Figure 3b), where neurons
that respond to similar inputs are spatially located very close. The key of this algorithm consists in
evaluating the similarity between the set of weights of an output neuron and the input data, which is
fed to the system as a vector. The original software algorithm consists in the sequential execution of
the following steps, parting from a network with randomly initialized weights. For randomly chosen
input from a particular dataset, the Euclidean distance between the input and the weights of every
output neuron must be computed, in order to determine which is the output neuron whose weights
are closer to the input. This element is identified as the best matching unit (BMU) and its weights are
updated in order to slightly reduce its distance with the input data.

Once trained, these networks present topographical organization such as the one found in sensory
processing areas of the brain, such as the tonotopic map found in the primary auditory cortex, in charge
of processing sound (Figure 3b). In here, the neurons that respond to similar sound frequencies
are grouped in clusters, which appear in a frequency-ordered fashion. In this way, similar inputs
activate neurons in the output layer which are found close to each other, whereas dissimilar ones
affect distant regions [22,25–27]. The output layer neurons in a trained SOM appear organized in
clusters, whose relative size and location provides statistical information of its corresponding input
data item characteristics. It is actually the presence or absence of an active response of an output
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neuron cluster, and not so much the exact input–output signal transformation or magnitude of the
response, that provides an interpretation of the input information [22–24].

Many methods are derived from the SOM algorithm, where the neural system is built with SOMs
as basic blocks or layers, such as the multi-layer or hierarchical SOM (HSOM) [22]. In the latter
case, the network is constituted by concatenating SOMS in a feed-forward way (cascade), where one
SOM layer is trained by receiving as input the outputs of another previous SOM. The advantage of
HSOMs is that they require less computational effort than a standard SOM to perform certain tasks or
problems that present a hierarchical or thematic structure, and moreover, HSOMs provide a simpler
representation of the results, which leads to an easier interpretation because they allow the user to
check what clustering has been performed at each level of the hierarchy.

Materials 2019, 12, x FOR PEER REVIEW 4 of 18 

 

neuron cluster, and not so much the exact input–output signal transformation or magnitude of the 
response, that provides an interpretation of the input information [22–24]. 

Many methods are derived from the SOM algorithm, where the neural system is built with SOMs 
as basic blocks or layers, such as the multi-layer or hierarchical SOM (HSOM) [22]. In the latter case, 
the network is constituted by concatenating SOMS in a feed-forward way (cascade), where one SOM 
layer is trained by receiving as input the outputs of another previous SOM. The advantage of HSOMs 
is that they require less computational effort than a standard SOM to perform certain tasks or 
problems that present a hierarchical or thematic structure, and moreover, HSOMs provide a simpler 
representation of the results, which leads to an easier interpretation because they allow the user to 
check what clustering has been performed at each level of the hierarchy.  

 
Figure 3. (a) Example of a self-organizing map. (b) An example of a topological map in the human 
brain, corresponding to the tonotopic map of the primary auditory cortex. 

In this work, we propose an unsupervised hardware adaptation of the SOM algorithm to be 
implemented in an on-line learning neuromorphic OxRAM-based crossbar array, by means of bio-
inspired unsupervised learning methods, being the first of its kind, to the best of our knowledge. 
There is another work related to the electronic implementation of the SOM algorithm: [28] is also a 
simulation work, and is based upon the previous calculation of the desired synaptic weight update, 
hence not being an unsupervised learning algorithm. In contrast, in our work we provide a fully 
unsupervised learning algorithm, in which the weight updating process relies on the STDP property 
of the employed memristive devices. For the sake of simplicity, a very simple input dataset is used 
as an example, for which a color identification task is provided. First of all, a model from a previous 
work [29] is used to analyze the plasticity property of the tested devices, which is further verified 
experimentally. A methodology for tuning the STDP function, which is a key element to control the 
learning process, is proposed. The obtained STDP curves are used as the local learning rules within 
the adapted SOM algorithm, for which a fundamental application is demonstrated. The learning 
mechanisms introduced in this work can concatenate multiple SOMs without extra circuitry, 
providing a step towards the implementation of hardware-based hierarchical computing systems. 

2. Materials and Methods 

2.1. Electrical Characterization and Device Modeling 

The devices employed in this study are TiN/Ti-HfO2-W metal–insulator–metal (MIM) structures. 
They were fabricated on silicon wafers either with an oxide isolation scheme or as a single crossbar 
on a thermally grown 200 nm-thick silicon dioxide. The 10 nm-thick HfO2 layer was deposited by 
atomic layer deposition at 225 °C using TDMAH and H2O as precursors, and N2 as carrier and purge 
gas. The top and bottom metal electrodes were deposited by magnetron sputtering and patterned by 
photolithography. The bottom electrode (BE) consists of a W layer and the top electrode (TE) of TiN 
on a 10 nm-Ti layer acting as oxygen getter material. The fabricated devices are square cells with an 
area of 5 × 5 μm2. Figure 4a shows a scanning electron microscope (SEM) (IMB-CNM (CSIC), 
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In this work, we propose an unsupervised hardware adaptation of the SOM algorithm to
be implemented in an on-line learning neuromorphic OxRAM-based crossbar array, by means of
bio-inspired unsupervised learning methods, being the first of its kind, to the best of our knowledge.
There is another work related to the electronic implementation of the SOM algorithm: [28] is also a
simulation work, and is based upon the previous calculation of the desired synaptic weight update,
hence not being an unsupervised learning algorithm. In contrast, in our work we provide a fully
unsupervised learning algorithm, in which the weight updating process relies on the STDP property
of the employed memristive devices. For the sake of simplicity, a very simple input dataset is used
as an example, for which a color identification task is provided. First of all, a model from a previous
work [29] is used to analyze the plasticity property of the tested devices, which is further verified
experimentally. A methodology for tuning the STDP function, which is a key element to control the
learning process, is proposed. The obtained STDP curves are used as the local learning rules within
the adapted SOM algorithm, for which a fundamental application is demonstrated. The learning
mechanisms introduced in this work can concatenate multiple SOMs without extra circuitry, providing
a step towards the implementation of hardware-based hierarchical computing systems.

2. Materials and Methods

2.1. Electrical Characterization and Device Modeling

The devices employed in this study are TiN/Ti-HfO2-W metal–insulator–metal (MIM) structures.
They were fabricated on silicon wafers either with an oxide isolation scheme or as a single crossbar
on a thermally grown 200 nm-thick silicon dioxide. The 10 nm-thick HfO2 layer was deposited by
atomic layer deposition at 225 ◦C using TDMAH and H2O as precursors, and N2 as carrier and purge
gas. The top and bottom metal electrodes were deposited by magnetron sputtering and patterned by
photolithography. The bottom electrode (BE) consists of a W layer and the top electrode (TE) of TiN on
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a 10 nm-Ti layer acting as oxygen getter material. The fabricated devices are square cells with an area
of 5 × 5 µm2. Figure 4a shows a scanning electron microscope (SEM) (IMB-CNM (CSIC), Barcelona,
Spain) image of the tested structures, where the TE and BE are indicated. More details on the electrical
behavior and fabrication process of these samples can be found in [30,31].
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Figure 4. (a) SEM image of the tested structure (b) Experimental I-V characteristics of the analyzed
devices [29]. A voltage limit for the RESET process was set to −1.6V, whereas for the SET process,
the conductivity-controlling parameter was the maximum current driving the device (current
compliance, Ic) set by the user.

In Figure 4b, a few examples of experimental I–V curves are shown, where it can be noted that
the tested devices display a bipolar resistive switching behavior, consisting in transitions from high
(HRS) to low (LRS) resistance states and vice versa. These transitions are identified as the SET and
RESET processes, respectively. The main results of a previous work [30] show that small changes in the
conductivity at the low resistance state (LRS) can be induced by means of controlling the maximum
current driving the devices during the SET process, proving their plasticity property, and thus indicating
that the tested devices are suitable to play the synaptic role in a neuromorphic crossbar-array. In [29],
a pulse-programming setup was proposed, with the aim of analyzing in which ways fine changes
in the conductivity of the device can be induced by the application of single pulses. The proposed
setup allowed obtaining the experimental G–V characteristics of the tested devices, by means of the
application of increasing and decreasing amplitude single pulses with a fixed pulse-width over time.
Results from [29] are shown in Figure 5, where the pulse amplitude and the conductivity measured
after every single applied pulse (in Go units, being Go = 77.5 µS the quantum of conductance unit)
are plotted against the number of applied pulses. The conductivity state G was measured after the
application of every pulse (Figure 5a, red pulses), by means of applying 50mV (Figure 5b, gray pulses)
and reading the current flowing through the device. In the analyzed voltage range, conductivity can
take values between ~10 Go and 30 Go.

By means of representing the obtained experimental conductivity as a function of the applied
voltage, the experimental the G–V characteristics can be fitted according to the compact model of [32].
In here, the so-called hysteron function is used to describe a time-independent conductivity window
as a function of the applied voltage in non-linear memristive devices. An example of an ideal hysteron
function of a non-linear memristive device is depicted in Figure 6a. The normalized internal state
λ is represented as a function of voltage drop at the memristor. The top and bottom boundaries
are identified as the maximum (gmax) and minimum (gmin) conductivity states. In order to increase
(decrease) the conductivity state of the device, a positive (negative) voltage has to be applied so that
λ shifts towards gmax (gmin), describing the Γ+ (Γ−) trajectories. The pair of logistic ridge functions
Γ+ and Γ− can be modeled with two cumulative distribution functions (cdf) [29], related to the pulse
amplitudes applied to the non-linear memristive device, being V+, σ+ and V−, σ− the average and
standard deviation values of the cdf related to Γ+ (for dV/dt > 0) and Γ− (dV/dt < 0) curves, respectively.
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Both of them define the boundaries of the possible conductivities of the device within a range limited
by the minimum and maximum conductivity states, gmin and gmax, respectively.
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(gray dots) and an example of a fitted particular case (blue and red lines) G–V characteristics. The fitting
parameters V± and σ± are also indicated at the top left and bottom right parts of the figure.

In Figure 6b, examples of the experimental G–V characteristics of the tested device are shown,
alongside an example of a fitted curve (continuous lines). In here, a conductivity state sub-space is
identified as a sub-hysteron (gray area). The main parameters which allow confining the conductivity
of a device within the gSHmax and gSHmin conductivity boundaries as the top and bottom limits of the
identified sub-hysteron are V±max and V±min. Asymmetry of the obtained G–V characteristics can be
noted by comparing the mean value on the two cdf, V+ and V−, which were used to fit the experimental
data to the logistic ridge functions Γ+ and Γ−. The obtained time-independent empirical model
allows computing the conductivity change of the employed devices when single pulses with varying
amplitude are applied, such as the ones required for studying the STDP property of electronic synapses.

2.2. STDP as a Learning Rule

For this application, the experimental STDP windows obtained in [33] were fitted using the above
described model. The experimental STDP measurements were obtained by means of applying identical
pre and post-synaptic waveforms with a spike width of 1 ms and a maximum voltage of |0.7Vpeak|

(Figure 7a), which corresponds to the voltage required to set the conductivity state of the device at
gSHmin ~15Go (Figure 6b). Two examples of the experimental and modeled STDP functions are shown
in Figure 7b. In here, a bias towards synaptic depression is observed. This biasing is related to the
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asymmetry observed in the G–V characteristics shown in Figure 6b. Also, saturation of the synaptic
weight update is observed for small and negative ∆t. This occurs mainly because the voltage drop
applied to the device is so large in magnitude, that the reached conductivity state after its application
is its lowest value gmin, so the dependence of ∆g with ∆t is lost for −0.5 ms < ∆t < 0 ms.
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In order to get symmetrical STDP functions, instead of using identical pre and post-synaptic
waveforms, we propose using the pair of synaptic pulse shapes shown in Figure 8a (pre) and Figure 8b
(post), so the STDP function can be easily tuned in terms of biasing, according to the desired working
regime of the employed devices. The resulting equivalent voltage drop applied to the simulated device
is depicted in Figure 8c. The maximum and minimum voltage drops at the synaptic device are defined
as the V±max and V±min parameters, respectively (see Figure 6b). By using the proper V±max and V±min

values, a linear operation regime can be achieved (gray area identified as a sub-hysteron in Figure 6b),
where the conductivity state can be finely updated according to the STDP rule, and the saturation of
∆G is withdrawn. Moreover, the stochasticity related to the RESET process is avoided. In our case, the
following parameters were employed: Vpre

+ = 0.7 V, Vpre
− = −0.225 V, Vpost

+ = 0.875 V and Vpost
− =

−0.25 V. With these voltages, the conductivity is kept within a sub-hysteron region, in this case ranging
from gSHmin = 0.33 (13 Go) to gSHmax = 0.8 (22 Go).

This procedure allows implementing the balanced STDP functions shown in Figure 8e (simulation),
where multiple cases involving different initial conductivity values (ginit) within the sub-hysteron
region are shown. Since there is a dependence on the STDP function shape and ginit, the symmetry
in the induced conductivity changes has to be checked at the normalized conductivity state of ginit

~0.5 within the sub-hysteron region, corresponding to ginit ~17.5 Go in our case. These results support
that symmetrical conductivity changes can be induced by using the proposed pre and post-synaptic
waveforms, this symmetry being a key factor for increasing the neural network performance [6].
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applied to the sample for an active (c) and silent (d) pre-synaptic (input) neuron. (e) Balanced STDP
function. Each curve corresponds to a different initial conductivity state of the same device.

2.3. Self-Organizing Neural Networks Based on OxRAM with Fully-Unsupervised Learning Training

The obtained symmetric STDP function in Figure 8e is used as a local learning rule in a proposed
electronic implementation of a unidimensional self-organizing map (SOM). The simulated system consists
in a single memristive synaptic layer, which is implemented by an OxRAM-based crossbar array. Input
and output neurons share the same structure and functionality, so that the neuron layer roles can be
interchanged, and multiple synaptic layers can be concatenated without adding extra circuitry.

The neurons are considered to be integrate-and-fire neurons: the received charge is accumulated,
which causes the neuron to depolarize along its membrane (membrane potential), until a certain
threshold potential is reached. This process is analogous to a capacitor being charged. Finally, due to
this depolarization, the neuron is able to transmit an electrochemical signal towards its synapses,
thus communicating with post-synaptic (output) neurons. A schematic of the proposed electronic
neuron is shown in Figure 9a. It has six input/output terminals: terminals In1 and In4 receive current
signals from the previous and following synaptic arrays, respectively. These signals polarize the
neuron and update its accumulated charge, related to the membrane potential. The depolarization is
monitored by means of comparing the accumulated charge to a charge threshold, Qthr. In the case of
an output neuron, when this threshold is reached, the neuron is discharged (its accumulated charge is
reset to 0). Then, it triggers a voltage pulse backwards through Out1 and forwards via terminal Out4,
towards its synapses. Lastly, I/O2 and I/O3 are communication ports related to the neuron neighbor’s
activity signaling, providing communication with the neuron immediate neighbors. For instance, if a
neuron fires a pulse, its terminal I/O2 and I/O3 flags will be activated, so its neighbors are warned and
will consequently trigger a pulse, which is independent of its actual accumulated charge. When this
event occurs, the accumulated charge of the neighbors is also reset. The system depicted in Figure 9b is
a simple example of a 2 × 2 crossbar array, showing all of the above mentioned connections. The system
consists in two neural layers behaving as the input and output layers. The input and output layers
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are connected through the 2 × 2 memristive crossbar array, where every intersection corresponds to a
weighted connection between an input and an output neuron, provided by a memristor. Adjacent
neurons within the neuron layers are connected (black wide line) in order to provide lateral interaction,
which is one of the key aspects of the proposed hardware-adapted learning algorithm.

For simplicity, a system with a single synaptic layer is considered in this work. The neuron
behavior was included mathematically. Implementations of the designs of electronic neurons based
in CMOS technology can be found in [34,35]. In the case of a single synaptic layer system, such as
the one depicted in Figure 9b, the input neurons of the system are in charge of triggering voltage
pulses through terminal Out4 according to the input dataset (signaled via In1), sourcing or draining
current from/to the synaptic layer, and have the integrate function disabled, as well as the neighbor
interaction. Output neurons integrate the received current through terminal In1, which corresponds to
the summation of each of the input neurons voltage pulse, weighted by its connection weight or device
conductivity. These output neurons fire a post-synaptic pulse backwards, as a response to the input
neurons activity if their accumulated charge reaches the charge threshold, and also communicate with
their immediate neuronal neighbors within the output layer via terminals I/O2 and I/O3. Its activity is
measured through Out4. Finally, its terminal In4 is left unconnected.
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Figure 9. (a) Schematic of the proposed electronic neuron, which can play both input and output
neuron roles. (b) A simplified scheme of the proposed self-organizing neuromorphic network.

A few aspects concerning the learning algorithm are worth to be highlighted: lateral neural
neighbor interaction and vertical inhibition within a synaptic column. Lateral neighborhood interaction
is one of keys regarding the self-organizing property of the network. According to T. Kohonen
in [22], “it is crucial to the formation of ordered maps that the cells doing the learning are not affected
independently of each other but as topologically related subsets, on each of which a similar kind of
correction is imposed”. This means that when one output neuron receives a signal from a neighbor,
which has recently fired a voltage pulse, it is also meant to trigger an identical pulse, both to its
own connections with the input layer, and also to its other output neuron neighbor. In other words,
the output activity of a particular output neuron propagates through the output neuron layer, leading
to the activation of its neighbors. The number of affected neighbors can be defined externally, as well
as the shape of the neighborhood interaction function.
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The implementation of a neighborhood interaction function whose amplitude decays laterally is
often used in the software versions of the self-organizing networks (Figure 10). This is motivated by
both anatomical and physiological evidence of the way neurons in nervous system interact laterally.
The most popular choices for this function include a rectangular (abrupt) interaction function, Gaussian
(a soft transition) or the so-called Mexican hat function, which consists in a soft transition involving the
inhibition of the outermost neurons within the neighborhood. In our case, the decaying amplitude of the
neighborhood interaction function is inherent to our system, because of the implementation of the above
described STDP function as a local learning rule. Despite the neighbors of the maximally responding
output neuron are intended to fire an identical pulse, this pulse will be delayed in comparison with the
response of the main responding neuron (center of the neighborhood). With increasing ∆t, the induced
∆G/G will also decay with increasing lateral distance, as shown in Figure 10. The radius or number of
affected neighbors can be set externally by controlling the time delay: the whole neighborhood activity
can be delayed (all delayed, AD), and the propagation delay (PD) between immediate neighbors.

In Figure 10, different neighbor interaction functions are depicted as examples considering different
types of delay, where ND states for “not delayed”. The ND curve corresponds to a function where
minimum delays are considered: the main firing output neuron B is firing with an accumulative delay
AD of one time unit with respect to the last pre-synaptic pulse sent by neuron A, and the PD is also of
one time unit. Therefore, the time delay in which a neuron C within the neighborhood fires a pulse
after the main responding neuron A has triggered one, as an answer to an input neuron, corresponds
to AD + PD·(N+1), being N the number of neurons which separate neurons B and C. In Figure 10,
the distance between neurons B and C is none, thus N = 0. The AD/NPD and AD/PD curves present a
delay of AD = 5 time units, so that all the conductivity changes in the neighborhood are diminished
equally. The difference between these two functions relies on the propagation delay: AD/NPD has the
minimum PD, whereas AD/PD has a PD of two time units. As seen in Figure 10, increasing PD results
in a narrower function, reducing the number of affected neurons.
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Figure 10. Neighborhood interaction functions based on the STDP rule. The ND curve (yellow squares)
shows an example where any delay is considered. AD/NPD curve (blue triangles) consists in a delayed
response from the main spiking neuron, but minimum propagation delay. The AD/PD curve is an
example of the presence of both delays.

Another important aspect is the inhibition of the synapses within the synaptic column of an active
neuron. The synaptic column comprises all of its synapses, some of them connecting the neurons
with inactive input neurons. For our system, both potentiation of the synapse, relating the firing
neuron with the active inputs, and the depression of its synaptic weights which connect it with the
inactive inputs, are mandatory to efficiently group or cluster the output neurons, so that a complete
correction of the synaptic weights (and thus, of its neighborhood) is performed. This means that if a
particular OxRAM conductivity is increased as a result of applying the STDP rule, the other OxRAMs
in that synaptic column, connecting the same output neuron with the inactive input neurons, shall
be depressed (i.e., their conductivity is decreased). We refer to this process as synaptic inhibition,
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which leads to an increase of the sensitization of an output neuron to a single input neuron, facilitating
clusters specialization to a specific input property. In order to implement this feature electronically,
the silent input neurons at a particular time are not actually silent, but rather applying a small and
negative voltage through terminal Out4 to their synapses, in analogy with the biological neurons’
resting potential. When an output neuron is firing a pulse backwards, the induced voltage drop at the
synapses connecting to a silent input neuron will cause a decrease in their conductivity states. In this
case, there is no direct relationship with the STDP rule, since the induced voltage drop at the synapses
is not related to any time correlation between the pre and post-synaptic activities.

A sketch of the operation of the 2 × 2 crossbar array with active and silent neurons, where all of
these signals are indicated, is shown in Figure 11. In here, the arrows indicate the current flow in the
system. The accumulated charge of the output neurons is also depicted. The input neuron layer consists
on neurons A and X, whereas the output neuron layer consists on neurons B and C. In Figure 11a, input
neuron X fires a pulse through Out4, and input neuron A remains silent. These signals update the
accumulated charge of the output neurons B and C. In Figure 11b, input neuron A fires a pulse, and output
neuron B accumulated charge reaches the charge threshold, Qthr. In Figure 11c, the accumulated charge
of B is reset, and B fires a pulse delayed by a certain delay AD with respect to the firing time of input
neuron A. The voltage drop at the synapses within the B column causes a change in their synaptic weights.
Then, neuron B communicates with its neighbors (only neuron C is depicted). Finally, in Figure 11d,
neuron C triggers a pulse with increased time delay with respect to the firing time of A, AD + PD, and its
accumulated charge is reset. Because its pulse presents a larger time delay, the magnitude of the change
of its synapses will be smaller, according to the induced STDP function.
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Figure 11. Sketch of the 2 × 2 crossbar array operation. (a) Input neuron X fires a pulse through Out4,
and input neuron A remains silent. (b) Input A fires a pulse, and output neuron B accumulated charge
reaches the charge threshold, Qthr. (c) The accumulated charge of B is reset, and B fires a pulse delayed
by AD with respect to the firing time of A. (d) Neuron B communicates with its neighbors (only C is
depicted). Neuron C triggers a pulse delayed AD + PD with respect to the firing time of A, and its
accumulated charge is reset.
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Lastly, the methodology suggested for the unsupervised self-organization process to arise is
discussed. The synaptic layer is randomly initialized, that is, the conductivity state of each RRAM
device is set randomly between the gSHmin and gSHmax values defined previously in Figure 6b. In order
to amplify the initial differences between each output neuron synaptic weight values, the threshold
potential has to be set large enough, so that the first post-synaptic firing occurs after the presentation of
at least 100 pre-synaptic pulses in the case of our electronic synapses. This value takes into account the
initial conductivity state values of the employed synaptic devices, and the voltages required to induce
the conductivity change according to the STDP function (Figure 8e).

The active input neurons provide current (red arrows) to the output neuron layer, whereas silent
input neurons drain current (blue arrows) from the system because of the polarity of its resting potential.
In this way, active inputs depolarize the neurons increasing their membrane potential, whereas silent
inputs decrease it (Figure 11a,b). The identification of the best matching unit by means of calculating
the Euclidean distance of the whole set of synaptic columns is avoided, which simplifies the electronic
implementation of the learning algorithm compared to the original Kohonen’s self-organizing learning
algorithm, despite a larger number of iterations being required in order to execute this step. On the
other hand, if a neuron has recently fired a spike, it will present a refractory period, meaning that it will
not be able to fire again after some time, because its accumulated charge has been reset. By doing this,
the output neurons which have not fired recently are encouraged to do it. We do not explore the effects
of dynamically changing the threshold potential of the output layer. However, a dynamic threshold
could improve the performance in terms of convergence time of learning algorithms [36].

The whole training stage is summarized in the flow diagram depicted in Figure 12. Initially, all
of the devices are assumed to have a random conductivity around 15–18Go in our case. The output
neurons membrane potentials are also initialized to zero. The input dataset is then fed to the system
through the input neurons, which are triggering the pre-synaptic voltage waveform depicted in
Figure 8a if active, or applying their resting potential (small negative voltage) to the synaptic array,
if silent (as shown in the sketches of Figure 11a,b). The output neurons potentials increase as the
output neurons integrate the pulses of the input neurons that they receive, which are weighted by
the conductivity of the synaptic devices. That is, the output neurons are receiving a charge whose
magnitude is related to the input activity and the weight of the connections between each of them and
the input layer. Eventually, one of the output neurons potential will reach the defined charge threshold
Qthr. At this point, the weight updating process occurs: the output neuron resets its accumulated
potential to zero, and triggers the post-synaptic voltage waveform from Figure 8b backwards, affecting
its synapses (Figure 11c). The maximum voltage drop given by this post-synaptic voltage pulse and the
active input neuron corresponds to the sum of V+

pre and V−post (positive ∆t), so this particular synapse
is strengthened. On the other hand, the synapses with silent input neurons are depressed, being their
voltage drop equal to the sum of V+

pre and the input neurons resting potential, which is a DC voltage
of 0.2·V+

pre V. Therefore, the induced conductivity change in these synapses has a smaller magnitude
in comparison with the one induced to the synapse that connects the winning output neuron with the
active input neurons. After the weight updating of the main neuron has been executed, its activity is
propagated through the output layer, affecting its immediate neighbors. These other output neurons
trigger a voltage pulse with the same amplitude, but with a certain accumulated delay (Figure 11d).
That is, the magnitude of the change in the strengthened synapses will be decreasing as the output
signal propagates through the output layer, until reaching a non-significant synaptic change, following
the neighbor interaction function of Figure 10. The affected neighbors will also reset their output
potential to zero.
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In order to reach a convergence state of the map, the maximum synaptic change is diminished
by increasing the firing neuron time delay over the iterations. Also, the size of the neighborhood is
naturally decreasing over time, since the neighbor firings are consequently delayed. At the end of this
training stage, the crossbar weights are organized in clusters, which present overlapped areas. In this
way, nearby output neurons will be prompt to react to the same input, whereas distant output neurons
will be sensitized to other inputs, as occurs in the software version of the Kohonen map.

3. Application

A fundamental application of the proposed autonomous SOM is shown as an example. In here,
a single synaptic layer system of 150 OxRAM synapses is simulated. The synapses are distributed in a
3 × 50 array, 3 being the size of the neuron input layer, and 50 the length of the output neuron layer.
The input of the system are the red (R), green (G), and blue (B) color components of a pixel of an image.
During the training stage, only one of these components is shown at each time, that is, only one input
neuron is firing a pre-synaptic pulse (Figure 8a) with the Vpre

+ value as the one shown above (Vpre
+ =

0.7 V), i.e., is active at each time. The silent input neurons resting potential is set to a DC voltage of
−0.2·Vpre

+ = −0.14V. These voltage waveforms are weighted by the synaptic devices conductivities,
which are randomly initialized between 15 Go and 18 Go. The accumulated charge threshold of the
output neurons has to be set in a way that only one output neuron reaches this threshold after a certain
time. In the case of the simulated system, the accumulated charge threshold is set to Qthr = 1 mC,
so that initially only one output neuron fires a post-synaptic spike. This firing is delayed initially by
seven time units (being in our case a time unit t = 0.05 µs, so that initially, AD = 0.35 µs) with respect
to the pre-synaptic pulse, so that the maximum relative conductivity change magnitude of a 10%
according to the STDP function depicted in Figure 8e. The propagation delay PD is kept constant at
five time units = 0.025 µs.
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Through the iterations, the system is able to self-organize in an autonomous way, without any
intervention, being a fully-unsupervised training scheme. After the training stage, the memristors in
the column of every neuron within the output layer have a different synaptic weight combination,
according to the conductivity states found in the memristors’ column of the output neuron. An example
of the obtained topographical pattern is depicted in Figure 13. In particular, Figure 13a displays the
gray-scale used to represent the synaptic weights of Figure 13b, which are normalized according
to the maximum and minimum conductivity values found in the sub-hysteron region of Figure 6b.
The highest conductivity states, depicted in white, correspond to 21Go, whereas the lowest ones in black
correspond to 13.5 Go, being within the defined range of gSH (13–22Go). Figure 13b is a representation
of the simulated crossbar array after the training, where the synaptic weights are depicted according
to the above mentioned gray-scale. The size of this matrix is of 3 × 50 (3 rows and 50 columns),
corresponding to the number of input and output neurons, respectively, which are not shown in this
representation. It can be seen that, in each of the three rows of the matrix, the synaptic weights increase
and decrease gradually. The synapses with the highest synaptic weights of the three rows are located
in different regions of the crossbar array, corresponding to the 24th and 50th output neurons in the
case of the first row, to the 15th for the second row, and lastly, to the 46th for the third row. The first
row of synapses was connected to an input neuron representing the red color component, whereas the
second and the third rows were connected to input neurons representing the green and the blue color
components, respectively. Then, nearby output neurons appear to have similar colors components
assigned, as expected. Hence, groups of output neurons sensitive to one of the primary colors used
during the training stage can be identified.
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Figure 13. (a) Gray-scale used to represent the synaptic weights of the crossbar array. (b) 3 × 50
crossbar array displaying the normalized conductivity states of the simulated OxRAM devices after the
learning stage. (c) Output neuron layer color assignation. The system shows a topographical or spatial
organization of the RGB color components. (d) Activation response of the output neurons when a red
(red line with diamonds), green (green dotted line), or blue (blue line with triangles) color is presented
as an input.

The synaptic weights from every output neuron are related to a RGB coded color, and each of
the RGB components is represented by one or two groups of output neurons. The system shows a
topographical or spatial organization of the RGB color components. According to Figure 13b, there are
output neurons that have a synapse with a large synaptic weight connecting to only one of the three
input neurons, whereas their other synapses have a low synaptic weight. This means that these neurons
will increase its accumulated charge rapidly, if the input neuron that they are tightly related to shows a
strong activity (it fires many pulses in a brief period of time), i.e. these neurons are highly connected to
an input neuron, and thus, are highly specialized to a certain color component. Some output neurons,
such as the ones found between the 7th and the 13th output neurons, have two synapses with medium
synaptic weights, whereas the third one has an extremely low weight. These neurons have a significant
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relationship with two input neurons, and will respond equally to both of them. If these two input
neurons are firing at the same time, because a color consisting of a mixture of green and blue is being
used as an input to the system, the output neurons with the two medium-weight synapses will show a
stronger response, compared to their response given when only one input neuron is active.

The specialization of the output neurons to a certain input neuron or to a combination of them
can be represented by computing the resulting color given by the linear combination of the synaptic
weights, relating each of the output neurons to each of the input neurons. The output neuron layer
color assignation is represented in Figure 13c, where the color which each of the output neurons is
specialized to is depicted. The output neurons’ specialization to a certain color component or its
combinations can also be checked by plotting their activation pattern, that is, the change in their
accumulated charge due to a certain input activity. Examples of activation patterns of the simulated
crossbar caused by single input activity, meaning that only one input neuron is active at a certain time,
are shown in Figure 13d, consisting in the increment of the output neurons’ accumulated charge when
a red (red line with diamonds), green (green dotted line), or blue (blue line with triangles) color is
presented as an input. By means of comparing the output neurons activation as a response of the input
data, the system is able to map and classify any combination of the presented colors to the most similar
color cluster (i.e., the one showing the highest activation), behaving as a simple self-organizing neural
network, such as the software version of the self-organizing map neural network. It is the activation of
a particular region of the output neuron layer, corresponding to a certain cluster of output neurons,
which gives the information of which input color is being fed to the system. Since the mapping relies
on the activation of a group of neurons, redundancy is actually being added to the system. For instance,
if one neuron or some synapse is damaged or has an unexpected behavior, the system performance is
not going to be affected by it. In a previous work [37], the training reliability of the proposed algorithm
was checked. To do so, in [37], different cycle-to-cycle variability levels were considered, and it was
proved that the training algorithm presents a significant tolerance to noise and synaptic variability.

The training stage time can be computed in terms of the number of applied pulses and the time
scale of the implemented STDP function. The crossbar array after the training shown in Figure 13b was
developed within two presentations of the whole input dataset, consisting of 106 pulses of a defined
total spike-width T = 2 µs (see Figure 8a), being the time between the input pulses of 10T, which
corresponds to a total training time tT = 24 s. The design of the proposed self-organizing map is based
on the fact that there is no difference in the electronic design and behavior between the input and
output neurons. Because the training scheme is based on hardware-adapted unsupervised learning
techniques and the neurons are designed to be able to implement both pre and post-synaptic roles
simultaneously (Figure 9a), it is possible to concatenate multiple crossbar arrays, where information
flows in a bidirectional manner.

By means of adding computing layers to a self-organizing neural network such as the one
presented in this work, hierarchical computation can be achieved. Figure 14 displays an example
of a hierarchical SOM system, where the first synaptic layers are constituted by SOMs, such as the
color-mapping SOM presented in this work (Layer 1.1), which can also be trained with audio data
(Layer 1.2) as to classify the sounds of English vowels. This primary level of the hierarchy (Level 1)
pre-processes the information to be fed to higher-order levels, where an associative process between
colors and sounds takes place in another SOM, located in Level 2. In other words, the hierarchy permits
to develop more complex data structures involving not only the self-organizing property, but also
associative learning, which can be summarized as the ability to correlate different memories to the
same fact or event [38]. This would represent a step forward towards reproducing complex neural
processes and biologically-plausible learning mechanisms in neuromorphic architectures [38].
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4. Conclusions

Neuromorphic engineering takes inspiration from the biological neural networks learning models,
especially when unsupervised techniques are preferred. The most popular learning rule related to
unsupervised learning in electronic synapses is the STDP, because it can be easily induced in analog
memristive devices, such OxRAM. In this work, a methodology to obtain a symmetrical STDP function
in terms of conductivity changes is proposed. It is further applied in the first hardware-adapted version
of the self-organizing map (SOM) learning algorithm, which includes other bio-inspired mechanisms
in order to achieve topological organization in an autonomous way. This algorithm is performed
in a simulated single-layer crossbar array based on the tested devices, for which a fundamental
color-mapping application is shown. The introduced system can be potentially used as the basic
building block of a multi-layer neuromorphic system, in which hierarchical computing can be achieved
without modifying the training algorithm or adding extra circuitry.
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