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Abstract: Wastewater treatment requires energy-intensive technology. The demand for industrial
and residential wastewater treatment is increasing, and it has been widely accepted that low energy
consumption and high operating efficiencies are essential to achieve high operating benefits in
wastewater treatment plants (WWTPs). In this study, characteristic parameters of equipment
operation were collected and subject to statistical analysis for trend observations in combination
with expert knowledge to monitor equipment operating conditions. A methodology was developed
to monitor and assess operating efficiencies of industrial equipment while not interfering with the
existing operation. The proposed methodology was applied to monitor the pump efficiency in a
WWTP. The results showed that the new methodology resulted in real-time acquisition of statistical
operating data and enabled online detection of abnormal pump operation. The energy loss to low
operating efficiencies of a malfunctioning pump was prevented, thereby allowing the pump to operate
at high efficiency with an extended equipment life.

Keywords: wastewater pump monitoring; efficiency statistical analysis; wastewater pump conditions

1. Introduction

Increasing industrial development and urbanization has led to an increased demand for sewage
and household wastewater treatment, which leads to an annual increase in the demand for wastewater
treatment plants (WWTPs). WWTPs must rely on long-term and intensive operation of equipment
to meet both industrial and domestic needs. The main function of an inlet pumping station is to
pressurize the wastewater and raise it to the corresponding WWTP for following operations. When the
pump fails to operate, it affects the functions of a WWTP and causes abnormality in the operation of
the biological treatment system. As a consequence, economic loss and abnormal energy consumption
occur. The WWTP is a system of complex pipelines. Wastewater is collected from the sewer system or
the factory pipe production line and pipelines to the wet wells of the WWTP. Wet wells located several
meters below the ground are provided with multiple water pumps and their respective pipelines.
The pumps use a parallel method to extract the wastewater from the wet well to the aeration tank for
oxidation reaction. In the procedures of the wastewater treatment process, the wastewater treatment
consumes the largest amount of power (i.e., 50% to ~80%) of the entire plant, but the sludge treatment
accounts for only 15% to ~40%. Therefore, wastewater treatment is the focus of energy saving, and the
main energy-consuming equipment is the pump of the WWTP. The power consumption of the pumps
in the WWTP generally accounts for 10% to ~20% of the total power consumption of the wastewater
treatment plant.
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Since 2000, climate change has become increasingly severe, and climate has become an important
factor affecting the amount of wastewater produced. Sudden rainfalls or typhoons produce a large
amount of high-turbidity wastewater with many impurities in a short period of time, which increases
the operating difficulty of WWTPs and prolongs reaction time. When rainfall enters the water
collection well in the plant area and reaches the overflow nozzle, the water level in the sewage plant
has reached the standard of designed water intake. The net head of the pump is reduced, and the
lifting flow required by the pump exceeds the daily flow. The rainfall causes the actual amount of
rainwater and sewage-mixed water entering the sewage treatment plant to exceed the daily water
intake. During heavy rain, a large amount of sediment accumulates in the primary sedimentation tank,
which increases the operating pressure of the dehydrator. The sediment also causes the sludge to rise
and the wear of the dewatering equipment. At the same time, entry of a large amount of sediment also
changes the nature of the sludge and the original dehydration, and therefore the medicament needs to
be adjusted accordingly. Heavy rains easily cause damage to sewage treatment plant equipment, and
also increase the cost of operation.

During heavy rain or rainy season, the sewage treatment plant needs to make a series of adjustment
measures to control operations. One of the important tasks is to control the flow of water by controlling
the amount of water which is achieved by switching the pump or reducing the pump outlet valve.
This keeps the water inflow and discharges the excess water out of the plant through the overflow pipe.
Therefore, the operating conditions and efficiency of the pumps are crucial for WWTPs because failing
to monitor them in time results in delayed WWTP operations and abnormal energy consumption.
Moreover, severe pump malfunction is likely to cause shutdown maintenance. Monitoring of rotary
equipment is primarily intended for identification of unexpected or abnormal operating conditions
and behavior of equipment. To achieve this, variation of statistical operating parameters such as sound,
cutting force, vibration, temperature, and energy consumption are monitored [1,2]. Such monitoring
isused, for example, in the management of electricity use in a building and diagnosis of equipment
malfunction. The monitoring process includes collection of operating data, data processing and
analysis, and retrieval of useful information. The aim is to observe the operating trend and use it as a
basis for subsequent operation management or malfunction diagnosis. Horrigan et al. [3] proposed
a statistical approach to address operating efficiency gaps and improve the operating efficiency of
buildings. Accordingly, residual-based exponentially weighted moving average (EWMA) charts and
Shewhart charts are compared against a breakout detection algorithm to identify shifts or faults in the
building performance data. An efficient detection of abnormal energy consumption can significantly
reduce unnecessary energy costs. Capozzoli et al. [4] proposed a methodology that allows automatic
detection of abnormal energy consumption of buildings. This automatic detection is achieved by
applying statistical pattern recognition and artificial neural network ensembles to the actual energy
consumption data coupled with outlier detection methods. Zhang and Ma [5] used a supervisory
control and data acquisition system (SCADA) to collect data. They proposed a three-way model
for wind turbine fault detection and sensor selection based on parallel factor analysis (PARAFAC),
as well as a K-means classification method to monitor the collected operating data and identify the
operating conditions of the wind turbines. In short, asset management based on optimal maintenance
strategies contribute to the reliability and availability of equipment, thus, making the equipment
more competitive. Bangalore and Patriksson [6] proposed a wind turbine maintenance management
framework that utilizes operation and maintenance data from different sources to combine the benefits
of age-based and condition-based maintenance scheduling. Dao et al. [7] developed a new method
for condition monitoring and fault diagnosis of wind turbines based on cointegration analysis of
SCADA data. In their method, the residuals obtained from the cointegration process of wind turbine
data are analyzed to monitor the operating conditions and detect equipment fault. Lu, Liu, and
Yan [8] presented a novel framework for the detection of structural changes in a rotating machine.
This framework adopts a graph model for data modeling to represent and capture statistical dynamics
in machine operations.
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Pumping and blowing systems are often involved in the supply of energy for wastewater treatment.
After three to five years of operation, most units in the blower system exhibit 10% to 20% lower
efficiency, and poor operating efficiency leads to a substantial waste of power. Early detection of
abnormal pump efficiency contributes to effective savings on power consumption and avoids subjecting
pumps to fouling faults. Yang and Xu [9] proposed that fouling is the most important factor leading
to efficiency degradation and that, consequently, the effect of fouling on engine efficiency should be
accurately predicted. Linden [10] proposed that compressor corrosion and flow path contamination
are problematic for the operation of many industrial axial compressors. Erosion or fouling of flow
paths can result in reduced flow capacity and efficiency, which typically cause the flow to decrease
by 3% to 5%, reaching values higher than 10% for severe abnormal conditions. Capodaglio et al. [11]
proposed the stochastic system identification of sewer-flow models. Raduly et al. [12] proposed a
neural network-based methodology for rapid assessment of WWTPs performance. Boyd et al. [13]
proposed collecting operating data of WWTPs every five or fifteen minutes and using ARIMA to
predict daily inflows. Purial et al. [14] used an expert system (ES) to diagnose equipment operation
and malfunction in WWTPs. The ES detected the operating conditions of the equipment based on
online data analysis and predicted the operating trend based on the evolution of different variables
and diagnosed faults. To ensure the normal operation of motors, Irfan et al. [15] developed a condition
monitoring system for motor bearing fault identification based on motor stator current and voltage.
Béraud et al. [16] employed daily average data in conjunction with expert knowledge to monitor the
efficiency of WWTPs. Engelberth, Krawczyk, and Verl [17] presented a new model-based method
for condition monitoring and diagnosis of turbo compressors, in which the characteristic operating
behavior is mainly influenced by fouling.

Sewage treatment is a high-energy-consuming industry. Energy-saving effects are achieved by
controlling the operation of equipment, selecting an effective aeration method, or reducing the pressure
caused by frictional head loss through better pipeline design, and by monitoring the equipment
operating status of the pump system and blower system to ensure that there is no abnormal energy loss.
Therefore, reducing the energy consumption of a WWTP and conducting rational energy allocation is
beneficial for the WWTP operation.

2. Materials and Methods

The energy consumption of WWTPs is rapidly growing, and significant energy waste can occur
due to the lack of proper management and diagnosis of energy efficiency [18]. The power consumption
of the pump generally accounts for 10% to 20% of the total power consumption of the wastewater
treatment plant, for example, it may be subjected to many different efficiency-degrading factors.
For instance, blade wear, fouling, and blockage can reduce the flow (Q), which can decrease the
operating efficiency of the pumps. In addition, many sewage treatment plants lack the normal
operating baseline of the pump. Therefore, pumps could be working at low efficiency and high energy
consumption for a long time, and a normal operating baseline can help the user to ensure whether the
repaired pumps return to the normal high-performance running state.

This study combines statistical features and expert knowledge to monitor pump operating efficiency
and conditions. Historical operating parameters of the equipment were collected. After the removal
of outliers, parameter statistics under normal operating conditions were calculated. The obtained
values were used to produce two-dimensional feature diagrams and to set warning thresholds to
prevent equipment malfunction. Equipment operating conditions were monitored using the differences
between the actual operating parameters and the thresholds. Moreover, to ensure the monitoring
reliability, this study established a model for the energy-consumption baseline of the equipment under
normal operating conditions. This baseline can ensure that there is no abnormal relationship between
operating energy consumption of equipment and equipment output levels. The flow chart of the
process is shown in Figure 1, and the research steps are elaborated in the following sections.
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Figure 1. Flow chart of equipment performance monitoring.

Condition Monitoring and Diagnosis Method

In this section, a methodology suitable for WWTP pumps is proposed as follows: First, the flow
(Q) and head (H) of the pump are measured because they are the main factors affecting pump efficiency
(e). Secondly, two-dimensional flow-efficiency feature diagrams are produced. Thirdly, the warning
thresholds of flow and efficiency for pump malfunction are determined based on statistical confidence
intervals and are shown in the feature diagrams.

The flow deficit (dQ) and the efficiency deficit (de) are calculated for real-time monitoring of the
pump operating conditions. A typical two-dimensional flow-efficiency feature diagram includes three
detection thresholds, namely, the high threshold of flow deficit (RQh), low threshold of flow deficit
(RQYI), and threshold of efficiency deficit (Re). A fault is detected when the flow or efficiency deficits
of an operating condition exceeds the threshold. The thresholds are calculated using the operating
parameters collected under steady operating conditions. A typical two-dimensional flow-efficiency
feature diagram is illustrated in Figure 2. When a change in the pump operating conditions is detected,
the extent to which the change occurs must be determined. The detection thresholds divide the
two-dimensional flow-efficiency feature diagram into four regions, each corresponding to one different
operating condition of the pump. For dQ < RQIl and de < Re, the flow deficit and efficiency deficit
are below their thresholds, which indicates that the pump is under normal conditions. There is
significant correlation between pump efficiency and pump flow. However, the pipeline of a pump
often contains impurities, and the flow measurement is often prone to interference by impurities.
Therefore, if dQ < RQl and de > Re, the sensor is functioning abnormally. If dQ > RQIl and de < Re,
there is a warning of malfunction, which means that the pump flow is reduced, and the efficiency is
degraded. This occurrence can be attributed to wear-ring clearance, pump operation below minimum
allowable flow, impeller wear, or an improper filter device. A decrease in pump flow indicates that
the pump is operating abnormally, and the more severe the pump malfunction, the higher the flow
deficit, and the worse the pump efficiency. Thus, when dQ > RQh and de > Re, the pump is under
severe abnormal conditions. Factors leading to flow deficit higher than RQh include wear-ring leakage,
impeller corrosion, improper speed setting of variable-speed pump, reverse pump flow, and severe
erosion of pump casing.

To ensure the diagnosis reliability, a regression model of pump power consumption (KW pump)
versus pump flow and pump head under normal operating conditions is established. Pump power
consumption is stable with respect to pump flow and is not prone to disturbance. When the power
consumption (kWeg) deficit of the model-estimated pump relative to the operating pump power
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consumption (kWoper) exceeds the threshold of power consumption deficit (diw), the pump is under
abnormal operating conditions. Relevant symbols are elaborated in Table 1.

e=f(Q H)

—

I
1
normal operation |
I
1

RQl

:

performance management

Figure 2. Characteristic map for performance monitoring.

Table 1. Main parameters.

Parameter Description Unit
H Pout - Pin kPa
Pout pump outlet pressure kPa
Pin pump inlet pressure kPa
W QxH kW
Q Flow m3/h
e (W /KW pump) x 100
RQh CILg-(CILgx09)  mYh
RQI CILg-(CLLgx085)  mdh
Re CIL.-(CILL.x08)
ClLq Xq - 1.960% m>/h
CIL. Xe —1.960%
QQ mean pump flow m3/h
Xe mean pump efficiency
dQ CILLg-Q m3/h
de CILc-e

3. Results

This study combined statistics and expert knowledge to monitor equipment operating efficiencies
and conditions. The proposed methodology was applied to a WWTP for the monitoring of operating
efficiencies of an influent pump. The power consumption of influent pump generally accounts for
10% to 20% of the total power consumption of a WWTP [19]. Therefore, an effective monitoring of
the operating conditions of the influent pump and the maintenance of good pump efficiencies can
contribute to save energy and maintain normal pump operation. The studied WWTP operated 24 h
a day. The start and stop of the influent pump were controlled by a level gauge. The level gauge
started the influent pump when the water level was lower than a preset level, otherwise the pump was

turned off.
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Pumps are often subject to blockage due to the accumulation of impurities, which can also damage
the pump blades, resulting in decreased pump operating efficiency. An abnormal pump condition is
often identified only when there is a lack of water in the back-end treatment system. The pump would
have been operating in a malfunctioning condition for a while. This would have an adverse impact on
the WWTP operation, and it could lead to unnecessary power consumption and a reduction in the
pump life.

In this study, two digital pressure gauges were installed at the inlet and outlet of the influent
pump, and a digital flow meter was installed on the pipeline. The operating pump flow was measured
and combined with the difference between the two pressure gauges to calculate the pump head and
the work (W) performed by the pump. A digital kWh meter was installed to measure the pump power
consumption and calculate the pump efficiency (e). Data from the pump sensor was transmitted
back to the database by an embedded device for data storage and calculation, as shown in Figure 3.
Flow and pressure data of the influent pump was collected every minute in October 2018. The data
collected under nonoperating conditions was removed, and the absence of outliers was confirmed.
A total of 9015 normal operating datasets (collected every minute) were used to constitute a normal
operating dataset of the pump. The pump work and efficiency under normal operating conditions
were calculated based on the dataset analysis. Then, the daily mean of pump flow, head, power
consumption, efficiency, and work, as well as the daily confidence intervals were established, as shown
in Table 2. The lower limit of the confidence interval of pump flow (C.I.L.q) and of pump efficiency
(C.I.L.e) were calculated according to statistical confidence interval formula. These two limits were
used as baseline parameters of normal pump operation to calculate detection thresholds (RQh, RQ],
and Re). Finally, a two-dimensional flow-efficiency feature diagram was generated, as illustrated in
Figure 4.

Pressure gauge
p

Pump

i| Pressure gauge!
: P :

Q '

kwo | Embedded system
Meter

Tank
Figure 3. Sensor installation diagram.
Table 2. Daily averages of pump operating parameters.
Kw w E Q H
AVG 44.382 21.006 47.618 513.026 146.625
Standard error (SE) 0.084 0.037 0.126 0.741 0.220
Standard deviation (SD) 0.438 0.194 0.656 3.848 1.142
Number of samples (N) 27 27 27 27 27

Margin of error 0.173 0.065983 0.2152 0.758536 0.428848




Materials 2019, 12, 4101 7 of 10

de

18

15
SENnsor

Re=9.471607 N RQh=76.7256 :

1

|

I sever |
12 |

normal operation | alert

! RQI=51.1504

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
dQ (m3/h)

W e o - -

Figure 4. Characteristic map.

The pump consumes energy only when operating. Given that pump flow and head are the two
main parameters that affect pump energy consumption, a regression model of power consumption
with respect to pump flow and head was established to estimate power consumption. The regression
model is expressed by Equation (1), where R? is 95.99%.

KWesti = 0.067189 Qg + 0.067622 Hayg, 1)

where Q,g is the average daily pump flow rate, and Havg is the daily average pump head.

The pump operating conditions were continuously monitored using the three thresholds
established for normal pump operating conditions. The two-dimensional flow-efficiency feature
diagram of the pump operation during November 2018 is shown in Figure 5. For pump operation
during November 2018, the deficits of daily average flow and daily average efficiency with respect to
the lower limits of the pre-established confidence intervals did not exceed the thresholds RQh, RQl, and
Re. Moreover, the relative error between estimated and actual operating power consumption was less
than the threshold of 7%, indicating that the pump operated normally in November. The error on pump
power consumption can be seen in Figure 6. Continuous monitoring of pump operating conditions in
December revealed that the pump flow deficit on December 25 was higher than the detection threshold
RQ)J, and the efficiency deficit was lower than the detection threshold Re, indicating that the pump was
operating abnormally. The regression model of pump power consumption was used to confirm the
pump operating conditions. On December 25, the difference between kWest and kWoper was higher
than 8%, and the actual pump flow was reduced by more than 7% as compared with previous dates
under the same pump power consumption. Thus, there was a warning of malfunction conditions on
December 25. The two-dimensional flow-efficiency feature diagram of pump operation in December
and the estimation error of pump power consumption are shown in Figures 7 and 8, respectively.
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Figure 5. Two-dimensional flow-efficiency feature diagram in November.
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Figure 6. Pump power consumption versus pump flow in November.
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Figure 8. Pump power consumption versus pump flow in December.

As shown in Figure 7, the pump flow deficit that exceeded the threshold RQh occurred on
25 December 2018. The chart of pump power consumption versus pump flow (Figure 8) indicates
that the pump flow on that day was far lower than the one under normal conditions, and the power
consumption was within the high power-consumption range. Thus, the pump was shut down to
overhaul the pumping system. It was observed that the outlet valve of the pumping system had
developed a fault, which prevented it from fully opening. This fault resulted in decreased pump flow
despite normal pump speed, and it caused unnecessary energy consumption.

4. Conclusions

Statistical features and expert knowledge were combined to monitor the operating efficiency
and conditions of equipment. Operating data was collected to form a dataset of normal equipment
operation and remove outliers. Statistical analysis was performed on the dataset to calculate the
confidence intervals for the main operating parameters of the equipment and establish two-dimensional
feature diagrams. Equipment operating conditions were monitored using the deficits of equipment
operating parameters in actual equipment relative to the confidence intervals under normal operating
conditions. Expert knowledge was also used in this monitoring to identify possible reasons for
equipment malfunction. In addition, to ensure the reliability of equipment diagnosis, a regression
model was established between equipment power consumption and statistical equipment features.
The equipment operating conditions were observed, thereby allowing real-time monitoring and
diagnosis of equipment operating efficiency. The proposed methodology was used to monitor the
operation of an influent pump in a WWTP. It was used to identify an outlet valve fault that was
degrading the pump operating efficiency. The operating efficiency of the pump dropped from 48.33 in
the normal state to 45.83 in the abnormal state, and the efficiency loss reached 5.17%. Through this
study, the management personnel were immediately notified to perform shutdown maintenance,
thereby preventing more serious damage to the pump and unnecessary power consumption.
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