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Abstract: When concrete is subjected to cycles of compression, its strength is lower than the statically
determined concrete compressive strength. This reduction is typically expressed as a function of
the number of cycles. In this work, we study the reduced capacity as a function of a given number
of cycles by means of artificial neural networks. We used an input database with 203 datapoints
gathered from the literature. To find the optimal neural network, 14 features of neural networks were
studied and varied, resulting in the optimal neural net. This proposed model resulted in a maximum
relative error of 5.1% and a mean relative error of 1.2% for the 203 datapoints. The proposed model
resulted in a better prediction (mean tested to predicted value = 1.00 with a coefficient of variation
1.7%) as compared to the existing code expressions. The model we developed can thus be used for
the design and the assessment of concrete structures and provides a more accurate assessment and
design than the existing methods.
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1. Introduction

When concrete is subjected to cycles of compression, its strength is lower than the statically
determined concrete compressive strength [1,2]. The practical implication of this mechanical property
is that we need to consider a lower concrete compressive strength for structures subjected to cycles of
loading, also called fatigue loading, such as bridges subjected to repeated traffic loads [3–5]. At the
basis of the fatigue problem lie slow crack propagation [6] and creep [7]. In experiments, the behavior
of a specimen can be characterized by the increase in strain over time, where a fast increase in strains is
a precursor for fatigue failure [1].

The most fundamental approach to study fatigue is by isolating the different material contributions
in the cross-section [8,9]. As such, the effect of fatigue on concrete under compression in a cross-section
is studied separately by testing concrete cylinders under cyclic loading [10,11]. This fundamental
knowledge together with information about the fatigue life of concrete under tension [12–15] and
the fatigue behavior of reinforcement and prestressing steel [9,16,17] lies at the basis of studying the
influence of fatigue loading in structural elements [18].

The knowledge about the fatigue behavior of materials under controlled loading conditions also
serves to interpret fatigue testing on structural elements [19–21]. In the past, experiments have been
carried out regarding the fatigue life of deep beams [22–25], shear-critical concrete beams [19,26–34],
and shear-critical slabs [35]. The loading conditions are important for structural tests; research [36]
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indicates that the fatigue life under moving loads is lower than under cycles of loading applied at a
single position. As such, the effect of loading needs to be considered when applying test results to the
assessment of existing bridges under traffic loads. Besides the previously mentioned experimental
campaigns, experiments on partially prestressed concrete beams showed that the failure mode can
change from flexure to shear [20,37–41]. From a practical perspective, fatigue also influences the
serviceability behavior of concrete structures, such as two-way reinforced concrete floors [42].

For this work, we focus on the relation between the number of cycles of loading and the limit to the
concrete compressive strength. This limit is typically expressed as a fraction of the static compressive
strength of the concrete, Smax, a value between 0 and 1. In a classic fatigue test of a concrete specimen
(most often a cylinder) under compression, the load is applied as a sine wave between fixed lower
and upper values. These loads induce stresses in the concrete specimen that fluctuate with Sminfc and
Smaxfc. In some experiments, other sequences of loading have been used, including loading with rest
periods and using variable amplitude fatigue load testing [43–45]. The focus of this work is only on
constant amplitude loading. When Smin and Smax are chosen as the input values for an experiment,
the outcome of the experiment then is the number of cycles to failure, N.

Usually, the linear relation between the strength degradation (expressed as Smax) and the logarithm
of the number of cycles to failure N is given, and it is called the Wöhler curve. Such curves can be
derived for different values of Smin. For the design of a new structure, we usually know the number of
cycles the structure needs to withstand (for example, one million cycles) and carry out the design or
the assessment based on the reduced strength associated with this number of cycles. Therefore, in this
work, we selected the number of cycles, N, as one of the input variables and the reduced strength ratio,
Smax, as the output value.

When testing concrete specimens under fatigue compression, a number of parameters can be
studied. The most important parameters are Smin and Smax. Mix properties, such as amount of cement,
entrained air, water–cement ratio, curing conditions, and age at testing, were found not to be of
significant influence on the number of cycles to failure for a given value of Smax [1]. The influence of
testing frequency f on the fatigue life is a topic of discussion; some authors observed that, for high
values of Smax, there is a decrease in fatigue life for a decrease in frequency [1]. For high strength
concrete, Hsu [13] came to the opposite conclusion, whereas for ultra-high performance concrete
(UHPC), the same observation was made [46]. The influence of the concrete compressive strength is
important on the fatigue life. Experimental work [12,47,48] indicated that the fatigue life is reduced for
high strength concrete, but no consensus exists on this topic. To remain on the conservative side, older
codes prescribe a lower fatigue life for high strength concrete. Fibers were not found to influence the
fatigue strength [46,49].

Table 1 gives an overview of some currently and formerly used code equations that are used
in this study. NEN 6723:2009 [50] is the Dutch national code for concrete bridges that was replaced
by the Eurocodes. This code describes a Wöhler curve for concrete under compression. NEN-EN
1992-1-1+C2:2011 [51] is the general Eurocode for concrete structures. This code checks Equation (7),
which is a check for 1 million cycles. The code does not prescribe a Wöhler code. For bridges, NEN-EN
1992-2+C1:2011 [52] checks damage with Equation (11) for any given number of cycles. Finally, the fib
model code [53] describes a Wöhler curve with two branches, see Equation (18). These equations are
used in this study for comparison of our proposed ANN-based expression.
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Table 1. Overview of code expressions for fatigue.

Code Ref Equations Nr

NEN 6723:2009 [50]

f ′b,v =
f ′b,rep,v
γm

with γm = 1.2 (1)

f ′b,rep,v = 0.5
(

f ′b,rep,k − 0.85× 30
)
+ 0.85× 30 in [MPa] (2)

Log(N) = 10
√

1−R

(
1− σ′b,d,max

f ′b,v

)
for σ′b,d,max

f ′b,v
> 0.25 (3)

R =
σ′b,d,min
σ′b,d,max

= Smin
Smax

(4)

NEN-EN
1992-1-1+C2:2011

[51]

fcd, f at = k1βcc(t0) fcd

(
1− fck

250

)
with fck in MPa and k1 = 0.85 (5)

βcc(t0) = exp
{
s
[
1−

(
28
t0

)0.5
]}

(6)

Ecd,max,equ + 0.43
√

1−Requ ≤ 1 (7)

Requ =
Ecd,min,equ
Ecd,max,equ

(8)

Ecd,max,equ =
σcd,max,equ

fcd, f at
(9)

Ecd,min,equ =
σcd,min,equ

fcd, f at
(10)

NEN-EN
1992-2+C1:2011

[52]

m∑
i=1

ni
Ni
≤ 1 (11)

Ni = 10
(14

1−Ecd,max,i
√

1−Ri
) (12)

fib model code 2010 [53]

fck, f at = βcc(t)βc,sus(t, t0) fck

(
1− fck

400

)
with fck in MPa,

βc,sus(t, t0) = 0.85 and s = 0.25 for cement class 42.5 N
(13)

βcc(t) = exp
{
s
[
1−

(
28
t

)0.5
]}

(14)

tT =
n∑

i=1
∆ti exp

(
13.65− 4000

273+T(∆ti)

)
(15)

log N1 = 8
Y−1 (Sc,max − 1) (16)

log N2 = 8 + 8 ln(10)
Y−1

(
Y − Sc,min

)
log

( Sc,max−Sc,min
Y−Sc,min

)
(17)

log N =

{
log N1 if log N1 ≤ 8
log N2 if log N1 > 8 (18)

Y =
0.45+1.8Sc,min

1+1.8Sc,min−0.3S2
c,min

(19)

Sc,max =
|σc,max|

fck, f at
(20)

Sc,min =
|σc,min|

fck, f at
(21)

∆Sc =
∣∣∣Sc,max

∣∣∣−∣∣∣Sc,min
∣∣∣ (22)

The strength reduction of concrete subjected to cycles of compression is typically expressed as
a function of the number of cycles. In this work, we studied the reduced capacity as a function of a
given number of cycles by means of artificial neural networks. Artificial neural networks (ANNs)
are a form of machine learning [54] and can be considered the oldest [55] and the most powerful
technique [56]. Neural nets have been applied in a wide variety of research fields [57,58], including civil
engineering [59–71]. Their advantage as compared to other modeling techniques such as multi-variate
nonlinear regression is that we do not need to estimate the shape of the function a priori [63].

ANNs [72] are models that work in the same way as the brain with neurons as processing units.
The basic elements of the architecture of a neural net, see Figure 1, are the nodes, the L layers in which
the nodes are placed, and the transfer function of the neuron, which turns the input of the neuron
into the output. The neural nets considered in this work were feedforward—the data presented as
input for a layer flowed in the forward direction only. Through optimization algorithms, we found the
unknowns of the neural net—the synaptic weight of the connection between every two neurons W,
and the bias of the neuron b, expressed mathematically as W and b arrays. The optimization algorithm
minimizes a performance measure of the network. In our study, the performance measures were
the mean error, the maximum relative error, and the percentage of errors larger than 3%. During
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learning (i.e., following the optimization procedures), the input dataset was subdivided into training,
validation, and testing. The training dataset was used for the initial fitting of the model. The validation
dataset was used to check the initially derived model and to further optimize the model. Finally,
the testing dataset was used to independently check the model without making further changes to it.
Early stopping and testing of the proposed neural net avoided overfitting of the data, see Figure 2.
Overfitting results in a model that corresponds too closely to the used dataset so that the model has
lost its generalizability.
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In this work, we combined an existing database of fatigue experiments [73] with the powerful tool
that is a neural network to come to a more accurate description of the fatigue life of concrete specimens
under compression. The proposed model is more accurate than the existing code equations, thus it can
be used to obtain a better estimate of the fatigue life of concrete elements under compression.
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2. Materials and Methods

2.1. Data Gathering

We compiled the dataset for the input of the model based on an existing database [73] with
616 experimental results. To have unique input values for the model, we calculated the geometric
average of the number of cycles N for repeat tests. In addition, we did not include the experimental
results on ultra-high performance fiber reinforced concrete (UHPFRC) since we could not ensure a good
continuum of input values of the concrete compressive strength, and we removed a few experiments
on heat-treated specimens, since it was reported that their fatigue performance was different from
regular specimens [46]. We only included the results from experiments with constant amplitude
fatigue testing. Variable amplitude fatigue testing is outside the scope of this study; we did not aim to
replace the Palmgren–Miner rule for such loading conditions. The dataset included experiments on
cylinders, prisms [12,74], and cubes. The result was an input dataset of 203 unique datapoints obtained
from references [12,13,46–49,74–82]. The resulting input dataset is available in the public domain [83].
By using the geometric average of the number of cycles to failure N of repeat tests, some of the inherent
scatter to experimental results was lost. The reader should keep in mind this effect.

Table 2 shows the input and the output variables in the dataset, as well as the range of values.
The number of input parameters was limited, since we wanted to find a model that could use the
same input parameters as the code-prescribed models but provide superior accuracy. Figure 3 shows
the input and the output variables used in the dataset based on a loading scheme in an experiment.
We chose to use Smax as the output value, since this approach was in line with the design procedure of
finding the compressive capacity under fatigue. In experiments, the output value was the number of
cycles, N, but for design, this value was an input based on the required service life of the structure.
The number of cycles from Smin to Smax and back (see Figure 3) that can be completed in one second
is called the frequency, f, which has units [Hz]. The most commonly used frequency is 1 Hz, but the
database includes experiments with frequencies ranging from 0.0625 Hz [81] to 65 Hz [49]. We did not
select the frequency as an input variable for our model, since the frequency is a property of experiments
and not a value used for design or assessment of concrete structures.

The input values in the database are subdivided into an input value related to the concrete material
properties—the concrete compressive strength, fc. We used the reported average measured values here.
As can be seen in Table 2, the dataset encompasses low to very high strength concrete samples. In terms
of the loading conditions, the input values were the lower limit of the stress range, Smin, and the
number of cycles to failure, N. The ranges of parameters in Table 2 show that the dataset included a
wide range of values for Smin and that the dataset included low- and high-cycle fatigue tests.

The output of the model was the maximum stress range, Smax. Again, the range of values in
Table 2 shows the wide range of stresses covered.

The dataset was used for training, validation, and testing of the neural network. The percentage
of data assigned to each of these tasks is discussed in the next parts. The reader should keep in mind
that the developed model is only valid within the ranges of parameters from the input dataset and
cannot be extrapolated outside of these parameter ranges.

Table 2. Overview of input and output variables in the dataset, including ranges of values.

Input Parameters Input Number Min Max

Concrete
properties

fc,cyl (MPa) average concrete
compressive strength 1 24 170

Loading Smin (-) lower limit of stress range 2 0 0.836
N (-) number of cycles to failure 3 3 63,841,046

Output Smax (-) upper limit of stress range 1 0.465 0.960
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an experiment.

2.2. Characteristics of Artificial Neural Networks in This Study

In this work, 14 features of the algorithm that finds the optimal ANN were varied, including
features of data pre- and post-processing. An overview of these features, which were selected from the
literature, is given in Tables 3 and 4. A description of these features can be found in [59], (note that F14
has been removed), and the way in which the input data is divided into the training, the validation,
and the testing subsets (F4) is given in [84]. The work was coded in Matlab [85] using the neural network
toolbox for popular learning algorithms [options 1–3 of feature 13 (F13) in Table 4]. The validation
of the developed software can be found in [86]. Moreover, several papers involving the successful
application of this software have already been published [84,87].

Table 3. Implemented artificial neural network (ANN) features (F) 1–7. The highlighted cells show the
features that were used to derive the final neural net.

F1 F2 F3 F4 F5 F6 F7

Qualitative
Var

Represent

Dimensional
Analysis

Input
Dimensionality

Reduction

%
Train-Valid-Test

Input
Normalization

Output
Transfer

Output
Normalization

Boolean
Vectors Yes Linear

Correlation 80-10-10 Linear Max
Abs Logistic

Lin [a, b] =
0.7[ϕmin,
ϕmax]

Eq Spaced in
]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] -

Lin [a, b] =
0.6[ϕmin,
ϕmax]

- - - 60-20-20 Linear [−1,
1]

Hyperbolic
Tang

Lin [a, b] =
0.5[ϕmin,
ϕmax]

- - Ortho Rand
Proj 50-25-25 Nonlinear - Linear Mean

Std

- - Sparse Rand
Proj - Lin Mean

Std Bilinear No

- - No - No Compet -
Identity
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Table 4. Implemented ANN features (F) 8–14. The highlighted cells show the features that were used
to derive the final neural net.

F8 F9 F10 F11 F12 F13 F14

Net
Architectue

Hidden
Layers Connectivity Hidden Transfer Parameter

Initialization
Learning

Algorithm
Training

Mode

MLPN 1 HL Adjacent
Layers Logistic

Midpoint
(W) + Rands

(b)
BP Batch

RBFN 2 HL Adj Layers +
In-Out Identity-Logistic Rands BPA Mini-Batch

- 3 HL Fully-Connected Hyperbolic Tang Randnc (W)
+ Rands (b) LM Online

- - - Bipolar Randnr (W)
+ Rands (b) ELM -

- - - Bilinear Randsmall mb ELM -

- - - Positive Sat
Linear

Rand [−∆,
∆] I-ELM -

- - - Sinusoid SVD CI-ELM -
Thin-Plate

Spline MB SVD -

Gaussian - -
Multiquadratic - -

Radbas - -
Thin-Plate

Spline MB SVD -

Abbreviations: MLPN = multi-layer perceptron net, RBFN = radial basis function net, SVD = singular value
decomposition, MB SVD = mini-batch SVD, BP = back propagation, BPA = back propagation with adaptive
learning rate, LM = Levenberg–Marquardt, ELM = extreme learning machine, mb ELM = mini-batch ELM, I ELM =
incremental ELM, CI ELM = convex incremental ELM, NNC = neural network composite.

To find the optimal combination of the 14 features, an algorithm that approaches all possible
combinations in an optimal way was developed. The full procedure is detailed in [59]. In total,
219 combinations of these features were explored, after which we selected the optimal neural net.

3. Results

3.1. Proposed ANN-Based Model

The proposed model was a multi-layer perceptron net (MLPN) with five layers and a distribution of
nodes/layer of 3-4-4-4-1, resulting in 12 hidden nodes in total. The network was fully connected, and the
hidden as well as the output transfer functions were all Hyperbolic Tangent and Identity, respectively.
The network was trained using the Levenberg–Marquardt (LM) algorithm (1500 epochs). After design,
the average network computing time for a single example (including data pre-/post-processing) was
7.09 × 10−5 s. Figure 4 depicts a simplified scheme of some of the network key features. The max
error was 5.1%, performance of all data was 1.2%, and the percentage of errors larger than 3% was
10.3% based on the original input and output values (before normalization and dimensional analysis).
The properties of the microprocessor used in this work were OS: Win10Home 64 bits; RAM: 48 GB;
Local Disk Memory: 1 TB; CPU: Intel®Core™ i7 8700 K @ 3.70–4.70 GHz.

The input data were a vector of three components, Y1. The input vector Y1 contained fc,cyl, Smin,

and N, as shown in Table 2. After input normalization, the new input dataset {Y1}
a f ter
n was defined as:{

Y1,sim
}a f ter

n
=

({
Y1,sim

}a f ter

d.r
− INP(:, 1)

)
./ INP(:, 2)

INP =


70.7417339901478 44.7805334345334

0.206873201970443 0.192556137441602
1122471.30034975 5728851.48603107


(23)
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where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).
Once we determined the preprocessed input dataset {Y1}n

after (3 × 1 matrix), the next step was to
present it to the proposed ANN to obtain the predicted output dataset Y5 (single value, Smax as shown
in Table 2).

Next, the mathematical representation of the proposed ANN is given so that any user can
implement it to determine Y5, thus eliminating all rumors that ANNs are “black boxes”.

Y2 = ϕ2

(
WT

1−2

{
Y1,sim

}a f ter

n
+ b2

)
Y3 = ϕ3

(
WT

1−3

{
Y1,sim

}a f ter

n
+ WT

2−3Y2 + b3

)
Y4 = ϕ4

(
WT

1−4

{
Y1,sim

}a f ter

n
+ WT

2−4Y2 + WT
3−4Y3 + b4

)
{
Y5,sim

}a f ter

n
= ϕ5

(
WT

1−5

{
Y1,sim

}a f ter

n
+ WT

2−5Y2 + WT
3−5Y3 + WT

4−5Y4 + b5

) (24)

where
ϕ2 = ϕ3 = ϕ4 = ϕ (s) = es

−e−s

es+e−s

ϕ5 = ϕ5(s) = s
(25)

Arrays Wj-s and bs are stored online in [88].
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(computing time = 7.09x10-5 s/example) 

Figure 4. Proposed 3-4-4-4-1 fully connected MLPN—simplified scheme.

3.2. Performance Indicators of Results

The obtained ANN solution for every data point can be found in [83], making it possible to
compute the exact (with all decimal figures) approximation errors. All results were calculated based
on effective target and output values, i.e., computed in their original format. This proposed model
resulted in a maximum relative error of 5.1%, 10.3% of predictions with an error larger than 3%, and a
mean relative error of 1.2% for the 203 datapoints. For the training subset, the mean relative error was
1.3%, for the validation subset, 1.1%, and for the testing subset, 1.2%. The relative error e is defined
as follows:
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Arrays Wj-s and bs are stored online in [88]. 
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The obtained ANN solution for every data point can be found in [83], making it possible to 
compute the exact (with all decimal figures) approximation errors. All results were calculated based 
on effective target and output values, i.e., computed in their original format. This proposed model 
resulted in a maximum relative error of 5.1%, 10.3% of predictions with an error larger than 3%, and 
a mean relative error of 1.2% for the 203 datapoints. For the training subset, the mean relative error 
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with Smax,test the experimental value of Smax and Smax,ANN the predicted value based on the neural 
network. Figure 5 shows the tested versus the predicted values for the ANN-based model for each 
datapoint as well as the R-value, which was 0.99238 for this case.   
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Materials 2019, 12, 3787 9 of 21Materials 2019, 12, x FOR PEER REVIEW 11 of 22 

 

 

Figure 5. Regression plot for the proposed ANN for the output variable, Smax. The expression for the 
blue line is: Smax,ANN = 0.98 Smax,test + 0.012 and R = 0.99238. 

3.3. Comparison between ANN-Based and Existing Methods 

To highlight the advantage of using the proposed ANN-based model, we compare the proposed 
model to the existing code models from Table 1 in this section. The result for each datapoint as 
calculated with the proposed model is available for download [83]. To calculate the predicted values 
for Smax with the code formulas, we used average values for the concrete compressive strength instead 
of design or characteristic values for the calculation of f’b,rep,v, fcd,fat and fck,fat but not for the correction 
terms of fck/250 MPa and fck/400 MPa in the Eurocode and the Model Code expressions, respectively. 
Here, fck was determined as fc,avg—8 MPa [51]. Figure 6 shows the comparison between the tested and 
the predicted values. Note that the values of NEN-EN 1992-1-1+C2:2011 [51] were not included, since 
these are only for one million cycles and were thus not applicable to most of the datapoints in our 
input dataset. We can also see that a few datapoints gave a negative value for the predicted Smax, 
which was, of course, physically not possible. In total, seven datapoints calculated with NEN-EN 
1992-2+C1:2011 [52] gave a negative value, and one point with NEN 6723:2009 [50] resulted in a 
negative value. The expression from NEN-EN 1992-2+C1:2011 [52] was not developed for high 
strength concrete. As such, for datapoints with a high compressive strength and/or a high value of 
Smin, we could not calculate a value of Smax that was larger than Smin, and the expressions resulted in a 
negative solution, which was physically not possible. This effect was more pronounced for high 
strength concrete because of equation (5), where the reduction term fck/250 increased for increasing 
concrete compressive strengths. From a computational point of view, we note that taking the log of 
both sides of equation (12) resulted in more stable results for the outcome of Smax when using the 
MathCad 15.0 [89] solver to find Smax for given input values of fc,avg, Smin, and N. The one datapoint 
that resulted in negative values with NEN-EN 1992-2+C1:2011 [52] and NEN 6723:2009 [50] had fc,avg 
= 41 MPa (normal strength concrete) and Smin = 0.836. Since the value of Smin was very high, the 
expressions could not find a solution for Smax larger than Smin, giving a negative value instead. We 
should remark as well that the expressions of fib model code 2010 [26] always resulted in a value for 
Smax but that, for cases where Smin was large, the calculated value for Smax could be smaller than Smin, 
which was also physically not possible.  

Table 5 gives the statistical properties of the ratio of tested to predicted values with the code 
equations from Table 1 and with our proposed model. There are two rows with results for the code 
equations—the first row per code gives the statistical properties for all datapoints, and the second 
row gives the properties only for the datapoints where the calculation was physically possible, i.e., 
we removed the datapoints where we found a negative value of Smax or a value of Smax smaller than 

Figure 5. Regression plot for the proposed ANN for the output variable, Smax. The expression for the
blue line is: Smax,ANN = 0.98 Smax,test + 0.012 and R = 0.99238.

3.3. Comparison between ANN-Based and Existing Methods

To highlight the advantage of using the proposed ANN-based model, we compare the proposed
model to the existing code models from Table 1 in this section. The result for each datapoint as
calculated with the proposed model is available for download [83]. To calculate the predicted values
for Smax with the code formulas, we used average values for the concrete compressive strength instead
of design or characteristic values for the calculation of f’b,rep,v, fcd,fat and fck,fat but not for the correction
terms of fck/250 MPa and fck/400 MPa in the Eurocode and the Model Code expressions, respectively.
Here, fck was determined as fc,avg—8 MPa [51]. Figure 6 shows the comparison between the tested
and the predicted values. Note that the values of NEN-EN 1992-1-1+C2:2011 [51] were not included,
since these are only for one million cycles and were thus not applicable to most of the datapoints in
our input dataset. We can also see that a few datapoints gave a negative value for the predicted Smax,
which was, of course, physically not possible. In total, seven datapoints calculated with NEN-EN
1992-2+C1:2011 [52] gave a negative value, and one point with NEN 6723:2009 [50] resulted in a
negative value. The expression from NEN-EN 1992-2+C1:2011 [52] was not developed for high
strength concrete. As such, for datapoints with a high compressive strength and/or a high value of
Smin, we could not calculate a value of Smax that was larger than Smin, and the expressions resulted
in a negative solution, which was physically not possible. This effect was more pronounced for high
strength concrete because of Equation (5), where the reduction term fck/250 increased for increasing
concrete compressive strengths. From a computational point of view, we note that taking the log of both
sides of Equation (12) resulted in more stable results for the outcome of Smax when using the MathCad
15.0 [89] solver to find Smax for given input values of fc,avg, Smin, and N. The one datapoint that resulted
in negative values with NEN-EN 1992-2+C1:2011 [52] and NEN 6723:2009 [50] had fc,avg = 41 MPa
(normal strength concrete) and Smin = 0.836. Since the value of Smin was very high, the expressions
could not find a solution for Smax larger than Smin

, giving a negative value instead. We should remark
as well that the expressions of fib model code 2010 [26] always resulted in a value for Smax but that,
for cases where Smin was large, the calculated value for Smax could be smaller than Smin, which was
also physically not possible.
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Table 5 gives the statistical properties of the ratio of tested to predicted values with the code
equations from Table 1 and with our proposed model. There are two rows with results for the code
equations—the first row per code gives the statistical properties for all datapoints, and the second
row gives the properties only for the datapoints where the calculation was physically possible, i.e.,
we removed the datapoints where we found a negative value of Smax or a value of Smax smaller than
Smin. From this analysis, we can see that the expressions of the fib model code [53] led to the best results
of the expressions in Table 1 with an average tested to predicted value of 1.37 and the coefficient of
variation equal to 20.5%. We can also observe that our proposed model led to a better prediction with
an average tested to predicted value of 1.00 and a coefficient of variation of 1.7%.

Table 5. Statistical properties of Vutot/Vpred for all datapoints with AVG = average of Vutot/Vpred, STD =

standard deviation on Vutot/Vpred, and COV = coefficient of variation of Vutot/Vpred.

Model AVG STD COV Min Max

Proposed model 1.00 0.02 1.69% 0.955 1.053

NEN 6723:2009
[50] 1.55 0.63 40.53% −5.828 2.869

1.59 0.35 22.27% 0.893 2.869
NEN-EN

1992-2+C1:2011 [52] 1.07 4.59 430.61% −56.25 3.913

1.70 0.69 40.90% 0.971 3.913
fib model code 2010 [53] 1.37 0.28 20.46% 0.906 2.261

1.37 0.28 20.68% 0.906 2.261

4. Discussion

From the results presented in Section 3.3, we can see that our proposed model was a significant
improvement with respect to the existing code equations. The ANN-based proposed model used the
data from the literature in an optimal way and led to good results because sufficient experimental
results were available. The model we developed can thus be used for the design and the assessment of
concrete structures and provides a more accurate assessment and design than the existing methods.
We need to remark here, however, that the ANN-based model predicts average values. While further
statistical studies would be necessary to derive a design matrix-based formulation from this approach,
we suggest the use of fcd instead of fc,avg as an input value and the use of Smin resulting from the
serviceability limit state load combination. The reason for the latter recommendation is that the
experimental results indicate that the fatigue life increased as Smin increased, thus it would be a more
conservative approach to use the load combination that results in the lowest value for Smin.
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In Section 2.1, we explained the data gathering process. The reader should remember that,
for literature sources where repeat experiments were reported, we used the geometric average of the
experimental results. This approach is in line with literature references where not all results from
all experiments were reported but instead only the geometric average of the experimental results.
However, this approach removed some of the inherent scatter on the experimental results from the
input database. The reader should keep this restriction in mind.

As with every ANN-based model, this model is only valid for the ranges of parameters of the
input dataset, as given in Table 2. This limitation is the main disadvantage of the proposed model.
However, we can see in Table 2 that the ranges of parameters in our input dataset were quite large.
The input dataset included experiments with relatively large values of Smin up to 0.836. As seen in
Figure 6, the existing code formulas could not predict the value for Smax when Smin was larger. While
such cases are uncommon in practice, it is an advantage of our proposed ANN-based model that this
model can address cases with a large value for Smin as input.

The input dataset included experiments with high strength concrete with steel fibers in the mix
with a maximum concrete compressive strength of 170 MPa. In the range of concrete compressive
strengths from 24 MPa to 170 MPa, we could ensure a fairly continuous increase in values of the
concrete compressive strength. We included specimens with steel fibers in the concrete mix, since [46]
showed that the fibers do not influence the fatigue strength of concrete under compression. We did not
include ultra-high performance fiber reinforced concrete (UHPFRC) specimens, as reported in [90],
nor the heat-treated specimens from [46]. The UHPFRC specimens were omitted since we could not
achieve good continuous increases in the concrete compressive strength for the largest ranges of the
concrete compressive strength. The heat-treated specimens were omitted since their observed behavior
was different from regular specimens. However, if more experiments on heat-treated specimens
would become available, the study presented in this paper could be repeated with the additional
input parameter “heat-treated (yes/no)”. Note that the algorithm that searches for the optimal neural
network can process both quantitative and qualitative data. Similarly, if more experimental data in the
UHPFRC range of concrete compressive strength would become available, this information could be
added to the database, and the study could be repeated.

Given the earlier discussions on the fatigue life of high strength concrete [73], we found it valuable
to include high strength concrete specimens in our study. As such, our study was also an improvement
with respect to the existing code formulas. In particular, we can see in Figure 6 that expressions
from NEN-EN 1992-2+C1:2011 [52] were not suitable for predicting Smax for high strength concrete,
as physically impossible values for Smax were found.

The input database included low- and high-cycle fatigue tests with the number of cycles to failure
ranging from three to almost 64 million. Low-cycle fatigue [16,91] can be interesting for practical cases
where we want to study the fatigue life of a bridge member subjected to a limited number of very
heavily loaded trucks. High-cycle fatigue [22,34,46], on the other hand, is interesting for two reasons;
for regular design and assessment, we assumed a number of cycles of 250 million to 500 million
cycles [3], and with high-cycle fatigue, we could study the so-called fatigue limit [92], i.e., the number
of cycles for which Smax did not decrease further in the Wöhler curve. The fatigue limit in concrete
is, however, subject to discussion. While the dataset had a maximum value of N close to 64 million
cycles, there are no experimental results available that cover the range of 250 million cycles and higher.
The reason why such experimental results are not available is that the amount of time needed becomes
very large. For example, say we want to test 500 million cycles with a loading frequency of 1 Hz, as is
commonly used in fatigue testing. Such an experiment would take 500 million seconds, or close to
16 years, to complete. Then, given the large scatter inherent in fatigue testing, we would need to repeat
the experiment a number of times, which would only add to the time required for obtaining these test
data. It would, however, be interesting to have such data available—not only for studying the fatigue
limit and the number of cycles used for design and assessment but also to study the code formulas of
the fib Model Code 2010 [53], which defines a change in Wöhler curve for 100 million cycles. Given the
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considerations in the previous paragraphs, the input database and the resulting proposed model form
an improvement with respect to the existing code formulas.

To further study the influence of the parameters on the code expressions and our proposed model,
we studied the relation between each parameter and the ratio of tested to predicted values for Smax.
The first parameter analyzed was Smin, see Figure 7. We can see in this figure that the ANN-based
model performed consistently over the full range of values of Smin. We remarked earlier that we could
not find a solution for NEN 6723:2009 [50] for the datapoint with the largest value of Smin and that
various datapoints with a large value of Smin did not lead to a physically possible solution with the
expressions from NEN-EN 1992-2+C1:2011 [52]. The values of the tested to predicted Smax seemed to
slightly decrease as Smin increased for the predictions with the fib Model Code 2010 [53].
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The second parameter to further analyze was the concrete compressive strength. Figure 8 shows
the relation between the average concrete compressive strength and the ratio of tested to predicted
value of Smax. We can observe from this plot that our proposed model performed equally well over
the full range of concrete compressive strengths. We can see that the expressions from NEN-EN
1992-2+C1:2011 [52] were overly conservative. However, we need to keep in mind that C90/105 is
the highest strength concrete class in NEN-EN 1992-1-1:2005 [93], thus some high strength concrete
specimens in our dataset were outside the scope of the Eurocodes. In particular, the term fck/250 MPa
in Equation (5) was overly conservative for high strength concrete. We can see in Figure 8 that the fib
Model Code term of fck/400 MPa from Equation (13) led to better results from high strength concrete.
Figure 8 also shows that the predictions for Smax were still more conservative for high strength concrete
than for normal strength concrete. In that regard, the expressions from NEN 6723:2009 [50] seemed to
have a more uniform performance over the full range of concrete compressive strengths.

The next studied parameter was the number of cycles, N, shown as logN in Figure 9, where the
tested to predicted ratios of Smax are shown as a function of logN. We can see that the code equations
were less conservative for low-cycle fatigue than for high-cycle fatigue. This observation was stronger
for NEN 6723:2009 [50] than for the other codes. From experiments [48], we know that the Wöhler
curve starts to be linear after 100 cycles. As such, it was expected that the datapoints for logN ≤ 2
would be more difficult to predict. Again, our proposed model performed well over the full range of
cycles in the input dataset.
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The last studied parameter was Smax itself. Figure 10 shows the ratio of tested to predicted ratios
of Smax as a function of Smax. We can see from this plot that the code predictions tended to become
more conservative as Smax increased, whereas our proposed model performed well and consistently
over the full range of values of Smax in the input dataset.

Finally, we explored if there was a difference between the Wöhler curve resulting from the
experimental results and from the ANN-based predictions. Figure 11 shows these results and the
Wöhler curves. The reader can observe that the difference between the two Wöhler curves was minimal.

As compared to previously developed ANN-based expressions for similar problems in structural
concrete, e.g., problems where the amount of experimental data is large but the theoretical understanding
is limited, we found larger errors for this problem. Other structural concrete problems that we studied
with a similar approach were the shear capacity of one-way slabs without shear reinforcement [59] and
the shear capacity of steel fiber reinforced concrete beams without stirrups [84]. These observations are
in line with the scatter observed in experiments.
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Figure 11. Comparison between Wöhler curve resulting from experimental data and from
ANN-based predictions.

The model we propose herein is a relatively simple and easy to use model. We used only three
input variables to stay in line with the currently used code formulations. The computational time per
datapoint is very fast, 7.09× 10−5 s per datapoint. Since we provided all expressions for the readers in
this work and the W and the b arrays in the public domain, direct implementation of our proposed
model is easy. The reader can set up a spreadsheet with the equations from Section 3.1 and from then
on can use our proposed model quickly and easily. This observation again underlines the improvement
of our proposed model with respect to existing models.

Our proposed model did not explain the mechanics that drive fatigue failure of concrete under
compression. Research on this topic is still necessary, and mechanics-based models are necessary.
However, the currently available code equations do not perform very well when compared to
experimental results. Therefore, better expressions, such as our proposed model, can be used until
mechanics-based expressions (with limited scatter) are available. Until then, our proposed model
can be a useful tool for the design and the analysis of concrete structures in a more efficient and
cost-effective way.

5. Summary and Conclusions

We proposed, in this paper, the use of an ANN-based model for the determination of the concrete
compressive strength for specimens subjected to cycles of loading based on experimental results from
the literature. We derived the expression as follows:
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• We derived an input dataset with 203 datapoints obtained from experiments reported in the
literature. Each datapoint was unique. Where necessary, the geometric average of number of
cycles to failure of repeat tests was determined;

• We selected three input parameters for the input dataset (concrete compressive strength, lower
bound of the stress ratio, and number of cycles to failure) and one output parameter (upper bound
of the stress ratio) in line with the parameters used in the currently used code expressions;

• We used different methods for 14 features of the ANN models to find the most suitable features.
We looked at 219 combinations of features and selected the neural net with the best performance.

The main advantages of our proposed approach and the main findings of this study are as follows:

• Of the studied methods in the current codes, we found that the expression from the fib model code
performed best when compared to the experimental results gathered in the dataset. The average
value of tested to predicted upper bound of the stress ratio was 1.37 with a coefficient of variation
of 20.5%;

• We can see that our proposed model outperformed the code equations for the prediction of the
upper bound of the stress ratio, since the average value of tested to predicted upper bound of the
stress ratio was 1.00 with a coefficient of variation of 1.7%;

• The tested to predicted values obtained with our proposed model did not show any dependence
on any of the input or the output parameters, i.e., our model performed consistently well over the
full range of the parameters. In contrast, plotting the tested to predicted ratios obtained with the
code equations showed that these depended on the input and the output parameters. In particular,
the predicted values for the upper bound of the stress ratio with the code equations became overly
conservative as the concrete compressive strength increased;

• The computational time of our proposed neural net is small (0.07 milliseconds per datapoint).

The limitations of our proposed model and the necessities for future work are:

• Experiments on high-cycle fatigue are necessary. Given the required time for such experiments,
however, it is unlikely that such experiments can be carried out. Perhaps, numerical analyses can
be used to generate datapoints for N > 64 million cycles;

• The proposed method was derived from test results and aims at average values. Further studies
are necessary to define the safety factors for design and assessment based on our proposed method;

• The proposed ANN-based model is only valid for the parameter ranges in the input dataset.
However, these ranges cover most practical cases, except, as mentioned earlier, N > 64 million
cycles. In practice, we need 250 or 500 million cycles for design and assessment;

• The mechanics of the problem and the reasons for the large scatter in fatigue tests were not
addressed in this study. The parameter studies presented here, however, give insight in the
governing parameters and can be used in the future for comparison to expressions that are derived
based on mechanics.

• Regardless the high quality of the predictions yielded by the proposed model for the used data,
the reader should not blindly accept that model as accurate for any other instances falling inside
the input domain of the design dataset. Any analytical approximation model must undergo
extensive validation before it can be taken as reliable (the more inputs, the larger the validation
process). Models proposed until that stage are part of a learning process towards excellence.
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Notations

b bias of neuron
e relative error
f frequency

f’b,rep,k
characteristic value of the uniaxial short term concrete compressive
strength

f’b,rep,v
characteristic value of the concrete compressive strength in the limit
state of fatigue

f’b,v fatigue reference strength
fc concrete compressive strength
fc,cyl,mean average measured value of the concrete cylinder compressive strength
fcd design concrete compressive strength
fcd,fat design fatigue strength
fck characteristic concrete compressive strength
fck,fat characteristic concrete compressive strength for the limit state of fatigue
fc,mean,max maximum measured concrete compressive strength
k1 a factor from the Eurocode expression for fatigue
m the number of cycles of constant amplitude
ni the number of cycles with a constant amplitude at interval i
s a factor that depends on the strength class of the cement
t the concrete age in days
t0 the time of the start of the cyclic loading on the concrete
tT the concrete age in days, corrected for temperature
AVG average value
CHAR characteristic value based on a normal distribution
COV coefficient of variation
Ecd,max,equ the maximum compressive stress level
Ecd,min,equ the minimum compressive stress level
Ecd,max,i the maximum compressive stress level for the considered interval
Ecd,min,i the minimum compressive stress level for the considered interval
N number of load cycles
N1 first part of the S-N curve in the fib Model Code
N2 second part of the S-N curve in the fib Model Code
Ni the number of cycles to failure with a constant amplitude at interval i
R stress ratio
Requ stress ratio
Ri stress ratio of the considered interval
Ri* the stress ratio for Smax,EC
S fraction of compressive strength applied in load cycle
Sc,max maximum fraction of compressive strength applied in load cycles
Sc,min minimum fraction of compressive strength applied in load cycles
Smax maximum fraction of strength applied in load cycles
Smax,ANN the predicted value based on the neural network.
Smax,EC the value of Smax associated with 106 cycles

Smax,pred
the value of Smax from the proposed methods for a given number of
cycles N

Smax,test the value for Smax in the experiments for a given number of cycles N
Smin minimum fraction of strength applied in load cycles
STD standard deviation
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T(∆ti) temperature during time period ∆ti
W weight of connection between neurons
Y expression used in the fatigue formula of the fib Model Code
βcc(t0) coefficient for the concrete strength at first load application
βcc(t) describes the strength development with time
βc,sus(t,t0) factor for sustained loading
γm partial factor for the material
γc partial factor for concrete
γc,fat partial factor for concrete in the limit state of fatigue
σ’b,d,max design value of the maximum compressive stress in the concrete
σ’b,d,min design value of the minimum compressive stress in the concrete
σcd,max,equ upper stress of the ultimate amplitude for N cycles
σcd,min,equ lower stress of the ultimate amplitude for N cycles
σc,max upper compressive stress of the ultimate amplitude for N cycles
σc,min, lower compressive stress of the ultimate amplitude for N cycles
∆ti number of days with temperature T
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