
materials

Article

A Parasitic Resistance-Adapted Programming Scheme
for Memristor Crossbar-Based Neuromorphic
Computing Systems

Son Ngoc Truong

Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education,
Ho Chi Minh City 70000, Vietnam; sontn@hcmute.edu.vn; Tel.: +84-93-108-5929

Received: 10 October 2019; Accepted: 3 December 2019; Published: 8 December 2019
����������
�������

Abstract: Memristor crossbar arrays without selector devices, such as complementary-metal oxide
semiconductor (CMOS) devices, are a potential for realizing neuromorphic computing systems.
However, wire resistance of metal wires is one of the factors that degrade the performance of
memristor crossbar circuits. In this work, we propose a wire resistance modeling method and
a parasitic resistance-adapted programming scheme to reduce the impact of wire resistance in a
memristor crossbar-based neuromorphic computing system. The equivalent wire resistances for
the cells are estimated by analyzing the crossbar circuit using the superposition theorem. For the
conventional programming scheme, the connection matrix composed of the target memristance values
is used for crossbar array programming. In the proposed parasitic resistance-adapted programming
scheme, the connection matrix is updated before it is used for crossbar array programming to
compensate the equivalent wire resistance. The updated connection matrix is obtained by subtracting
the equivalent connection matrix from the original connection matrix. The circuit simulations are
performed to test the proposed wire resistance modeling method and the parasitic resistance-adapted
programming scheme. The simulation results showed that the discrepancy of the output voltages of the
crossbar between the conventional wire resistance modeling method and the proposed wire resistance
modeling method is as low as 2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition
rate of the memristor crossbar with the conventional programming scheme is 99%, 95%, 81%, and 65%
when wire resistance is set to be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor
crossbar with the proposed parasitic resistance-adapted programming scheme can maintain the
recognition as high as 100% when wire resistance is as high as 3.0 Ω.

Keywords: memristor; crossbar array; neuromorphic computing; wire resistance; synaptic weight;
character recognition

1. Introduction

Neuromorphic computing was investigated by C. Mead in the late 1980s as a hardware-based
approach for artificial intelligence [1]. The word “Neuromorphic” refers to an electronic circuit
that is based on digital and analog components to mimic the neurobiological structures in nervous
systems. Neuromorphic computing systems can be implemented on various VLSI (very-large scale
integration) systems [2–6]. The prevailing VLSI technology today comprises mainly of CMOS
(complementary-metal oxide semiconductor) devices. However, CMOS technology is approaching
the end of their capabilities because scaling CMOS down faces several fundamental limiting factors
stemming from electron thermal energy and quantum-mechanical tunneling [7,8]. The emerging
memristive devices, termed memristors, have been considered a promising candidate for realizing
the neuromorphic computing systems. Memristor was postulated by L. O. Chua in 1971 as the fourth

Materials 2019, 12, 4097; doi:10.3390/ma12244097 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-5797-1161
http://dx.doi.org/10.3390/ma12244097
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/12/24/4097?type=check_update&version=2

Materials 2019, 12, 4097 2 of 12

fundamental passive circuit element and experimentally demonstrated by HP (Hewlett Packard) Labs
in 2008 [9,10]. Memristors has been potentially used to implement the neuromorphic computing
systems because the nonlinear relationship between magnetic flux and electric charge of memristors is
very similar to the plasticity behavior of biological brain [11,12]. In biological brains, synapse is the
connection between a presynaptic neuron and a postsynaptic neuron. The strength of a synapse is
represented by a synaptic weight. According to the neuron activities including excitatory and inhibitory,
synaptic weights can be positive or negative [13,14]. Synapses can be modeled by memristors as
shown in Figure 1 [11]. The synaptic weight is represented by the conductance of memristor, which
can increase or decrease according to the current flowing through the device.

Materials 2019, 12, x FOR PEER REVIEW 2 of 13

fundamental passive circuit element and experimentally demonstrated by HP (Hewlett Packard)
Labs in 2008 [9,10]. Memristors has been potentially used to implement the neuromorphic
computing systems because the nonlinear relationship between magnetic flux and electric charge of
memristors is very similar to the plasticity behavior of biological brain [11,12]. In biological brains,
synapse is the connection between a presynaptic neuron and a postsynaptic neuron. The strength of
a synapse is represented by a synaptic weight. According to the neuron activities including
excitatory and inhibitory, synaptic weights can be positive or negative [13,14]. Synapses can be
modeled by memristors as shown in Figure 1 [11]. The synaptic weight is represented by the
conductance of memristor, which can increase or decrease according to the current flowing through
the device.

Figure 1. A conceptual diagram of a memristor-based synapse [11].

A memristor crossbar array is a fully connected mesh of perpendicular wires, in which any two
crossing wires are connected by a memristor [15]. Neuromorphic computing systems employing
crossbar architecture of memristors have gained more advantages in terms of the flexibility, power
consumption, cost, and area [16–23]. Miao Hu et al. proposed a crossbar architecture of synaptic
array composing of a plus and minus crossbar arrays representing plus- and minus-polarity
connection matrices for analog neuromorphic computing [20]. To reduce the area and power
consumption, S. N. Truong proposed a new memristor crossbar architecture, which is composed of a
single memristor array and a constant-term circuit [21]. The proposed architecture can reduce the
power consumption by 48% and the area by 50% [21]. The memristor crossbar has also applied to the
applications of speech recognition and image recognition [22,23].

In a memristor crossbar array, some amount of voltage drop can be caused by parasitic
resistance, also known as wire resistance along the row and the column lines [19,24–28]. Hereinafter
“wire resistance” and “parasitic resistance” are used interchangeably. The impact of wire resistance
becomes inevitable when the array size increases [22]. To mitigate the impact of wire resistance,
several interesting schemes were proposed [25–28]. A design methodology has been proposed to
reduce the impact of wire resistance in a one-selector-one resistive device (1S1R) crossbar array [27].
The proposed design methodology seems to be complicated since the physical specification of the
devices must be considered [27]. Another approach to deal with the wire resistance is to use a
dynamic reference scheme [25]. The read operation is performed with two steps associated with a
special reading circuit. [25]. These proposed schemes are effective when they are applied to a
memristor crossbar array, in which memristors are used as binary switches between two distinct
high and low resistance states (HRS (High Resistance State) and LRS (Low Resistance State)). These
solutions are mainly based on the additional techniques or circuits to compensate the variation of
reading voltage caused by wire resistance. To the best of our knowledge, there is a lack of the
techniques that can be applied to the programming process of crossbar circuit to lessen the impact of
wire resistance in the inference process. In this work, we propose a parasitic resistance-adapted
programming scheme for memristor crossbar-based neuromorphic computing systems, in which

Synapse

To post-neuron
To pre-neuron

Memristor

Figure 1. A conceptual diagram of a memristor-based synapse [11].

A memristor crossbar array is a fully connected mesh of perpendicular wires, in which any two
crossing wires are connected by a memristor [15]. Neuromorphic computing systems employing
crossbar architecture of memristors have gained more advantages in terms of the flexibility, power
consumption, cost, and area [16–23]. Miao Hu et al. proposed a crossbar architecture of synaptic array
composing of a plus and minus crossbar arrays representing plus- and minus-polarity connection
matrices for analog neuromorphic computing [20]. To reduce the area and power consumption,
S. N. Truong proposed a new memristor crossbar architecture, which is composed of a single memristor
array and a constant-term circuit [21]. The proposed architecture can reduce the power consumption
by 48% and the area by 50% [21]. The memristor crossbar has also applied to the applications of speech
recognition and image recognition [22,23].

In a memristor crossbar array, some amount of voltage drop can be caused by parasitic
resistance, also known as wire resistance along the row and the column lines [19,24–28]. Hereinafter
“wire resistance” and “parasitic resistance” are used interchangeably. The impact of wire resistance
becomes inevitable when the array size increases [22]. To mitigate the impact of wire resistance,
several interesting schemes were proposed [25–28]. A design methodology has been proposed to
reduce the impact of wire resistance in a one-selector-one resistive device (1S1R) crossbar array [27].
The proposed design methodology seems to be complicated since the physical specification of the
devices must be considered [27]. Another approach to deal with the wire resistance is to use a dynamic
reference scheme [25]. The read operation is performed with two steps associated with a special reading
circuit. [25]. These proposed schemes are effective when they are applied to a memristor crossbar
array, in which memristors are used as binary switches between two distinct high and low resistance
states (HRS (High Resistance State) and LRS (Low Resistance State)). These solutions are mainly based
on the additional techniques or circuits to compensate the variation of reading voltage caused by
wire resistance. To the best of our knowledge, there is a lack of the techniques that can be applied to
the programming process of crossbar circuit to lessen the impact of wire resistance in the inference
process. In this work, we propose a parasitic resistance-adapted programming scheme for memristor
crossbar-based neuromorphic computing systems, in which memristors are used as analog connections.

Materials 2019, 12, 4097 3 of 12

An equivalent wire resistance is proposed for modeling wire resistance in crossbar circuit. The proposed
equivalent wire resistance matrix is used to compensate wire resistance during the programming
process. As the result, the impact of wire resistance in inference process is reduced significantly.

2. Materials and Methods

In neuromorphic computing systems, the synaptic weights obtained from the training process
are either positive or negative according to they are excitatory synapses or inhibitory synapses [13,14].
The signal passing through these synaptic connections can be strengthened or weakened. When modeling
biological synapses using memristors, it should be guaranteed that the synaptic weights could be
negative values or positive values, consistent with the inhibitory or excitatory synapses. For doing
this, the crossbar architecture with two memristor crossbar arrays for plus and minus connection
matrices was proposed [20]. Figure 2a shows a conceptual diagram of crossbar architecture of an analog
neuromorphic computing system [20]. Here plus-polarity and minus-polarity connection matrices are
utilized to implement the synaptic array, in which synaptic weights can be programmed to be negative
or positive. The circles in Figure 2a represent the memristors that connect the inputs and the columns.
a0 to an are additions, and s0 to sn are subtractions that produce the output voltages from V0 to Vn.
g+

0,0 is the memristor’s conductance value of the crossing point between the first row and the first
column in M+ array. Similarly, g−0,0 is the memristor’s conductance in M- array, as shown in Figure 2a.
The output voltage for the ith column can be calculated as

Vi =
m∑

j=0
Vin, jg+ j,i −

m∑
j=0

Vin, jg− j,i

Vi =
m∑

j=0
Vin, jw j,i

Here, w j,i = (g+ j,i − g− j,i)

(1)

Materials 2019, 12, x FOR PEER REVIEW 4 of 13

Figure 2. (a) The conceptual diagram of two crossbar arrays for implementing plus- and
minus-polarity connection matrices [20] and (b) the optimized crossbar architecture, which employs
only one memristor crossbar and a constant-term circuit for realizing negative and positive synaptic
weights [21].

In previous works, memristor crossbar circuits are simulated with ignoring the presence of wire
resistance. However, the impact wire resistance in crossbar is inevitable. It becomes more serious as
the array size increases [25]. Wire resistance is modeled by small-value resistors lying on the vertical
lines and the horizontal lines, as shown in Figure 3. In Figure 3, if wire resistance is omitted, the
output voltage of the ith column is calculated by Equation (2) [21].

)11(,
,

0,

0
,,,

ijB
ij

m

j
ijjiniO

MR
Rwwhere

wVV

−=

=
= (2)

a0 a1 ai an

Vin,0

Vin,1

Vin,2

Vin,j

Vin,m

M+ array

a0 a1 ai an

Vin,0

Vin,1

Vin,2

Vin,j

Vin,m

M- array

V0

s0

a0 a1 ai an

Vin,0

Vin,1

Vin,2

Vin,j

Vin,m

M+ array Constant-term

V1 Vi Vn

(a)

(b)
V0

g+0,0

g+m,0

g+j,i

g-0,0

g-m,0

g-j,i

V1

s1

Vi Vn

g0,0

gm,0

gj,i

RB

RB

si sn

Figure 2. (a) The conceptual diagram of two crossbar arrays for implementing plus- and minus-polarity
connection matrices [20] and (b) the optimized crossbar architecture, which employs only one memristor
crossbar and a constant-term circuit for realizing negative and positive synaptic weights [21].

Materials 2019, 12, 4097 4 of 12

In Equation (1), the output voltage is a summation of inputs, which are weighted by the corresponding
weights, wj,i. The synaptic weight, wj,i, is decided by the difference of two conductance values of
memristors in two arrays; g+j,i in the M+ array, and g−j,i in M− array. To reduce the power consumption
and area, S. N. Truong proposed a new crossbar architecture, which employed only one crossbar array
and a constant-term circuit [21]. The proposed crossbar architecture is conceptually shown in Figure 2b.
There is only one memristor crossbar array instead of two memristor crossbar arrays for representing
the signed synaptic array. The negative synaptic weight is generated using an additional column,
which connects to the inputs through RBs, as shown in Figure 2b. Here, a constant-term circuit is used
to replace a crossbar array without changing the functionality of the crossbar circuit [21].

In previous works, memristor crossbar circuits are simulated with ignoring the presence of wire
resistance. However, the impact wire resistance in crossbar is inevitable. It becomes more serious as
the array size increases [25]. Wire resistance is modeled by small-value resistors lying on the vertical
lines and the horizontal lines, as shown in Figure 3. In Figure 3, if wire resistance is omitted, the output
voltage of the ith column is calculated by Equation (2) [21].

VO,i =
m∑

j=0
Vin, jw j,i

where, w j,i = R0

(
1

RB
−

1
M j,i

) (2)

Materials 2019, 12, x FOR PEER REVIEW 5 of 13

Figure 3. The schematic of memristor-based neuromorphic computing circuit with the presence of
wire resistance. Wire resistance is modeled by small-value resistors on vertical lines and horizontal
lines.

Equation (2) is used for calculating the output voltage of the ith column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron. In
Equation (2), Mj,i is the memristance value of the crossing point between the jth row and ith column.
RB is a constant, the synaptic weight, wj,i, can be decided to be either negative or positive by
adjusting the memristance, Mj,i.

If wire resistance is not omitted, it can be modeled by small-value resistors along vertical and
horizontal lines as shown in Figure 3. The ith column of crossbar is separated and shown in Figure 4.
The output voltage of the ith column is calculated by applying Ohm’s law and the Kirchhoff’s
current law to the node of V- of the Op-amp, as presented in Equation (3).

0
1

0

00,

=+

=

=

m

j
j

io

iiwhere

iRV

 (3)

To analyze the circuit in Figure 3, we can use the well-known superposition theorem. In
particular, we isolate the circuit row by row as shown in Figure 4a. When we calculate the current
for the jth row, we can assume that the inputs for other rows are zero, as shown in Figure 4b. Since
the value of the resistor, r, is very small compared to the memristance values, the circuit in Figure 4b
can be approximated by using the equivalent circuit, as illustrated in Figure 4c. In Figure 4c, the
resistors, which the current i1 passes through, can be approximately represented by an equivalent
resistor R1,i:

mrirR i +=,1 (4)

where R1,i is an equivalent wire resistance for cell M1,i. In general, we can approximate the wire
resistance for the cell Mj,i as follows

rjmirR ij)1(, +−+= (5)

where, m is the number of rows in the crossbar circuit. r is wire resistance value.

Mm,1

M1,1

r

VIN,m

VIN,j

VIN,2

VIN,1

R0 R0 R0 R0

RF2 RF2 RF2 RF2

VF

RF1

VO,0 VO,1 VO,i VO,n-1

GF G0 G1 Gi Gn-1

r

r

r

r

r

r

r

r

r r

r

Wire resistance

RB

RB

RB

RB

r

Mj,i

Figure 3. The schematic of memristor-based neuromorphic computing circuit with the presence of wire
resistance. Wire resistance is modeled by small-value resistors on vertical lines and horizontal lines.

Equation (2) is used for calculating the output voltage of the ith column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron.
In Equation (2), Mj,i is the memristance value of the crossing point between the jth row and ith column.
RB is a constant, the synaptic weight, wj,i, can be decided to be either negative or positive by adjusting
the memristance, Mj,i.

If wire resistance is not omitted, it can be modeled by small-value resistors along vertical and
horizontal lines as shown in Figure 3. The ith column of crossbar is separated and shown in Figure 4.
The output voltage of the ith column is calculated by applying Ohm’s law and the Kirchhoff’s current
law to the node of V− of the Op-amp, as presented in Equation (3).

Vo,i = R0i0

where i0 +
m∑

j=1
i j = 0 (3)

To analyze the circuit in Figure 3, we can use the well-known superposition theorem. In particular,
we isolate the circuit row by row as shown in Figure 4a. When we calculate the current for the jth

Materials 2019, 12, 4097 5 of 12

row, we can assume that the inputs for other rows are zero, as shown in Figure 4b. Since the value
of the resistor, r, is very small compared to the memristance values, the circuit in Figure 4b can be
approximated by using the equivalent circuit, as illustrated in Figure 4c. In Figure 4c, the resistors,
which the current i1 passes through, can be approximately represented by an equivalent resistor R1,i:

R1,i = ir + mr (4)

where R1,i is an equivalent wire resistance for cell M1,i. In general, we can approximate the wire
resistance for the cell Mj,i as follows

R j,i = ir + (m− j + 1)r (5)

where, m is the number of rows in the crossbar circuit. r is wire resistance value.Materials 2019, 12, x FOR PEER REVIEW 6 of 13

Figure 4. Analyzing the crossbar circuit using superposition method. (a) The schematic of the ith
column with the presence of wire resistance; (b) analyzing the circuit using superposition method,
and (c) the equivalent wire resistance for the cell Mj,i.

In this work, we proposed a wire resistance modeling method by using the proposed an
equivalent wire resistance matrix for an m × n crossbar array, as illustrated in Figure 5. The elements
in the proposed matrix are the equivalent resistance values of wire resistance on vertical line and
horizontal line, which are calculated by Equation (5) for the corresponding cells.

r

VIN,m

VIN,j

VIN,2

VIN,1

R0

VO,i

Gi

r

r

r

ith column

r

r

r

r

r

r

r

r

r

r

r

r

i1

im

io

r

VIN,1

R0

VO,i

Gi

r

r

r

ith column
r

r

r

r

r

r

r

r

r

r

r

r

i1

im

M1,i

M2,i

Mj,i

Mm,i

M1,i

M2,i

Mj,i

Mm,i

M1,i

VIN,1

R0

VO,i

Gi

i*r

m*r

(a)

(b) (c)

i1

Mj,i
VIN,j

R0

VO,i

Gi

Mj,i+ir+(m-j+1)r

io io

ij

Figure 4. Analyzing the crossbar circuit using superposition method. (a) The schematic of the ith
column with the presence of wire resistance; (b) analyzing the circuit using superposition method,
and (c) the equivalent wire resistance for the cell Mj,i.

In this work, we proposed a wire resistance modeling method by using the proposed an equivalent
wire resistance matrix for an m × n crossbar array, as illustrated in Figure 5. The elements in the
proposed matrix are the equivalent resistance values of wire resistance on vertical line and horizontal
line, which are calculated by Equation (5) for the corresponding cells.

Materials 2019, 12, 4097 6 of 12Materials 2019, 12, x FOR PEER REVIEW 7 of 13

Figure 5. The proposed equivalent wire resistance matrix for modeling wire resistance in an m × n
crossbar array. Here r is the value of wire resistance, m is the number of rows, and n is the number of
columns.

The proposed equivalent wire resistance matrix was used to compensate the impact of wire
resistance in crossbar array by adjusting the connection matrix according to the proposed equivalent
wire resistance matrix. In particular, we proposed a parasitic resistance-adapted programming
scheme to compensate wire resistance for a memristor crossbar-neuromorphic computing. The
proposed scheme is conceptually shown in Figure 6b. Figure 6a shows a conventional programming
scheme for a crossbar circuit. The synaptic weights that were obtained from the training process
were converted to the values of memristance using Equation (2). The memristance values of the cells
in crossbar form a connection matrix M as presented in Figure 6. For the conventional programming
scheme, the cells in the crossbar array were programmed to the target values presented in the
connection matrix M. Wire resistance was not considered during programming process and
inference phase. To consider the presence of wire resistance, the connection matrix was updated
before it is used to program the crossbar array. Specifically, the target memristance matrix was
obtained by subtracting the proposed equivalent wire resistance matrix from the original connection
matrix, as conceptually shown in Figure 6b. By updating the connection matrix with the proposed
equivalent wire resistance matrix, wire resistance was compensated in the inference phase. The
connection matrix is updated using the Equation (6)

rjmirM

RMM

ij

ijijij

)1(,

,,,

+−+−=

−=
 (6)

where, Mj,i is memristance of the cell between the jth row the ith column. In the conventional
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i. In the proposed
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i – ir + (m – j + 1)r,
where the amount of ir + (m – j + 1)r represents the equivalent wire resistance for the cell Mj,i. By
doing this, wire resistance is compensated in the inference phase.

r + r

r + 2r

r + 3r

r + (m – 2)r

r + (m – 1)r

r + mr

2r + r

2r + 2r

2r + 3r

2r + (m – 2)r

2r + (m – 1)r

2r + mr

r + (m – j + 1)r 2r + (m – j + 1)r

nr + r

nr + 2r

nr + 3r

nr + (m – 2)r

nr + (m – 1)r

nr + mr

nr + (m – j + 1)r

ir + r

ir + 2r

ir + 3r

Ir + (m – 2)r

ir + (m – 1)r

ir + mr

ir + (m – j + 1)r

ith column

jth row

nth column

mth row

Figure 5. The proposed equivalent wire resistance matrix for modeling wire resistance in an m × n
crossbar array. Here r is the value of wire resistance, m is the number of rows, and n is the number
of columns.

The proposed equivalent wire resistance matrix was used to compensate the impact of wire
resistance in crossbar array by adjusting the connection matrix according to the proposed equivalent
wire resistance matrix. In particular, we proposed a parasitic resistance-adapted programming scheme
to compensate wire resistance for a memristor crossbar-neuromorphic computing. The proposed
scheme is conceptually shown in Figure 6b. Figure 6a shows a conventional programming scheme for
a crossbar circuit. The synaptic weights that were obtained from the training process were converted
to the values of memristance using Equation (2). The memristance values of the cells in crossbar form
a connection matrix M as presented in Figure 6. For the conventional programming scheme, the cells
in the crossbar array were programmed to the target values presented in the connection matrix M.
Wire resistance was not considered during programming process and inference phase. To consider
the presence of wire resistance, the connection matrix was updated before it is used to program the
crossbar array. Specifically, the target memristance matrix was obtained by subtracting the proposed
equivalent wire resistance matrix from the original connection matrix, as conceptually shown in
Figure 6b. By updating the connection matrix with the proposed equivalent wire resistance matrix,
wire resistance was compensated in the inference phase. The connection matrix is updated using the
Equation (6)

M j,i = M j,i −R j,i
= M j,i − ir + (m− j + 1)r

(6)

where, Mj,i is memristance of the cell between the jth row the ith column. In the conventional
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i. In the proposed
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i − ir + (m − j + 1)r,
where the amount of ir + (m − j + 1)r represents the equivalent wire resistance for the cell Mj,i. By doing
this, wire resistance is compensated in the inference phase.

Materials 2019, 12, 4097 7 of 12
Materials 2019, 12, x FOR PEER REVIEW 8 of 13

Figure 6. (a) The conventional programming scheme, in which the memristance values in connection
matrix are used to program the corresponding cells in crossbar array and (b) the proposed parasitic
resistance-adapted programming scheme, where the value of connection matrix is updated by
subtracting the proposed equivalent wire resistance matrix from the original connection matrix. The
updated connection matrix is then used to program the crossbar array. R is the proposed equivalent
wire resistance matrix for an m × n crossbar array. r is the value of wire resistance, m is the number of
rows, and n is the number of columns.

3. Results

The circuit simulations were performed to verify the proposed wire resistance modeling
method and the parasitic resistance-adapted programming scheme for a memristor crossbar-based
neuromorphic computing system. The simulations were performed using the SPECTRE circuit
simulation provided by Cadence Design Systems Inc. [29]. Memristors were modeled using
Verilog-A and CMOS technology is given by SAMSUNG 0.13 mm process technology [30,31]. Figure
7a shows a hysteresis behavior of a real memristor based on the film structure of
Pt/LaAlO3/Nb-doped SrTiO3 stacked layer and a memristor model that can be used to describe
various memristive behaviors [30,31]. The memristor model and parameters are presented in [30].
The crossbar circuit was used for the application of character recognition. Figure 7b shows eight ×
eight images of characters used in these simulations. Each character was composed of 64
black-and-white pixels. The crossbar circuit was schematically shown in Figure 7c for recognition of
the characters from “A” to “Z”. To recognize 26 characters, the memristor crossbar was composed of
26 columns and a constant-term of RB as depicted in Figure 7c. The constant-term column connected
to all inputs through RB to generate the negative voltage as mentioned in the previous work [21]. The
crossbar had 26 columns corresponding to 26 perceptron neurons for recognizing 26 characters from
“A” to “Z”. For example, the first column is trained to be activated with the input character “A” and
the 26th column is trained to be activated with the input character “Z” [21]. Wire resistance was
modeled by small-value resistors along vertical and horizontal lines, as shown in Figure 7c. Here RB
and R0 were set to be 60 KΩ and 200 KΩ respectively. RF1 should be equal to RF2 as mentioned in
previous work [21].

Programming

Programming

70 KΩ

72 KΩ

60 KΩ

66 KΩ

60 KΩ

66 KΩ

60 KΩ

56 KΩ
26th column

mth row

2r

3r

r + (m–1)r

r + mr

nr + r

nr + 2r

nr + (m – 1)r

nr + mr
nth column

mth row

(b)

r=2Ω

Connection matrix M

Equivalent wire resistance matrix R

Programming

Mm,1

M1,1

r

VIN,m

VIN,j

VIN,1

R0 R0 R0

RF2 RF2 RF2

VF

RF1

VO,1 VO,i VO,n

GF G1 Gi Gn

r

r

r

r

r r

Wire resistance

RB

RB

RB

Mj,i

1rst row
1rst column

1rst row
1rst column

70 KΩ

72 KΩ

60 KΩ

66 KΩ

60 KΩ

66 KΩ

60 KΩ

56 KΩ
26th column

mth row

Connection matrix M

1rst row
1rst column

Programming

(a)

Mm,1

M1,1

r

VIN,m

VIN,j

VIN,1

R0 R0 R0

RF2 RF2 RF2

VF

RF1

VO,1 VO,i VO,n

GF G1 Gi Gn

r

r

r

r

r r

Wire resistance

RB

RB

RB

Mj,i

Figure 6. (a) The conventional programming scheme, in which the memristance values in connection
matrix are used to program the corresponding cells in crossbar array and (b) the proposed parasitic
resistance-adapted programming scheme, where the value of connection matrix is updated by
subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix is then used to program the crossbar array. R is the proposed equivalent
wire resistance matrix for an m × n crossbar array. r is the value of wire resistance, m is the number of
rows, and n is the number of columns.

3. Results

The circuit simulations were performed to verify the proposed wire resistance modeling
method and the parasitic resistance-adapted programming scheme for a memristor crossbar-based
neuromorphic computing system. The simulations were performed using the SPECTRE circuit
simulation provided by Cadence Design Systems Inc. [29]. Memristors were modeled using Verilog-A
and CMOS technology is given by SAMSUNG 0.13 mm process technology [30,31]. Figure 7a shows a
hysteresis behavior of a real memristor based on the film structure of Pt/LaAlO3/Nb-doped SrTiO3

stacked layer and a memristor model that can be used to describe various memristive behaviors [30,31].
The memristor model and parameters are presented in [30]. The crossbar circuit was used for the
application of character recognition. Figure 7b shows eight × eight images of characters used in these
simulations. Each character was composed of 64 black-and-white pixels. The crossbar circuit was
schematically shown in Figure 7c for recognition of the characters from “A” to “Z”. To recognize
26 characters, the memristor crossbar was composed of 26 columns and a constant-term of RB as
depicted in Figure 7c. The constant-term column connected to all inputs through RB to generate the
negative voltage as mentioned in the previous work [21]. The crossbar had 26 columns corresponding
to 26 perceptron neurons for recognizing 26 characters from “A” to “Z”. For example, the first column is
trained to be activated with the input character “A” and the 26th column is trained to be activated with
the input character “Z” [21]. Wire resistance was modeled by small-value resistors along vertical and
horizontal lines, as shown in Figure 7c. Here RB and R0 were set to be 60 KΩ and 200 KΩ respectively.
RF1 should be equal to RF2 as mentioned in previous work [21].

Materials 2019, 12, 4097 8 of 12Materials 2019, 12, x FOR PEER REVIEW 9 of 13

Figure 7. (a) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model; (b) the eight × eight images of characters used to test the proposed
equivalent wire resistance modeling method and the parasitic resistance-adapted programming
scheme; and (c) the schematic of crossbar circuit for the application of character recognition.

The proposed wire resistance modeling method using equivalent wire resistance matrix was
verified by the simulation that was set up as presented in Figure 8a,b. The synaptic weights obtained
from the training process were converted to the memristance values in connection matrix using
Equations (2) and (6). For the conventional method, wire resistance was modeled by small-value
resistors along vertical and horizontal lines, as shown in Figure 8a. The crossbar was programmed to
the target memristance values presented in the connection matrix using the VDD/3 write scheme [32].
For the proposed method, we calculated the equivalent wire resistance matrix as shown in Figure 5.
The small-values resistors were not present in the crossbar circuit, the value of equivalent wire
resistance matrix was added to the connection matrix instead, as conceptually shown in Figure 8b. In
other words, the connection matrix was updated by adding corresponding elements of the
connection matrix and the proposed equivalent wire resistance matrix. The crossbar was then
programmed to the target memristance values presented in the updated connection matrix using
VDD/3 write scheme. In Figure 8c, the output voltages of 26 columns for recognizing 26 characters
were measured when the vector of character “A” was applied to the inputs. Among the 26 columns,
only the first column produced high voltage for recognizing character “A”. When wire resistance
was set to be 2.0 Ω, the voltage drop on wire resistance made the output voltages of columns
increase, as shown in Figure 8c [33]. Since the voltage drop on wire resistance depends on the length
of metal line, the column close to the first column had less change of voltage whereas the column far
from the first column had much change of voltage, as demonstrated in Figure 8c [33]. The result
obtained from the conventional method is represented by the square symbols and that one obtained
from the proposed method with equivalent wire resistance matrix is represented by the round
symbols. The discrepancy between the two methods was as low as 3%.

-3 -2 -1 0 1 2 3

-100

-50

0

50

100

150

200

250

300

C
ur

re
nt

 (μ
A)

Voltage (V)

 Experiment
 Model

(a)

(b)

Mm,1

M1,1

r

VIN,64

VIN,j

VIN,2

VIN,1

R0 R0 R0 R0

RF2 RF2 RF2 RF2

VF

RF1

VO,0 VO,1 VO,i VO,26

GF G0 G1 Gi G26

r

r

r

r

r

r

r

r

r r

r
RB

RB

RB

RB

r

Mj,i

(c)

Figure 7. (a) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model; (b) the eight × eight images of characters used to test the proposed
equivalent wire resistance modeling method and the parasitic resistance-adapted programming scheme;
and (c) the schematic of crossbar circuit for the application of character recognition.

The proposed wire resistance modeling method using equivalent wire resistance matrix was
verified by the simulation that was set up as presented in Figure 8a,b. The synaptic weights obtained
from the training process were converted to the memristance values in connection matrix using
Equations (2) and (6). For the conventional method, wire resistance was modeled by small-value
resistors along vertical and horizontal lines, as shown in Figure 8a. The crossbar was programmed to
the target memristance values presented in the connection matrix using the VDD/3 write scheme [32].
For the proposed method, we calculated the equivalent wire resistance matrix as shown in Figure 5.
The small-values resistors were not present in the crossbar circuit, the value of equivalent wire resistance
matrix was added to the connection matrix instead, as conceptually shown in Figure 8b. In other
words, the connection matrix was updated by adding corresponding elements of the connection
matrix and the proposed equivalent wire resistance matrix. The crossbar was then programmed
to the target memristance values presented in the updated connection matrix using VDD/3 write
scheme. In Figure 8c, the output voltages of 26 columns for recognizing 26 characters were measured
when the vector of character “A” was applied to the inputs. Among the 26 columns, only the first
column produced high voltage for recognizing character “A”. When wire resistance was set to be
2.0 Ω, the voltage drop on wire resistance made the output voltages of columns increase, as shown in
Figure 8c [33]. Since the voltage drop on wire resistance depends on the length of metal line, the column
close to the first column had less change of voltage whereas the column far from the first column had
much change of voltage, as demonstrated in Figure 8c [33]. The result obtained from the conventional
method is represented by the square symbols and that one obtained from the proposed method with
equivalent wire resistance matrix is represented by the round symbols. The discrepancy between the
two methods was as low as 3%.

In Figure 8d, we calculated the percentage error, which is defined as the difference of the output
voltages between the conventional wire resistance modeling method in Figure 8a and the proposed wire
resistance modeling method in Figure 8b, in which wire resistance was modeled using the proposed
equivalent wire resistance matrix. In these simulations, wire resistance was varied from 0.5 to 3.0 Ω.
This range of wire resistance is commonly used and obtained from the International Technology
Roadmap for Semiconductors [24,25,34–37]. When wire resistance was set to be 0.5 Ω, the percentage
error was as low as 2.2%. The percentage error increased slightly when wire resistance increased,
as shown in Figure 8d. On average, the discrepancy between the two methods was as low as 2.9%.

Materials 2019, 12, 4097 9 of 12

The simulation results indicate that wire resistance in crossbar circuit could be modeled using the
proposed equivalent wire resistance matrix, which is presented in Figure 5.Materials 2019, 12, x FOR PEER REVIEW 10 of 13

Figure 8. (a) The conventional method for the crossbar circuit simulation with taking the presence of
wire resistance into account. Here wire resistance is modeled by small-value resistors along the
vertical and horizontal lines; (b) the proposed method with equivalent wire resistance for the
crossbar circuit simulation with considering the presence of wire resistance. Here, the small-value
resistors are not present in the crossbar circuit, the connection matrix is updated by adding the
equivalent wire resistance matrix to the connection matrix instead; (c) the output voltages of 26
columns for the input character “A” and (d) the percentage error with varying wire resistance from
0.5 to 3.0 Ω.

In Figure 8d, we calculated the percentage error, which is defined as the difference of the output
voltages between the conventional wire resistance modeling method in Figure 8a and the proposed
wire resistance modeling method in Figure 8b, in which wire resistance was modeled using the
proposed equivalent wire resistance matrix. In these simulations, wire resistance was varied from
0.5 to 3.0 Ω. This range of wire resistance is commonly used and obtained from the International
Technology Roadmap for Semiconductors [24,25,34–37]. When wire resistance was set to be 0.5 Ω,
the percentage error was as low as 2.2%. The percentage error increased slightly when wire
resistance increased, as shown in Figure 8d. On average, the discrepancy between the two methods

(c) (d)

0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rc

en
ta

ge
 e

rro
r (

%
)

Wire resistance (Ω)

70 KΩ

66 KΩ

60 KΩ

56 KΩ
26th column

64th row

2r

r + mr

nr + r

nr + mr
nth column

64th row

(b)

Connection matrix M

Equivalent wire resistance matrix R

Programming

Mm,1

M1,1

r

VIN,64

VIN,j

VIN,1

R0 R0 R0

RF2 RF2 RF2

VF

RF1

VO,1 VO,i VO,26

GF G1 Gi G26

r

r

r

r

r r

Wire resistance

RB

RB

RB

Mj,i

1rst row
1rst column

1rst row
1rst column

70 KΩ

66 KΩ

60 KΩ

56 KΩ
26th column

64th row

Connection matrix M

1rst row
1rst column

Programming

(a)

Mm,1

M1,1

VIN,64

VIN,j

VIN,1

R0 R0 R0

RF2 RF2 RF2

VF

RF1

VO,1 VO,i VO,26

GF G1 Gi G26

RB

RB

RB

Mj,i

2 4 6 8 10 12 14 16 18 20 22 24 26

0

200

400

600

800

1000

r = 2 Ω

O
ut

pu
t v

ol
ta

ge
 (m

V)

Column#

 Conventional method
 Proposed method

Figure 8. (a) The conventional method for the crossbar circuit simulation with taking the presence
of wire resistance into account. Here wire resistance is modeled by small-value resistors along the
vertical and horizontal lines; (b) the proposed method with equivalent wire resistance for the crossbar
circuit simulation with considering the presence of wire resistance. Here, the small-value resistors are
not present in the crossbar circuit, the connection matrix is updated by adding the equivalent wire
resistance matrix to the connection matrix instead; (c) the output voltages of 26 columns for the input
character “A” and (d) the percentage error with varying wire resistance from 0.5 to 3.0 Ω.

Figure 9 shows the comparison of the recognition rate of memristor crossbar array between
the conventional programming scheme and the proposed parasitic resistance-adapted programming
scheme for recognizing 26 characters when wire resistance was varied from 0.5 to 3.0 Ω. For the
conventional programming scheme, the connection matrix obtained from the training process of
memristor crossbar for recognition of 26 characters was used for the crossbar array programming.
In the proposed parasitic resistance-adapted programming scheme, the connection matrix was updated

Materials 2019, 12, 4097 10 of 12

by subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix was then used for the crossbar array programming. The recognition
rate of the memristor crossbar with using conventional programming scheme declined dramatically
when wire resistance increased. This was due to the fact that the synaptic weight is a nonlinear
function of memristance as presented in Equation (2), the change of memristance caused by wire
resistance makes the synaptic weight change remarkably. As a result, the recognition rate was degraded
dramatically. In particular, the recognition rate of the memristor crossbar with using the conventional
programming scheme was 99%, 95%, 81%, and 65% when the wire resistance was set to be 1.5, 2.0, 2.5,
and 3.0 Ω, respectively, as indicated in Figure 9. The presence of wire resistance causes the output
voltage increased as mathematically analyzed and experimentally demonstrated in previous work [33].
The last column had the large variation of output voltage caused by wire resistance [33]. Therefore,
the increase of wire resistance caused the recognition rate to decrease significantly, as the shown in
Figure 9. By contrast, the memristor crossbar with using the proposed parasitic resistance-adapted
programming scheme could maintain the recognition as high as 100% when wire resistance was as high
as 3.0 Ω. This was because the value of memristance in connection matrix was updated by subtracting
the equivalent wire resistance matrix from the original connection matrix. By doing this, the wire
resistance in crossbar circuit was compensated.

Materials 2019, 12, x FOR PEER REVIEW 11 of 13

was as low as 2.9%. The simulation results indicate that wire resistance in crossbar circuit could be
modeled using the proposed equivalent wire resistance matrix, which is presented in Figure 5.

Figure 9. The comparison of recognition rate between the conventional programming scheme and
the proposed parasitic resistance-adapted programming scheme when wire resistance is varied from
0.5 to 3.0 Ω.

Figure 9 shows the comparison of the recognition rate of memristor crossbar array between the
conventional programming scheme and the proposed parasitic resistance-adapted programming
scheme for recognizing 26 characters when wire resistance was varied from 0.5 to 3.0 Ω. For the
conventional programming scheme, the connection matrix obtained from the training process of
memristor crossbar for recognition of 26 characters was used for the crossbar array programming. In
the proposed parasitic resistance-adapted programming scheme, the connection matrix was
updated by subtracting the proposed equivalent wire resistance matrix from the original connection
matrix. The updated connection matrix was then used for the crossbar array programming. The
recognition rate of the memristor crossbar with using conventional programming scheme declined
dramatically when wire resistance increased. This was due to the fact that the synaptic weight is a
nonlinear function of memristance as presented in Equation (2), the change of memristance caused
by wire resistance makes the synaptic weight change remarkably. As a result, the recognition rate
was degraded dramatically. In particular, the recognition rate of the memristor crossbar with using
the conventional programming scheme was 99%, 95%, 81%, and 65% when the wire resistance was
set to be 1.5, 2.0, 2.5, and 3.0 Ω, respectively, as indicated in Figure 9. The presence of wire resistance
causes the output voltage increased as mathematically analyzed and experimentally demonstrated
in previous work [33]. The last column had the large variation of output voltage caused by wire
resistance [33]. Therefore, the increase of wire resistance caused the recognition rate to decrease
significantly, as the shown in Figure 9. By contrast, the memristor crossbar with using the proposed
parasitic resistance-adapted programming scheme could maintain the recognition as high as 100%
when wire resistance was as high as 3.0 Ω. This was because the value of memristance in connection
matrix was updated by subtracting the equivalent wire resistance matrix from the original
connection matrix. By doing this, the wire resistance in crossbar circuit was compensated.

Wire resistance degraded the performance of crossbar circuit dramatically. In this work, we
tried to mitigate the impact of wire resistance by compensating wire resistance. It was done by
adjusting the memristance values before they were used to program the crossbar array. In particular,
the connection matrix was updated by subtracting the equivalent wire resistance matrix from the
original connection matrix. By doing this, no additional circuits or components were required. The
proposed parasitic resistance-adapted programming scheme was effective for memristor
crossbar-based neuromorphic computing systems.

0.5 1.0 1.5 2.0 2.5 3.0
60

65

70

75

80

85

90

95

100

R
ec

og
ni

tio
n

ra
te

 (%
)

Wire resistance (Ω)

 Conventional programming scheme
 Proposed programming scheme

Figure 9. The comparison of recognition rate between the conventional programming scheme and the
proposed parasitic resistance-adapted programming scheme when wire resistance is varied from 0.5 to
3.0 Ω.

Wire resistance degraded the performance of crossbar circuit dramatically. In this work, we tried
to mitigate the impact of wire resistance by compensating wire resistance. It was done by adjusting the
memristance values before they were used to program the crossbar array. In particular, the connection
matrix was updated by subtracting the equivalent wire resistance matrix from the original connection
matrix. By doing this, no additional circuits or components were required. The proposed parasitic
resistance-adapted programming scheme was effective for memristor crossbar-based neuromorphic
computing systems.

4. Conclusions

Wire resistance is one of the factors that degrade the performance of the crossbar circuits
significantly. In this work, we proposed a parasitic resistance-adapted programming scheme to mitigate
the impact of wire resistance in memristor crossbar array. Firstly, a wire resistance modeling method
using equivalent wire resistance matrix was proposed. The equivalent wire resistance matrix was
achieved by analysis the crossbar circuit using the superposition method. The connection matrix was
updated before it was used as a target for memristor crossbar programming. The updated connection
matrix was obtained by subtracting the proposed equivalent wire resistance matrix from the original

Materials 2019, 12, 4097 11 of 12

connection matrix. The circuit simulations were performed to verify the proposed wire resistance
modeling method and the parasitic resistance-adapted programming scheme. The simulation results
showed that the discrepancy of the output voltages of the crossbar circuit between the conventional
wire resistance modeling method and the proposed wire resistance modeling method was as low as
2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition rate of the memristor crossbar
with conventional programming scheme was 99%, 95%, 81%, and 65% when wire resistance was set to
be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor crossbar with the proposed parasitic
resistance-adapted programming scheme could maintain the recognition as high as 100% when wire
resistance was as high as 3.0 Ω.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [CrossRef]
2. Bartolozzi, C.; Indiveri, G. Synaptic dynamics in analog VLSI. Neural Comput. 2007, 19, 2581–2603. [CrossRef]

[PubMed]
3. Mahowald, M.; Douglas, R. A silicon neuron. Nature 1991, 354, 515–518. [CrossRef] [PubMed]
4. Farquhar, E.; Hasler, P. A bio-physically inspired silicon neuron. IEEE Trans. Circuits Syst. 2005, 52, 477–488.

[CrossRef]
5. Yu, T.; Cauwenberghs, G. Analog VLSI biophysical neurons and synapses with programmable membrane

channel kinetics. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 139–148. [CrossRef] [PubMed]
6. Indiveri, G.; Linares-Barranco, B.; Hamilton, T.J.; Van Schaik, A.; Etienne-Cummings, R.; Delbruck, T.;

Liu, S.C.; Dudek, P.; Häfliger, P.; Renaud, S.; et al. Neuromorphic silicon neuron circuits. Front. Neurosci.
2011, 5, 73. [CrossRef] [PubMed]

7. Solomon, P.M. Device innovation and material challenges at the limit of CMOS technology. Annu. Rev. Mater. Sci.
2000, 30, 681–697. [CrossRef]

8. Brđanin, T.P.; Dokić, B. Strained silicon layer in CMOS technology. Electronics 2014, 18, 63–69.
9. Chua, L.O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
10. Strukov, D.B.; Sinder, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453,

80–83. [CrossRef]
11. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse

in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [CrossRef] [PubMed]
12. Passian, A.; Imam, N. Nanaosystems, Edge Computing, and Next Generation Computing Systems.

Sensors 2019, 19, 4048. [CrossRef] [PubMed]
13. Abbott, L.F.; Regehr, W.G. Synaptic computation. Nature 2004, 431, 796–803. [CrossRef]
14. Lamprecht, R.; LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 2004, 5, 45–54. [CrossRef]

[PubMed]
15. Williams, R.S. How we found the missing memristor. IEEE Spectr. 2008, 45, 28–35. [CrossRef]
16. Zhang, X.; Huang, A.; Hu, Q.; Xiao, Z.; Chu, P.K. Neuromorphic Computing with Memristor Crossbar.

Phys. Status Solidi A 2018, 215, 1–16. [CrossRef]
17. Sung, C.; Hwang, H.; Yoo, I.K. Perspective: A review on memristive hardware for neuromorphic. J. Appl. Physic

2018, 124, 1–13. [CrossRef]
18. Jeong, Y.; Lu, W.D. Neuromorphic Computing Using Memristor Crossbar Networks: A Focus on Bio-Inspired

Approaches. IEEE Nanotechnol. Mag. 2018, 12, 6–18. [CrossRef]
19. Liang, J.; Wong, H.S.P. Cross-point memristor array without cell selector—Device characteristics and data

storage pattern dependencies. IEEE Trans. Electron. Device 2010, 57, 2531–2538. [CrossRef]
20. Hu, M.; Li, H.; Wu, Q.; Rose, G.S.; Chen, Y. Memristor crossbar based hardware realization of BSB recall

function. In Proceedings of the International Joint Conference on Neural Networks, Brisbane, Australia,
10–15 June 2012; pp. 1–7.

http://dx.doi.org/10.1109/5.58356
http://dx.doi.org/10.1162/neco.2007.19.10.2581
http://www.ncbi.nlm.nih.gov/pubmed/17716003
http://dx.doi.org/10.1038/354515a0
http://www.ncbi.nlm.nih.gov/pubmed/1661852
http://dx.doi.org/10.1109/TCSI.2004.842871
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://www.ncbi.nlm.nih.gov/pubmed/23853338
http://dx.doi.org/10.3389/fnins.2011.00073
http://www.ncbi.nlm.nih.gov/pubmed/21747754
http://dx.doi.org/10.1146/annurev.matsci.30.1.681
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1021/nl904092h
http://www.ncbi.nlm.nih.gov/pubmed/20192230
http://dx.doi.org/10.3390/s19184048
http://www.ncbi.nlm.nih.gov/pubmed/31546907
http://dx.doi.org/10.1038/nature03010
http://dx.doi.org/10.1038/nrn1301
http://www.ncbi.nlm.nih.gov/pubmed/14708003
http://dx.doi.org/10.1109/MSPEC.2008.4687366
http://dx.doi.org/10.1002/pssa.201700875
http://dx.doi.org/10.1063/1.5037835
http://dx.doi.org/10.1109/MNANO.2018.2844901
http://dx.doi.org/10.1109/TED.2010.2062187

Materials 2019, 12, 4097 12 of 12

21. Truong, S.N.; Min, K.S. New memristor-based crossbar array architecture with 50-% area reduction and 48-%
power saving for matrix-vector multiplication of analog neuromorphic computing. J. Semicond. Technol. Sci.
2014, 14, 356–363. [CrossRef]

22. Truong, S.N.; Ham, S.J.; Min, K.S. Neuromorphic crossbar circuit with nanoscale filamentary-switching
binary memristors for speech recognition. Nanoscale Res. Lett. 2014, 9, 1–9. [CrossRef] [PubMed]

23. Truong, S.N.; Min, K. S New twin crossbar architecture of binary memristors for low-power image recognition
with discrete cosine transform. IEEE Trans. Nanotechnol. 2015, 14, 1104–1111. [CrossRef]

24. Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar
memories. Nat. Mater. 2010, 9, 403–406. [CrossRef] [PubMed]

25. Shin, S.H.; Byeon, S.D.; Song, J.S.; Truong, S.N.; Mo, H.S.; Kim, D.J.; Min, K.S. Dynamic reference scheme
with improved read voltage margin for compensating cell-position and back ground-pattern dependencies
in pure memristor array. J. Semicond. Technol. Sci. 2015, 15, 685–694. [CrossRef]

26. Adeyemo, A.; Jabir, A.; Mathew, J. Minimising Impact of Wire Resistance in Low-Power Crossbar Array
Write Scheme. J. Low Power Electron. 2017, 13, 649–660. [CrossRef]

27. Levisse, A.; Royer, P.; Giraud, B.; Noel, J.P.; Moreau, M.; Portal, J.M. Architecture, design and technology
guidelines for crosspoint memories. In Proceedings of the IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), Newport, RI, USA, 25–27 July 2017.

28. Giraud, B.; Makosiej, A.; Boumchedda, R.; Gupta, N.; Levisse, A.; Vianello, E.; Noel, J.-P. Advanced memory
solutions for emerging circuits and systems. In Proceedings of the IEEE International Electron Devices
Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017.

29. Spectre® Circuit Simulator User Guide. Available online: https://www.ee.columbia.edu/~{}harish/uploads/2/

6/9/2/26925901/spectre_reference.pdf (accessed on 1 October 2019).
30. Truong, S.N.; Pham, K.V.; Yang, W.; Shin, S.; Pedrotti, K.; Min, K.S. New pulse amplitude modulation for fine

tuning of memristor synapses. Mircoelectron. J. 2016, 55, 162–168. [CrossRef]
31. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S. A memristor device model. IEEE Electron.

Device Lett. 2011, 32, 1436–1438. [CrossRef]
32. Ham, S.J.; Mo, H.S.; Min, K.S. Low-power VDD/3 write scheme with inversion coding circuit for

complementary memristor array. IEEE Trans. Nanotechnol. 2013, 12, 851–857. [CrossRef]
33. Truong, S.N. Compensating Circuit to Reduce the Impact of Wire Resistance in a Memristor Crossbar-Based

Perceptron Neural Network. Micromachines 2019, 10, 671. [CrossRef]
34. International Technology Roadmap for Semiconductors. 2007. Available online: https://www.semiconductors.

org/wp-content/uploads/2018/08/2007Interconnect.pdf (accessed on 1 October 2019).
35. Kim, S.; Zhou, J.; Lu, W.D. Crossbar RRAM arrays: Selector device requirements during wire operation.

IEEE Trans. Electron. Devices 2014, 61, 2820–2826.
36. Schindler, G.; Steinlesberger, G.; Engelhardt, M.; Steinhögl, W. Electrical characterization of copper

interconnects with end-of-roadmap feature sizes. Solid State Electron. 2003, 47, 1233–1236. [CrossRef]
37. Kohonen, T. Self-organization and Associative Memory; In Information Sciences; Springer: Berlin/Heidelberg,

Germany, 1989.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5573/JSTS.2014.14.3.356
http://dx.doi.org/10.1186/1556-276X-9-629
http://www.ncbi.nlm.nih.gov/pubmed/25489283
http://dx.doi.org/10.1109/TNANO.2015.2473666
http://dx.doi.org/10.1038/nmat2748
http://www.ncbi.nlm.nih.gov/pubmed/20400954
http://dx.doi.org/10.5573/JSTS.2015.15.6.685
http://dx.doi.org/10.1166/jolpe.2017.1512
https://www.ee.columbia.edu/~{}harish/uploads/2/6/9/2/26925901/spectre_reference.pdf
https://www.ee.columbia.edu/~{}harish/uploads/2/6/9/2/26925901/spectre_reference.pdf
http://dx.doi.org/10.1016/j.mejo.2016.07.010
http://dx.doi.org/10.1109/LED.2011.2163292
http://dx.doi.org/10.1109/TNANO.2013.2274529
http://dx.doi.org/10.3390/mi10100671
https://www.semiconductors.org/wp-content/uploads/2018/08/2007Interconnect.pdf
https://www.semiconductors.org/wp-content/uploads/2018/08/2007Interconnect.pdf
http://dx.doi.org/10.1016/S0038-1101(03)00042-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Conclusions
	References

