

Supplymentary Materials: Influence of carrier gases on the quality of epitaxial corundum-structured α -Ga₂O₃ films by mist chemical vapor deposition method

Yu Xu, Chunfu Zhang *, Yaolin Cheng, Zhe Li, Ya'nan Cheng, Qian Feng, Dazheng Chen, Jincheng Zhang and Yue Hao

Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China; xuyuxidian@163.com (Y.X.); chengyaolin96@163.com (Y.C.); zhe_li1024@163.com (Z.L.); yanancheng@stu.xidian.edu.cn (Y.C.); qfeng@mail.xidian.edu.cn (Q.F.); dzchen@xidian.edu.cn (D.C.); jchzhang@xidian.edu.cn (J.Z.); yhao@xidian.edu.cn (Y.H.) * Correspondence: cfzhang@xidian.edu.cn

α-Al₂O₃ <u>2 mm</u>

(2)

(1)

Figure S1. TEM images of the sample grown with Air as the carrier gas. (1) Cross-sectional α -Ga₂O₃/ α -Al₂O₃ interface, (2) diffraction spots of α -Ga₂O₃/ α -Al₂O₃.

Figure S2. TEM images of the sample grown with N₂ as the carrier gas. (1) Cross-sectional α -Ga₂O₃/ α -Al₂O₃ interface, (2) diffraction spots of α -Ga₂O₃/ α -Al₂O₃.

Figure S3. X-ray photoelectron wide spectra for the α -Ga₂O₃ sample grown with Air as the carrier gas.

Figure 4. X-ray photoelectron wide spectra for the α-Ga₂O₃ sample grown with N₂ as the carrier gas.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).