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Abstract: One of the main obstacles for memristors to become commonly used in electrical engineering
and in the field of artificial intelligence is the unreliability of physical implementations. A non-uniform
range of resistance, low mass-production yield and high fault probability during operation are
disadvantages of the current memristor technologies. In this article, the authors offer a solution
for these problems with a circuit design, which consists of many memristors with a high operational
variance that can form a more robust single memristor. The proposition is confirmed by physical device
measurements, by gaining similar results as in previous simulations. These results can lead to more
stable devices, which are a necessity for neuromorphic computation, artificial intelligence and neural
network applications.

Keywords: memristor; neuromorphic computing; artificial intelligence; hardware-based deep
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1. Introduction

Since the theoretical [1] and practical [2] discovery of memristors, they have been
extensively studied [3–5] as elementary building blocks for artificial intelligence and neuromorphic
computing applications.

The expected properties of memristors for such applications are wide and analog resistance range,
low variance of device parameters and high device stability during long-term operation. Research has
been done [6] to find optimal materials that satisfy these expectations, but even then there are other
possibilities to further increase the capabilities of memristors.

In binary memory applications, three important properties should be considered. The first one is
having two clearly distinguishable states and these state declarations should apply to every element
in a memory array. The second one is having a fast switching speed between the states. To reach
the performance of the current complementary metal–oxide–semiconductor (CMOS) technology’s
RAM the switching speed should be less than 10 ns. The third one is cycle endurance, which is
the number of write–erase cycles without permanent device failure.

In crossbar-network applications, a certain amount of uniformity of the memristors is necessary.
The programming voltage and current levels are the same for every element and thus one expects that
they will behave similarly for the same input signals.

In the case of ANN applications, more deviance could be tolerated, but many state devices are
needed, so the memristors developed for binary or multi-state memory purposes will not be sufficient.

The mass production of devices, which can reliably fulfill these requirements, is not trivial.
If the production yield of single devices is less than 100 percent (as they are not functioning
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as memristors or they are outside of the accepted range of parameters), then they can also affect
the access circuit and the encompassing parts of the neuromorphic system.

If the production yield of single devices is less than 100 percent (as they are not functioning
as memristors or they are outside of the accepted range of parameters), then they can also affect
the access circuit and the encompassing parts of the neuromorphic system.

In very large scale integration (VLSI) device manufacturing, it is often easier and tends to cause
fewer faults to make the same device many times, and use it as a building block to emulate other devices,
instead of creating fewer, but different devices [7]. The same approach can be applied to memristors,
but one should take into consideration their special nonlinear behavior in the voltage–current domain.
This idea is further supported by the fact that memristors as two-terminals, could be manufactured
more easily on many layers on microchips [8] than transistors. However, with every extra layer,
the probability of device defects could also increase.

In order to maintain or even improve the virtual yield of the production, interconnected structures
of the memristor network are proposed. These circuits and the presented measurement results provide
a response to the above mentioned challenges. Our proposed circuit constructions can be efficiently
implemented on microchips, stacking the memristors of the circuit on top of each other. If a decent
multilayer production technology arises with memristors, the disadvantage of the usage of several
layers for the implementation of a single layer of memristor would be neglectable.

This paper is organized as follows: after the above problem proposal, the measurement
environment is introduced and explanatory discussion is given about our circuitry. The third section
contains the proposed circuits and the measurement results that are more detrimental to the yield.
This circuitry effectively addresses the proposed task. In the fourth section, the results are summarized
and analyzed. The article is closed with a brief summary of the results in the conclusion section.

2. Materials and Methods

2.1. Materials

The measured memristor devices are made of Ge2Se3 (germanium-selenide) and Ag (silver)
based chalcogenide dielectric with W (Tungsten) conductors. The devices have a switching threshold,
meaning that under a certain threshold voltage (0.1 V in our case), their state does not change.
This feature makes the memristor implementation desirable for applications where reading the state
should not change the state itself. On the other hand, usually it has very few metallic dendrites,
which makes the characteristic very coarse. The memristors are current-controlled and the typical
writing-erasing voltages are 2.5 V. One of the consequences of being current-controlled is that
the erasing process is faster than the writing process.

The measurement setup consists of an amplifier circuit as a current–voltage converter and a current
regulator resistor as it can be seen in Figure 1. The current regulator resistor helped to ensure that
the current does not reach high values where the device could become faulty. The used signal generator
and measurement device is an “NI ELVIS II+”, controlled by LabView software (National Instruments,
Austin, TX, United States). The sampling frequency is 500 kSample/s for every measurement. The state
of every device has been set to an OFF state before every measurement.
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Figure 1. Measurement environment circuit. The measurement setup consists an amplifier circuit
as a current controlled voltage source and a current regulator resistor. The used amplifier is a “TL082”.
The applied voltage Vx was strictly between −2.5 V and 2.5 V. The memristor symbol represents
either a single memristor or a network of memristors depending on the measurement.

2.2. Methods

2.2.1. Metrics

First of all, it is important to differentiate two main types of memristors from a functional
point of view. The first type is the analog purpose memristor (APM). It operates in the continuous
domain, which means it can have any resistance (or conductance) value in its operational range.
This might sound unrealistic as we know that at a very low scale, energy levels are quantized, but it
can be interpreted as the memristor having so many states that can be considered as infinitely many.
Another formal definition is that an APM can store any real value between the normalized range of
zero and one.

The second type is the digital (or discrete) purpose memristor (DPM), which has several but
countable states and the resistance value can only be one of these states. An important property is that
these states should be clearly distinguishable from each other. This type can be used trivially as an n
state memory unit based on the number of its possible states.

An extreme, but important case of the DPM is when only two states can be clearly distinguished,
as they can be further classified as binary purpose memristors (BPM). With its reduced capabilities
they lack applications beside their use as binary memory units supplementary to the CMOS based
digital systems or implementing routing in logic gate arrays, like Field programmable gate arrays
(FPGAs) [9].

In general, the mass production of BPMs is solved, there are manufacturers [10], who sell
commercial devices for an affordable price. DPMs are existing in an early development state at research
institutes [11]. APMs, which have practically an infinitely many numbers of states, are yet to be
introduced and might even be impossible to produce due to physical limitations [12]; or it requires new
quantum mechanical solutions, which are also under development [13]. In general, from an application
point of view, digital memory technologies use BPMs, artificial neural networks need at least DPM
complexity, and neuromorphic computation applications require APMs.

Our previously introduced circuit proposals [14] were intended to convert several DPMs into
a single APM. This was tested through simulations, which showed that this circuit topology can
achieve analog behavior when made from solely multi-state memristors. However, in this work real
device measurement results are given, which proves that the same circuit can effectively convert
several unreliable BPMs into a more reliable one.

The same control signal should produce the same result, both in the transient characteristics
and the final state of the memristor. By reliability, we mean a low variance of the characteristics.
Our aim was to avoid using a memristor model as an absolute reference, and be able to approximate
the real memristors more accurately. Therefore, our analysis focuses on the mean and variance of
characteristics of several measurements on the same device or network in a short period of time.
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The index of dispersion has been used as the measure of unreliability. It formulates as the sum
of the variance of the signal, normalized by the amplitude of the signal, due to the expectation that
higher amplitude signals have naturally higher variance. This measure is valid only for positive data
points. For this reason, the absolute value of the signal has been used:

u =
N

∑
i

σ2
i
|µi|

, (1)

where u is the unreliability of the device, N is the number of measurement points, i is a measurement
point of the measuring signal, σ2

i is the variance of a measurement point over the consecutive
measurements and µi is the mean of a measurement point over the consecutive measurements.

The approximation of the yield of a production technology is highly dependent on the available
number of samples of the given device. having a limited number of devices, this question can not be
addressed, but it has been shown in a previous work [14] that the yield of a production technology can
be increased with this method.

The planning and execution of the measurements have been carried out with consideration of
previous related studies [15] on memristor measuring techniques.

2.2.2. Circuits

The measurements were carried out on four different memristor network circuit topologies of
which two were introduced before [14] with corresponding simulation results. The H-fractal (Figure 2a)
and checkerboard-like (Figure 2b) topology both gave comparably good results, which shows that
verifying both cases with measurements is reasonable. During simulations with heavy defect
probability, the checkerboard-like topology has given slightly better results.

(a) (b) (c)

Figure 2. Measured general circuits. (a) H-fractal type of array. (b) Checkerboard type of array.
(c) Our newly introduced array.

In this article a third general circuit design is proposed (Figure 2c), which can be implemented
as a 2× 2× 4, three-dimensional grid structure on a multilayer carrier. A structure proposal can be
seen in Figure 3a. This new circuit had a better compromise between open and short connection faults,
but can only be constructed effectively in a three dimensional structure. The disadvantage is that since
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the height of the grid was even, and the top and bottom electrodes are aligned, they cannot form
a crossbar network.

A workaround could be that this type of network can scale with the height of the 2× 2 column,
and it can be 2× 2× 3 or 2× 2× 5 sized. These new non-general networks result in different memristor
parameters. The advantage of an odd height is that it can be realized in a crossbar network as it can be
seen in Figure 3b.

Memristor networks that use binary memristors as building components will technically result in
a discrete memory capacity as either component can be in the OFF or ON state. The overall resistance
value can be calculated for every combination, which is a limited number of possible resistances.
However, with sufficiently large grids, this effect can be neglected as the individual operational
variances of the elements are also summing up, resulting in a complex macro-characteristics.

Another important property to consider is the used chip area. These networks should be
implemented efficiently on a chip as a two dimensional crossbar network. The implementation of
the previous networks was only possible using sixteen times more chip area for the emulation of a single
device. The new network uses only four times more area with a similar reliability gain, as compared to
a single memristor.

(a) (b)

Figure 3. The proposed three dimensional cell structures. (a) Two emulated cells from a 2× 2× 4 array.
(b) Two emulated cells from a 2× 2× 3 array.
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3. Results

3.1. Single Memristor Measurements

First test measurements were prepared with a single memristor device. Here two types of signals
were used. The first one was a single, 2.4 s long 2.5 V writing pulse, which shows some parameters of
the device. The results can be seen in Figure 4. The average ON state was 57 kΩ, the average OFF
state was 11.5 MΩ. The ON/OFF ratio is approximately 200.

The second type of signal is a sequence of a writing and an erasing signal. The writing pulse
was 160 ms long, while the erasing one was shorter, 40 ms. The results can be seen in Figure 5.
The writing process was faster and starts at a lower voltage level, but the switching was not as sharp
as in the previous case (Figure 4). During the reading sequence, the small amplitude pulses did not
change the state of the memristor.
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Figure 4. Long timescale measurement on a single memristor device with focus on the writing
characteristics. (a) The input signal and output response in the time domain. (b) Phase portrait of
the measurement. Switching is very sharp and the ON/OFF ratio is at least 100.
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Figure 5. Write-read-erase-read cycle measurement on a single memristor device. (a) The input signal
and output response in the time domain. (b) Phase portrait of the measurement. The read sequence
after the write and erase pulses are colored as blue and red, respectively.

3.2. Memristor Emulation Comparison Measurements

The following measurements were carried out on four different network types and on a single
memristor for reference. The measuring signal is alternating write–erase sinusoidal pulses with
a length of 23 ms in a sequence of 50 cycles.
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This measurement is supposed to simulate a general training scenario, where an analogue
memristor characteristic is expected and the training is done by several small pulses. According to this
consideration, the writing pulses of the measurement have not enough energy to change the state of
a single memristor into its ON state.

The results can be seen in Figures 6 and 7. Subfigures (a),(c) and (e) show the voltage–current
diagram of the whole signal. Subfigures (b),(d) and (f) are the voltage–current diagrams of the average
of all 50 write–erase signals with the current shown on a logarithmic scale.
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Figure 6. Short-time pulses on a single memristor, the checkerboard like and the H-fractal memristor
network, respectively. (a,c) and (e) show the voltage–current diagram of the whole signal. (b,d,f) are
the average of all 50 write–erase signals on a logarithmic scale.
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Figure 7. Short-time pulses on a single memristor, the new three dimensional network with sixteen
memristors and the reduced network with twelve memristors, respectively. (a,c) and (e) show
the voltage–current diagram of the whole signal. (b,d) and (f) are the average of all 50 write–erase
signals on a logarithmic scale.

4. Discussion

The checkerboard type of network was practically unable to switch its state significantly compared
to other solutions. This was probably due to the limited number of parallel connections in the network,
which produced less possible routes to open. Higher control voltage could change its state, but the risk
of device damage increases with the increased after-switch current. Longer pulses could also help,
but it makes the writing process slower.
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The results for the H-fractal type of network are very similar to the newly introduced network
regarding the writing of the state into low resistance position. However, this type of network has
problems with erasing the state into the OFF state and could get stuck at an in-between state.

The ON and OFF resistance values of the network with twelve memristors are lower than the other
networks due to the reduced number of serial layers. However, when one compares it to a single
memristor, it has lower ON resistance value and higher OFF resistance, meaning the network is more
sensitive to control signals than only one memristor. In other words, a pulse with the same voltage
level could make a clearer distinction between the initial and after states.

The previous simulation results suggested that the switching speed could decrease using
memristor grids. Surprisingly, the switching speed did not decrease, but increased instead.
The networks are approximately three times faster than a single memristor. This is fairly unexpected,
as the control voltage stayed constant in both measurements, which means that the voltage on any
single memristor in a network measurement had to be strictly lower than in the case of a single device
measurement at any given time during measuring.

One explanation of this phenomenon could be the following: under the threshold voltage,
the device behaves as a very small capacitor. As the metal flows into the dielectric matter to build
up the filament, the partially charged capacitor discharges, causing a short-time high-energy electric
current burst. The other devices are sensitive to fast current changes and the filament forming is
starting in them as well. It can be seen as a “domino effect” with the consecutive memristors. If any of
the OFF state memristors in a series switches to the ON state, the rest will automatically switch as well
immediately after.

If any of the memristors which closes the source in the series, opens, the rest will automatically
open immediately after.

Based on the above presented measurements the following parameter values were acquired,
presented in Table 1. The resistance values are the average ON/OFF ratio values of the 50 cycle long
measurement sequence.

Table 1. The table shows the main properties of emulating memristor networks. Higher ON/OFF ratio
is considered better and the best values are indicated accordingly, namely the highest OFF resistance,
the lowest ON resistance and the highest overall ON/OFF ratio. Lower dispersion is also considered
better. The lowest is indicated.

Measured Object OFF Resistance ON Resistance ON/OFF Ratio Dispersion Index

Single memristor 5.7889 MΩ 0.7185 MΩ 8.0569 0.04553
H-fractal network 19.472 MΩ 0.6717 MΩ 28.990 0.02718

Checkerboard network 20.322 MΩ 5.4633 MΩ 3.7197 0.04921
3D 2 × 2 × 4 network 20.651 MΩ 0.7072 MΩ 29.201 0.01800
3D 2 × 2 × 3 network 9.3426 MΩ 0.4194 MΩ 22.276 0.02491

Another important feature of th networks to note is the stronger nanobattery effect [16].
This causes the visible shift of the zero current level after the erasing pulse. The nanobattery effect is
undesired in most applications, but can be dealt with by an appropriate control voltage and timing.
It can also be taken advantage of, in some scenarios.

5. Conclusions

Two new types of memristor networks have been introduced, which are able to emulate more
reliable memristors. Measurements have been successfully carried out for both the previously
presented networks and the new networks. The measurements provided new information about
the macro-characteristics of memristor networks compared to the previous simulations. The increased
switching speed of memristor networks should be further investigated. This solution can be used with
existing devices to support the implementation of neuromorphic applications.
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The following abbreviations are used in this manuscript:

VLSI Very large scale integration
APM Analog purpose memristor
DPM Digital (or discrete) purpose memristor
BPM Binary purpose memristor
CMOS Complementary metal–oxide–semiconductor
RAM Random access memory
FPGA Field programmable gate array
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