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Abstract: Memristor crossbar arrays without selector devices, such as complementary-metal oxide
semiconductor (CMOS) devices, are a potential for realizing neuromorphic computing systems.
However, wire resistance of metal wires is one of the factors that degrade the performance of
memristor crossbar circuits. In this work, we propose a wire resistance modeling method and
a parasitic resistance-adapted programming scheme to reduce the impact of wire resistance in a
memristor crossbar-based neuromorphic computing system. The equivalent wire resistances for
the cells are estimated by analyzing the crossbar circuit using the superposition theorem. For the
conventional programming scheme, the connection matrix composed of the target memristance values
is used for crossbar array programming. In the proposed parasitic resistance-adapted programming
scheme, the connection matrix is updated before it is used for crossbar array programming to
compensate the equivalent wire resistance. The updated connection matrix is obtained by subtracting
the equivalent connection matrix from the original connection matrix. The circuit simulations are
performed to test the proposed wire resistance modeling method and the parasitic resistance-adapted
programming scheme. The simulation results showed that the discrepancy of the output voltages of the
crossbar between the conventional wire resistance modeling method and the proposed wire resistance
modeling method is as low as 2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition
rate of the memristor crossbar with the conventional programming scheme is 99%, 95%, 81%, and 65%
when wire resistance is set to be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor
crossbar with the proposed parasitic resistance-adapted programming scheme can maintain the
recognition as high as 100% when wire resistance is as high as 3.0 Ω.

Keywords: memristor; crossbar array; neuromorphic computing; wire resistance; synaptic weight;
character recognition

1. Introduction

Neuromorphic computing was investigated by C. Mead in the late 1980s as a hardware-based
approach for artificial intelligence [1]. The word “Neuromorphic” refers to an electronic circuit
that is based on digital and analog components to mimic the neurobiological structures in nervous
systems. Neuromorphic computing systems can be implemented on various VLSI (very-large scale
integration) systems [2–6]. The prevailing VLSI technology today comprises mainly of CMOS
(complementary-metal oxide semiconductor) devices. However, CMOS technology is approaching
the end of their capabilities because scaling CMOS down faces several fundamental limiting factors
stemming from electron thermal energy and quantum-mechanical tunneling [7,8]. The emerging
memristive devices, termed memristors, have been considered a promising candidate for realizing
the neuromorphic computing systems. Memristor was postulated by L. O. Chua in 1971 as the fourth
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fundamental passive circuit element and experimentally demonstrated by HP (Hewlett Packard) Labs
in 2008 [9,10]. Memristors has been potentially used to implement the neuromorphic computing
systems because the nonlinear relationship between magnetic flux and electric charge of memristors is
very similar to the plasticity behavior of biological brain [11,12]. In biological brains, synapse is the
connection between a presynaptic neuron and a postsynaptic neuron. The strength of a synapse is
represented by a synaptic weight. According to the neuron activities including excitatory and inhibitory,
synaptic weights can be positive or negative [13,14]. Synapses can be modeled by memristors as
shown in Figure 1 [11]. The synaptic weight is represented by the conductance of memristor, which
can increase or decrease according to the current flowing through the device.
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Figure 1. A conceptual diagram of a memristor-based synapse [11].

A memristor crossbar array is a fully connected mesh of perpendicular wires, in which any two
crossing wires are connected by a memristor [15]. Neuromorphic computing systems employing
crossbar architecture of memristors have gained more advantages in terms of the flexibility, power
consumption, cost, and area [16–23]. Miao Hu et al. proposed a crossbar architecture of synaptic array
composing of a plus and minus crossbar arrays representing plus- and minus-polarity connection
matrices for analog neuromorphic computing [20]. To reduce the area and power consumption,
S. N. Truong proposed a new memristor crossbar architecture, which is composed of a single memristor
array and a constant-term circuit [21]. The proposed architecture can reduce the power consumption
by 48% and the area by 50% [21]. The memristor crossbar has also applied to the applications of speech
recognition and image recognition [22,23].

In a memristor crossbar array, some amount of voltage drop can be caused by parasitic
resistance, also known as wire resistance along the row and the column lines [19,24–28]. Hereinafter
“wire resistance” and “parasitic resistance” are used interchangeably. The impact of wire resistance
becomes inevitable when the array size increases [22]. To mitigate the impact of wire resistance,
several interesting schemes were proposed [25–28]. A design methodology has been proposed to
reduce the impact of wire resistance in a one-selector-one resistive device (1S1R) crossbar array [27].
The proposed design methodology seems to be complicated since the physical specification of the
devices must be considered [27]. Another approach to deal with the wire resistance is to use a dynamic
reference scheme [25]. The read operation is performed with two steps associated with a special reading
circuit. [25]. These proposed schemes are effective when they are applied to a memristor crossbar
array, in which memristors are used as binary switches between two distinct high and low resistance
states (HRS (High Resistance State) and LRS (Low Resistance State)). These solutions are mainly based
on the additional techniques or circuits to compensate the variation of reading voltage caused by
wire resistance. To the best of our knowledge, there is a lack of the techniques that can be applied to
the programming process of crossbar circuit to lessen the impact of wire resistance in the inference
process. In this work, we propose a parasitic resistance-adapted programming scheme for memristor
crossbar-based neuromorphic computing systems, in which memristors are used as analog connections.
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An equivalent wire resistance is proposed for modeling wire resistance in crossbar circuit. The proposed
equivalent wire resistance matrix is used to compensate wire resistance during the programming
process. As the result, the impact of wire resistance in inference process is reduced significantly.

2. Materials and Methods

In neuromorphic computing systems, the synaptic weights obtained from the training process
are either positive or negative according to they are excitatory synapses or inhibitory synapses [13,14].
The signal passing through these synaptic connections can be strengthened or weakened. When modeling
biological synapses using memristors, it should be guaranteed that the synaptic weights could be
negative values or positive values, consistent with the inhibitory or excitatory synapses. For doing
this, the crossbar architecture with two memristor crossbar arrays for plus and minus connection
matrices was proposed [20]. Figure 2a shows a conceptual diagram of crossbar architecture of an analog
neuromorphic computing system [20]. Here plus-polarity and minus-polarity connection matrices are
utilized to implement the synaptic array, in which synaptic weights can be programmed to be negative
or positive. The circles in Figure 2a represent the memristors that connect the inputs and the columns.
a0 to an are additions, and s0 to sn are subtractions that produce the output voltages from V0 to Vn.
g+

0,0 is the memristor’s conductance value of the crossing point between the first row and the first
column in M+ array. Similarly, g−0,0 is the memristor’s conductance in M- array, as shown in Figure 2a.
The output voltage for the ith column can be calculated as

Vi =
m∑

j=0
Vin, jg+ j,i −

m∑
j=0

Vin, jg− j,i

Vi =
m∑

j=0
Vin, jw j,i

Here, w j,i = (g+ j,i − g− j,i)

(1)
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Figure 2. (a) The conceptual diagram of two crossbar arrays for implementing plus- and minus-polarity
connection matrices [20] and (b) the optimized crossbar architecture, which employs only one memristor
crossbar and a constant-term circuit for realizing negative and positive synaptic weights [21].
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In Equation (1), the output voltage is a summation of inputs, which are weighted by the corresponding
weights, wj,i. The synaptic weight, wj,i, is decided by the difference of two conductance values of
memristors in two arrays; g+j,i in the M+ array, and g−j,i in M− array. To reduce the power consumption
and area, S. N. Truong proposed a new crossbar architecture, which employed only one crossbar array
and a constant-term circuit [21]. The proposed crossbar architecture is conceptually shown in Figure 2b.
There is only one memristor crossbar array instead of two memristor crossbar arrays for representing
the signed synaptic array. The negative synaptic weight is generated using an additional column,
which connects to the inputs through RBs, as shown in Figure 2b. Here, a constant-term circuit is used
to replace a crossbar array without changing the functionality of the crossbar circuit [21].

In previous works, memristor crossbar circuits are simulated with ignoring the presence of wire
resistance. However, the impact wire resistance in crossbar is inevitable. It becomes more serious as
the array size increases [25]. Wire resistance is modeled by small-value resistors lying on the vertical
lines and the horizontal lines, as shown in Figure 3. In Figure 3, if wire resistance is omitted, the output
voltage of the ith column is calculated by Equation (2) [21].

VO,i =
m∑

j=0
Vin, jw j,i

where, w j,i = R0

(
1

RB
−

1
M j,i

) (2)
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Figure 3. The schematic of memristor-based neuromorphic computing circuit with the presence of wire
resistance. Wire resistance is modeled by small-value resistors on vertical lines and horizontal lines.

Equation (2) is used for calculating the output voltage of the ith column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron.
In Equation (2), Mj,i is the memristance value of the crossing point between the jth row and ith column.
RB is a constant, the synaptic weight, wj,i, can be decided to be either negative or positive by adjusting
the memristance, Mj,i.

If wire resistance is not omitted, it can be modeled by small-value resistors along vertical and
horizontal lines as shown in Figure 3. The ith column of crossbar is separated and shown in Figure 4.
The output voltage of the ith column is calculated by applying Ohm’s law and the Kirchhoff’s current
law to the node of V− of the Op-amp, as presented in Equation (3).

Vo,i = R0i0

where i0 +
m∑

j=1
i j = 0 (3)

To analyze the circuit in Figure 3, we can use the well-known superposition theorem. In particular,
we isolate the circuit row by row as shown in Figure 4a. When we calculate the current for the jth
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row, we can assume that the inputs for other rows are zero, as shown in Figure 4b. Since the value
of the resistor, r, is very small compared to the memristance values, the circuit in Figure 4b can be
approximated by using the equivalent circuit, as illustrated in Figure 4c. In Figure 4c, the resistors,
which the current i1 passes through, can be approximately represented by an equivalent resistor R1,i:

R1,i = ir + mr (4)

where R1,i is an equivalent wire resistance for cell M1,i. In general, we can approximate the wire
resistance for the cell Mj,i as follows

R j,i = ir + (m− j + 1)r (5)

where, m is the number of rows in the crossbar circuit. r is wire resistance value.Materials 2019, 12, x FOR PEER REVIEW 6 of 13 
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Figure 4. Analyzing the crossbar circuit using superposition method. (a) The schematic of the ith
column with the presence of wire resistance; (b) analyzing the circuit using superposition method,
and (c) the equivalent wire resistance for the cell Mj,i.

In this work, we proposed a wire resistance modeling method by using the proposed an equivalent
wire resistance matrix for an m × n crossbar array, as illustrated in Figure 5. The elements in the
proposed matrix are the equivalent resistance values of wire resistance on vertical line and horizontal
line, which are calculated by Equation (5) for the corresponding cells.
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Figure 5. The proposed equivalent wire resistance matrix for modeling wire resistance in an m × n
crossbar array. Here r is the value of wire resistance, m is the number of rows, and n is the number
of columns.

The proposed equivalent wire resistance matrix was used to compensate the impact of wire
resistance in crossbar array by adjusting the connection matrix according to the proposed equivalent
wire resistance matrix. In particular, we proposed a parasitic resistance-adapted programming scheme
to compensate wire resistance for a memristor crossbar-neuromorphic computing. The proposed
scheme is conceptually shown in Figure 6b. Figure 6a shows a conventional programming scheme for
a crossbar circuit. The synaptic weights that were obtained from the training process were converted
to the values of memristance using Equation (2). The memristance values of the cells in crossbar form
a connection matrix M as presented in Figure 6. For the conventional programming scheme, the cells
in the crossbar array were programmed to the target values presented in the connection matrix M.
Wire resistance was not considered during programming process and inference phase. To consider
the presence of wire resistance, the connection matrix was updated before it is used to program the
crossbar array. Specifically, the target memristance matrix was obtained by subtracting the proposed
equivalent wire resistance matrix from the original connection matrix, as conceptually shown in
Figure 6b. By updating the connection matrix with the proposed equivalent wire resistance matrix,
wire resistance was compensated in the inference phase. The connection matrix is updated using the
Equation (6)

M j,i = M j,i −R j,i
= M j,i − ir + (m− j + 1)r

(6)

where, Mj,i is memristance of the cell between the jth row the ith column. In the conventional
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i. In the proposed
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i − ir + (m − j + 1)r,
where the amount of ir + (m − j + 1)r represents the equivalent wire resistance for the cell Mj,i. By doing
this, wire resistance is compensated in the inference phase.
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Figure 6. (a) The conventional programming scheme, in which the memristance values in connection
matrix are used to program the corresponding cells in crossbar array and (b) the proposed parasitic
resistance-adapted programming scheme, where the value of connection matrix is updated by
subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix is then used to program the crossbar array. R is the proposed equivalent
wire resistance matrix for an m × n crossbar array. r is the value of wire resistance, m is the number of
rows, and n is the number of columns.

3. Results

The circuit simulations were performed to verify the proposed wire resistance modeling
method and the parasitic resistance-adapted programming scheme for a memristor crossbar-based
neuromorphic computing system. The simulations were performed using the SPECTRE circuit
simulation provided by Cadence Design Systems Inc. [29]. Memristors were modeled using Verilog-A
and CMOS technology is given by SAMSUNG 0.13 mm process technology [30,31]. Figure 7a shows a
hysteresis behavior of a real memristor based on the film structure of Pt/LaAlO3/Nb-doped SrTiO3

stacked layer and a memristor model that can be used to describe various memristive behaviors [30,31].
The memristor model and parameters are presented in [30]. The crossbar circuit was used for the
application of character recognition. Figure 7b shows eight × eight images of characters used in these
simulations. Each character was composed of 64 black-and-white pixels. The crossbar circuit was
schematically shown in Figure 7c for recognition of the characters from “A” to “Z”. To recognize
26 characters, the memristor crossbar was composed of 26 columns and a constant-term of RB as
depicted in Figure 7c. The constant-term column connected to all inputs through RB to generate the
negative voltage as mentioned in the previous work [21]. The crossbar had 26 columns corresponding
to 26 perceptron neurons for recognizing 26 characters from “A” to “Z”. For example, the first column is
trained to be activated with the input character “A” and the 26th column is trained to be activated with
the input character “Z” [21]. Wire resistance was modeled by small-value resistors along vertical and
horizontal lines, as shown in Figure 7c. Here RB and R0 were set to be 60 KΩ and 200 KΩ respectively.
RF1 should be equal to RF2 as mentioned in previous work [21].
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Figure 7. (a) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model; (b) the eight × eight images of characters used to test the proposed
equivalent wire resistance modeling method and the parasitic resistance-adapted programming scheme;
and (c) the schematic of crossbar circuit for the application of character recognition.

The proposed wire resistance modeling method using equivalent wire resistance matrix was
verified by the simulation that was set up as presented in Figure 8a,b. The synaptic weights obtained
from the training process were converted to the memristance values in connection matrix using
Equations (2) and (6). For the conventional method, wire resistance was modeled by small-value
resistors along vertical and horizontal lines, as shown in Figure 8a. The crossbar was programmed to
the target memristance values presented in the connection matrix using the VDD/3 write scheme [32].
For the proposed method, we calculated the equivalent wire resistance matrix as shown in Figure 5.
The small-values resistors were not present in the crossbar circuit, the value of equivalent wire resistance
matrix was added to the connection matrix instead, as conceptually shown in Figure 8b. In other
words, the connection matrix was updated by adding corresponding elements of the connection
matrix and the proposed equivalent wire resistance matrix. The crossbar was then programmed
to the target memristance values presented in the updated connection matrix using VDD/3 write
scheme. In Figure 8c, the output voltages of 26 columns for recognizing 26 characters were measured
when the vector of character “A” was applied to the inputs. Among the 26 columns, only the first
column produced high voltage for recognizing character “A”. When wire resistance was set to be
2.0 Ω, the voltage drop on wire resistance made the output voltages of columns increase, as shown in
Figure 8c [33]. Since the voltage drop on wire resistance depends on the length of metal line, the column
close to the first column had less change of voltage whereas the column far from the first column had
much change of voltage, as demonstrated in Figure 8c [33]. The result obtained from the conventional
method is represented by the square symbols and that one obtained from the proposed method with
equivalent wire resistance matrix is represented by the round symbols. The discrepancy between the
two methods was as low as 3%.

In Figure 8d, we calculated the percentage error, which is defined as the difference of the output
voltages between the conventional wire resistance modeling method in Figure 8a and the proposed wire
resistance modeling method in Figure 8b, in which wire resistance was modeled using the proposed
equivalent wire resistance matrix. In these simulations, wire resistance was varied from 0.5 to 3.0 Ω.
This range of wire resistance is commonly used and obtained from the International Technology
Roadmap for Semiconductors [24,25,34–37]. When wire resistance was set to be 0.5 Ω, the percentage
error was as low as 2.2%. The percentage error increased slightly when wire resistance increased,
as shown in Figure 8d. On average, the discrepancy between the two methods was as low as 2.9%.
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The simulation results indicate that wire resistance in crossbar circuit could be modeled using the
proposed equivalent wire resistance matrix, which is presented in Figure 5.Materials 2019, 12, x FOR PEER REVIEW 10 of 13 
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Figure 8. (a) The conventional method for the crossbar circuit simulation with taking the presence
of wire resistance into account. Here wire resistance is modeled by small-value resistors along the
vertical and horizontal lines; (b) the proposed method with equivalent wire resistance for the crossbar
circuit simulation with considering the presence of wire resistance. Here, the small-value resistors are
not present in the crossbar circuit, the connection matrix is updated by adding the equivalent wire
resistance matrix to the connection matrix instead; (c) the output voltages of 26 columns for the input
character “A” and (d) the percentage error with varying wire resistance from 0.5 to 3.0 Ω.

Figure 9 shows the comparison of the recognition rate of memristor crossbar array between
the conventional programming scheme and the proposed parasitic resistance-adapted programming
scheme for recognizing 26 characters when wire resistance was varied from 0.5 to 3.0 Ω. For the
conventional programming scheme, the connection matrix obtained from the training process of
memristor crossbar for recognition of 26 characters was used for the crossbar array programming.
In the proposed parasitic resistance-adapted programming scheme, the connection matrix was updated
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by subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix was then used for the crossbar array programming. The recognition
rate of the memristor crossbar with using conventional programming scheme declined dramatically
when wire resistance increased. This was due to the fact that the synaptic weight is a nonlinear
function of memristance as presented in Equation (2), the change of memristance caused by wire
resistance makes the synaptic weight change remarkably. As a result, the recognition rate was degraded
dramatically. In particular, the recognition rate of the memristor crossbar with using the conventional
programming scheme was 99%, 95%, 81%, and 65% when the wire resistance was set to be 1.5, 2.0, 2.5,
and 3.0 Ω, respectively, as indicated in Figure 9. The presence of wire resistance causes the output
voltage increased as mathematically analyzed and experimentally demonstrated in previous work [33].
The last column had the large variation of output voltage caused by wire resistance [33]. Therefore,
the increase of wire resistance caused the recognition rate to decrease significantly, as the shown in
Figure 9. By contrast, the memristor crossbar with using the proposed parasitic resistance-adapted
programming scheme could maintain the recognition as high as 100% when wire resistance was as high
as 3.0 Ω. This was because the value of memristance in connection matrix was updated by subtracting
the equivalent wire resistance matrix from the original connection matrix. By doing this, the wire
resistance in crossbar circuit was compensated.

Materials 2019, 12, x FOR PEER REVIEW 11 of 13 

 

was as low as 2.9%. The simulation results indicate that wire resistance in crossbar circuit could be 
modeled using the proposed equivalent wire resistance matrix, which is presented in Figure 5. 

 

Figure 9. The comparison of recognition rate between the conventional programming scheme and 
the proposed parasitic resistance-adapted programming scheme when wire resistance is varied from 
0.5 to 3.0 Ω. 

Figure 9 shows the comparison of the recognition rate of memristor crossbar array between the 
conventional programming scheme and the proposed parasitic resistance-adapted programming 
scheme for recognizing 26 characters when wire resistance was varied from 0.5 to 3.0 Ω. For the 
conventional programming scheme, the connection matrix obtained from the training process of 
memristor crossbar for recognition of 26 characters was used for the crossbar array programming. In 
the proposed parasitic resistance-adapted programming scheme, the connection matrix was 
updated by subtracting the proposed equivalent wire resistance matrix from the original connection 
matrix. The updated connection matrix was then used for the crossbar array programming. The 
recognition rate of the memristor crossbar with using conventional programming scheme declined 
dramatically when wire resistance increased. This was due to the fact that the synaptic weight is a 
nonlinear function of memristance as presented in Equation (2), the change of memristance caused 
by wire resistance makes the synaptic weight change remarkably. As a result, the recognition rate 
was degraded dramatically. In particular, the recognition rate of the memristor crossbar with using 
the conventional programming scheme was 99%, 95%, 81%, and 65% when the wire resistance was 
set to be 1.5, 2.0, 2.5, and 3.0 Ω, respectively, as indicated in Figure 9. The presence of wire resistance 
causes the output voltage increased as mathematically analyzed and experimentally demonstrated 
in previous work [33]. The last column had the large variation of output voltage caused by wire 
resistance [33]. Therefore, the increase of wire resistance caused the recognition rate to decrease 
significantly, as the shown in Figure 9. By contrast, the memristor crossbar with using the proposed 
parasitic resistance-adapted programming scheme could maintain the recognition as high as 100% 
when wire resistance was as high as 3.0 Ω. This was because the value of memristance in connection 
matrix was updated by subtracting the equivalent wire resistance matrix from the original 
connection matrix. By doing this, the wire resistance in crossbar circuit was compensated. 

Wire resistance degraded the performance of crossbar circuit dramatically. In this work, we 
tried to mitigate the impact of wire resistance by compensating wire resistance. It was done by 
adjusting the memristance values before they were used to program the crossbar array. In particular, 
the connection matrix was updated by subtracting the equivalent wire resistance matrix from the 
original connection matrix. By doing this, no additional circuits or components were required. The 
proposed parasitic resistance-adapted programming scheme was effective for memristor 
crossbar-based neuromorphic computing systems. 

 

0.5 1.0 1.5 2.0 2.5 3.0
60

65

70

75

80

85

90

95

100

R
ec

og
ni

tio
n 

ra
te

 (%
)

Wire resistance (Ω)

 Conventional programming scheme
 Proposed programming scheme

Figure 9. The comparison of recognition rate between the conventional programming scheme and the
proposed parasitic resistance-adapted programming scheme when wire resistance is varied from 0.5 to
3.0 Ω.

Wire resistance degraded the performance of crossbar circuit dramatically. In this work, we tried
to mitigate the impact of wire resistance by compensating wire resistance. It was done by adjusting the
memristance values before they were used to program the crossbar array. In particular, the connection
matrix was updated by subtracting the equivalent wire resistance matrix from the original connection
matrix. By doing this, no additional circuits or components were required. The proposed parasitic
resistance-adapted programming scheme was effective for memristor crossbar-based neuromorphic
computing systems.

4. Conclusions

Wire resistance is one of the factors that degrade the performance of the crossbar circuits
significantly. In this work, we proposed a parasitic resistance-adapted programming scheme to mitigate
the impact of wire resistance in memristor crossbar array. Firstly, a wire resistance modeling method
using equivalent wire resistance matrix was proposed. The equivalent wire resistance matrix was
achieved by analysis the crossbar circuit using the superposition method. The connection matrix was
updated before it was used as a target for memristor crossbar programming. The updated connection
matrix was obtained by subtracting the proposed equivalent wire resistance matrix from the original
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connection matrix. The circuit simulations were performed to verify the proposed wire resistance
modeling method and the parasitic resistance-adapted programming scheme. The simulation results
showed that the discrepancy of the output voltages of the crossbar circuit between the conventional
wire resistance modeling method and the proposed wire resistance modeling method was as low as
2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition rate of the memristor crossbar
with conventional programming scheme was 99%, 95%, 81%, and 65% when wire resistance was set to
be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor crossbar with the proposed parasitic
resistance-adapted programming scheme could maintain the recognition as high as 100% when wire
resistance was as high as 3.0 Ω.
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