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Abstract: Aeroelastic optimization has become an indispensable component in the evaluation of
divergence and flutter characteristics for plated/shell structures. The present paper intends to review
the fundamental trends and dominant approaches in the optimal design of engineering constructions.
A special attention is focused on the formulation of objective functions/functional and the definition
of physical (material) variables, particularly in view of composite materials understood in the broader
sense as not only multilayered laminates but also as sandwich structures, nanocomposites, functionally
graded materials, and materials with piezoelectric actuators/sensors. Moreover, various original
aspects of optimization problems of composite structures are demonstrated, discussed, and reviewed
in depth.
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1. Introduction

The concept of the flutter can be described as an instability associated with self-sustained and
self-excited vibration which is a combination of elastic, inertial, and aerodynamic forces where the
structure and the flow around it interact with each other. The terms “self-sustained” and “self-excited”
mean respectively “without external constraint” and “without unsteadiness coming from upstream
or downstream”. Flutter results in energy exchange between the structure and the fluid, when the
structure is self-excited, its vibration induces an unsteady pressure field around the profile sustaining
the vibration. The flutter problem usually starts from small mechanical or aerodynamic disturbance
above a critical flow velocity, then gives large vibration amplitudes and finally damages in a short
period of time.

This phenomenon is a significant problem encountered in the design of aircraft structures [1,2] or
turbine blades in the turbomachines (Srinivasan [3]). Flutter is thus a major concern for the designers
regarding both the safety and costs.

The current aerospace industry demands innovative designs and materials that offer weight
savings, as well as faster and more cost and energy efficient structures. To fulfill these needs from
the structural point of view, researchers have proposed the use of laminated composite materials,
composite materials with curvilinear fibers, functionally graded materials (FGM), sandwich structures,
stiffeners, actuators etc. Aeroelasticity is a crucial discipline in the design and maintenance of an aircraft.
At high speeds, the wing twists and vibrates up and down changing the angle of attack. The change in
the angle of attack induces a change of the aerodynamic forces, which subsequently affects the angle of
attack, resulting in a continuously vibrating system. The phenomenon of self-excited oscillation of a
structure, which extracts energy from the airstream, is called aeroelastic flutter. Currently, although
numerical tools are more and more reliable, flutter prediction still depends on simplified models and
systematic tests.

In the flutter analysis the attention is mainly focused on the discussion of different problems that
can affect the structural behavior, i.e., the aerodynamic theories, the form of boundary conditions,
the structural geometry (the analysis deals mainly with 2D structures), the material properties and the
effects of aerothermoelastic coupling.

Optimal design of flutter characteristics of plated/shell structures is a significant and interesting
engineering problem which, in our opinion, is rather poorly investigated in the last decades. For instance,
in the Sonmez’s review [4] on optimum design of composite structures presented only 5/1007 (flutter
speed) and 7/1007 (aerodynamic performance) works. Alijani, Amabili [5] discussed 6/314 works
dealing with flutter problems.

The review is generally organized as follows: the brief introduction to the flutter problems is
presented in Section 2. In Section 3 the general formulation of the optimization problems is given
in order to emphasize the fundamental elements playing the most important role in the optimal
design, i.e., the objective functions/functional (Section 4) and design variables—physical/material
(Section 5) and geometrical (Section 6). Section 7 is devoted to the short presentation of the existing
commercial finite element packages that may be used in the evaluation of the objective functions.
The above information is supplemented by the discussion of optimization algorithms applied in the
analysis—Section 8. Concluding remarks describing especially the present state-of-art in the area of
optimization plated/shell constructions under flutter constraints are presented in Section 9.

The fundamental aim of the present paper is to review the existing literature on optimization
of constructions subjected to flutter constraints. A special attention is focused on the proper choice
of material properties since they have an important effect on flutter behavior of turbine blades or
aircraft wings.
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2. Brief Description of the Flutter Problem

Flutter problem is a complex aerodynamic phenomenon that deals not only with the description
of the dynamic behavior of structures but especially with the characterization of the fluid-structure
interaction arising during the flow of a fluid over a surface of a construction considered. Table 1
summarizes the possible classification of models used in the analysis.

Table 1. Classification of flutter models.

Type Structural Theory Aerodynamic Theory Mach Number M

1 Linear Linear piston theory
√

2 ≤ M ≤5
2 Linear Linear potential theory 1 ≤ M ≤5
3 Nonlinear Linear piston theory

√
2 ≤ M ≤5

4 Nonlinear Linear potential theory 1 ≤ M ≤5
5 Nonlinear Nonlinear piston theory M > 5
6 Nonlinear Navier-Stokes equations Transonic, supersonic, hypersonic

Using the linear piston theory, the aerodynamic pressure acting on a curved surface area dA is
given by:

∆p = −Λ
(
∂w
∂x cosϑ∞ + ∂w

∂y sinϑ∞
)
− µ∂w

∂t ,

Λ = ρ∞V2
∞/

√
M2 − 1, µ = ρ∞V∞

(
M2
− 2

)
/
(
M2
− 1

)3/2 (1)

in which ρ∞, V∞, and M are the free stream air density, velocity of air, Mach number, respectively,
and ϑ∞ denotes the flow angle. x and y denote the curvilinear coordinates. Forsching [6] introduced
available conditions of using piston theories.

To perform the stability analysis that takes into account the aerodynamic interactions (1) the
fundamental set of equations can be reduced to the following form:

L1w(x, y, t) = L2

(
∆p + ρh

∂2w
∂t2

)
(2)

L1, L2 are linear differential operators with respect to x, y variables, w denotes the normal to the
mid-surface displacements, t is a time and h means the thickness. For the Love-Kirchhoff kinematical
hypothesis the explicit form of the differential operators is presented by Bolotin [7,8], Hedgepeth [9],
Houbolt [10], Sawyer [11], Bohon [12], Stepanov [13], Muc, Flis [14].

Introducing the Airy stress functions Φ(x,y,t) the relation (2) can be written in the equivalent form
in terms of the variable Φ(x,y,t)–see Bolotin [7,8], Rikards, Teters [15].

The use of the first-order transverse shear deformation theory changes the form of differential
operators L1, L2 but not their order—see e.g., Li, Song [16].

It is worth to note that the relation (2) describes also the thermoelastic and piezoelectric effects by
the introduction of the appropriate terms to the functional of the external forces (mechanical, thermal,
and electric forces)—see Muc, Flis [14], and Muc et al. [17].

Usually, the flutter phenomenon is characterized by the plots of variations of natural frequencies
with aerodynamic pressures—Figure 1. The neighborhood modes approach to each other at the
value of the critical aerodynamic pressure that corresponds to the loss of stability. The values
of the critical aerodynamic pressures are different for various vibrational modes. As it is shown
in Figure 1 the mechanical (material) properties may change drastically both the pre-flutter and
post-flutter behavior—the modes of frequency coalescence may be totally different for isotropic and
anisotropic structures.
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Figure 2. Schematical representation of the pre-flutter (free vibrations) and post-flutter modes (1D
cross-section).

The flutter characteristics, demonstrated schematically in Figures 1 and 2, are functions of many
parameters. Their effects will be discussed later in view of the optimal design. Early reviews, dealing
particularly with parametric investigations, on plate/shell flutter are presented by Fung [18], Dowell [19].
Recent, more comprehensive review of researches in the area of flutter behavior of structures can be
found in Pettit [20] and Kouchakzadeh et al. [21].

3. Remarks on the Formulation of Optimization Problems

Optimization is increasingly entering many practical engineering tasks, which may cause problems
related to the use of appropriate terms and understanding of many concepts. Because of the
above-mentioned facts, we will introduce a separate classification of optimization tasks solved later in
this work. It mainly covers the problems of structural optimization.

The detailed information about the formulation of various optimization problems can be found in
Reference [22].
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To formulate an optimization problem it is necessary to define the following quantities/
parameters/functions/functionals:

• A vector of design variables and a space of design variables;
• An objective function or an objective functional;
• A set of constraints in the form of equality or inequality.

In this section, we intend to present only general aspects of this problem, especially those related
to the numerical procedures used by the authors. Detailed formulations of specific optimization
problems are given in the next sections.

The solution of any engineering problem is determined by a set of independent variables, which can
be called design variables

→
s not only in optimization problems. We assume that the vector

→
s has I

independent components. Depending on the formulation of the optimization problem, each of the
design variables si can be represented as:

Continuous real variable, i.e.,
si ∈ R, i = 1, 2, . . . , I (3)

Discrete variable, i.e.,

si ∈ C = {c1,c2 . . . }, i = 1, 2, . . . , I; cp ∈ R or cp ∈ N (4)

The spaces of decision variables defined by formulas (3) and (4) (the superscript means the type of
design variable to be used) are able to describe all possible changes in the design variables considered
in a given optimization problem and are therefore referred to free search space (FSS), in contrast to the
area on which constraints are imposed.

Constraints (in the form of inequality or equality) resulting from the analysis of the physical
phenomenon or due to technological considerations are the only limitations of the optimization
problems analyzed herein. They can be written the following way:

gi(
→
s ) ≤ 0, j = 1, 2, . . . J (5)

hk(
→
s ) ≤ 0, k = 1, 2, . . . K (6)

Again, for generality of the numerical procedures developed herein, we formulate the optimization
problem as searching for the maximum of the objective function/functional f :

Max f (
→
s ) (7)

In order to generalize the numerical analysis of various optimization problems discussed in the
further part of the work, the Min or MinMax search problem is transformed in a classical way (only in
a numerical program) to the task of searching for the maximum.

For a given type of space of design variables S ((3) or (4)), the optimization problem (5)–(7) will be
expressed through three symbols:

〈
S, f ,φ

〉
where φ(s) =

{
1 (true) conditions (5), (6) are satisfied
0 (false) conditions (5), (6) are not satisfied

(8)

where φ(s) is a Boolean function and S denotes the space of design variables.
A different classification method is associated with the type of design variables defined as both

real or discrete variables. Generally, we can distinguish three types of variables:

• In dimensional (parametric) optimization, design variables determine the structure thickness
distribution and its parameters characterizing the cross-section;

• In shape optimization, these are the describing variables:
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i. The geometry (and thus also the shape) of the outer edge of the structure;
ii. The geometry of the mid-surface of the structures (beams, plates, shells).
iii. In the optimization of the topological structure, the design variables define:
iv. The manner of connection of elements, areas, or components of the structure;
v. The number and spatial distribution of structure elements;
vi. Material distribution in the structure.

In designing the optimal topology of the structure, the set of design variables may change in the
optimization process.

The above definition was introduced by Kirsch [23] in 1989 and identical classification is presented
in monograph [24] published in 2002. The author of the cited works indicates that in many cases the
problems are being solved, in which changes of topological, geometric, and dimensional variables
are simultaneously made (see e.g., [25]) and such tasks are called lay-out optimization in English,
which we think it is best to translate it as structure optimization. However, at the end of the 1980 s,
Bendsøe [26,27] introduced the concept of topological optimization, which means also the changes in
the material distribution in the structure. In monograph [28], it is explained that in fact topological
optimization is understood as the optimization of the material structure constituting the structure, in
the sense of searching for the optimal material density ρ(x) associated with the mechanical properties
of the material through the relation:

Ci jkl(x) = ρ(x)C0
i jkl (9)

with a constraint condition in the form of: ∫
Ω

ρ(x) ≤ V (10)

where [C] is the stiffness matrix. The concept of topological optimization therefore includes a full set of
design variables that combine dimension, shape, topological, and material-related design variables.
However, this above generalization should not be confused with a strictly understood definition of
topology and understood strictly in the theory of optimization of topological variables.

In the optimization of constructions made of composite materials, lay-out optimization of
composite structures is the most adequate instead of topological optimization. This is due to the fact
that the topological optimization is mainly associated with the term of the material homogenization.
In our opinion, the most reasonable seems to be the use of the definition: the optimization of the
structure of composite materials with the simultaneous distinction of the level of analysis, i.e., it is
possible to optimize at the level:

• Elementary cell,
• Individual layer,
• Laminate.

This is necessary because on each of the above-mentioned levels of analysis, CM introduce
different types of design variables including both the geometry and the type of reinforcement, matrix,
and interfacial layer or the orientation of individual layers, individual thickness of individual layers,
and their material properties. The set of design variables describing the structure of CM is an
arrangement of geometrical and physical variables that characterize (at a given level of analysis)
unambiguously the physical properties of CM. The next difference between the definitions proposed
in this book and the Bendsøe approach [27] lies in the possibility of describing the structure by other
design variables than those that characterize the problem’s physics, namely dimensional and shape
optimization variables describing the geometry of the problem. In this sense, we use two types of
design variables at the present work:

• Physical (material) representing the CM structure from which the structure is made;
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• Geometric—characterizing the geometry of the structure.

The concept of physical variables relates directly to the issues of material design. It refers to
the design of physical properties of a composite material by changing the matrix and reinforcement
material as well as the geometrical features of the reinforcement. In the second case, this can be done
by changing the size, shape, or distribution of the reinforcing elements or only their orientation and
stacking sequences.

In the case of geometric variables, we can proceed in two ways:

• Only by selecting the material when looking for the optimal distribution of the laminate thickness,
the thickness and shape of the reinforcing patches, the shape of the middle surface of the structure,
or the shape of the edge;

• By designing a new material, if in the above problems there are additional constraints (technological,
geometric, etc.,) that none of the currently available materials meet.

It should be emphasized that the work also uses the term laminate configuration regarding a set
of design variables describing the CM structure at the lamination level and referring directly to the
term laminate configuration used in the Anglo-Saxon literature. This concept should not be confused
with the term combinatorial configuration introduced in mathematical combinatorial, because in
mathematics it has a completely different meaning.

4. Objective Functions

Basic mathematical formulations of design objectives are subjected to various uncertainties
inherent in structural, material, damage parameters, etc., which are modeled by random variables.
They can be taken into account (or not), so that possible definitions of design objectives are divided
into two groups, i.e., deterministic and reliability based optimization problems. In literature both
formulations are treated equivalently.

4.1. Deterministic Approach

Structures with some flutter requirements (constraints) can be optimized using computationally
different strategies determined by the introduction of various forms of objective functions. Optimization
(maximization) of flutter speed (bound–see Figure 1) is a central concept in the design of plated/shell
structures. However, the formulation of the problem can be carried in different way given below:

• The direct formulation of the problem (Muc, Flis [14]):

Maxλ(si) (11)

• The implicit formulation with a bound (Song, Li, Carrera, Hagedorn [29]):

Max
√
λ2(si) − λ2

e (12)

• The implicit formulation with a bound (Guo [30]):

Min
[
1−

λ(si) − λe
λe

]2

(13)

• The maximization of weighted sum of the critical aerodynamic pressures under different probability
density function of flow orientations (Li, Narita [31]):

Max

∞∫
−∞

λ(si = ϑ∞)c(si = ϑ∞)dϑ∞ where

∞∫
−∞

c(si = ϑ∞)dϑ∞ = 1 (14)
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• The maximization of natural frequencies related to the vibration modes involved in the
flutter phenomenon called as aeroelastic optimization method by finite difference (AOMFD).
(De Leon et al. [32], the frequency regulation problems are also discussed by Katsikadelis,
Babouskos [33])

Max
[
ω2(λ(si))

]
(15)

• A minimum weight wing W subject to divergence/flutter constraints (Kameyama, Fukunaga [34])

MinW where λ(si) ≤ λe (16)

• Maximization of the flutter critical parameter Qcrit, i.e., a function of the panel’s stiffnesses,
damping, and dynamic pressure of the free-stream. (Vijay, Durvasulah [35])

MaxQcrit(si) (17)

• The uncertainty problem—the minimization of the additional masses wi added to the wing
construction and satisfying the frequency constraint (Kuttenkeuler, Ringertz [36])

Min

W +
12∑

i=1

(wi = si)

 and ω2(si) ≤ ω
2
e (18)

4.2. Reliability Analysis

In the aeroelastic analysis the reliability based design optimization problems constitute a special
class of optimization tasks that are formulated in quite different manner that the deterministic objective
functions discussed, previously including also the problem (18). The general approach to this class of
problems can be found in Refences [37,38].

The combined use of sophisticated measurement techniques, computational simulations, and a
numerical identification tool for the model parameters may result in a powerful method for material
characterization of mechanical properties and damage analysis. However, in such an analysis the
knowledge of a great number of various factors is required and the validity of a pure deterministic
modeling is always not complete because of the scatter of experimental data. Thus, many engineering
problems connected with the use of composite materials are (or may be) too complex and ill-defined
to be modeled by conventional deterministic procedures. On the other hand, the use of statistical
analysis is also limited to: (1) The number of experimental data (the extension of random fields of
variables); (2) the definition of covariance matrices since the majority of random variables are correlated
in an arbitrary manner; and (3) computational efforts in the analysis of multidimensional statistical
(stochastic) problems.

In general, reliability based optimization problem ensures that failure does not occur above the
allowable probability, i.e.,

MinP[ fcrit(si) ≤ fe] (19)

where P denotes the probability, fcrit is the objective function of the optimization (flutter speed,
eigenfrequency, weight–see (Equations (11)–(17)), and fe means the design value of the objective
function. For the sake of the simplicity of the aeroelastic analysis the problem (19) is usually rewritten
as the MinMax or MaxMin problem (see Muc, Kędziora [38]) referring to the graphical representation
plotted in Figure 3.
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For the planar 2D individual layers of the laminate the fiber orientation θ(x,y) is:

• Constant as (x, y) ∈ Ω
• Constant as (x, y) ∈ Ωi, UiΩi = Ω, i > 1
• Variable as (x, y) ∈ Ω

where Ω denotes the 2D space occupied by plated/shell structures and (x,y) are the coordinates defined
in the 2D curvilinear space corresponding to the plate/shell mid-surface. For fibrous composites the 2D
stiffness matrices [A] (extensional), [B] (flexural–extensional coupling), and [D] (flexural) are defined
in the classical way:

[A] =

t/2∫
−t/2

[Q]dz, [B] =

t/2∫
−t/2

[Q]zdz, [D] =

t/2∫
−t/2

[Q]z2dz (20)

[Q] is the reduced stiffness constants of the materials determined from the transformation relationships
for each of the l-th layer, separately:

[Q] =
[
T(l)

]Tr
[C]

[
T(l)

]
, [C] =


E1/(1− ν12ν21) ν21E1/(1− ν12ν21) 0
ν21E1/(1− ν12ν21) E2/(1− ν12ν21) 0

0 0 G12

,
[
T(l)

]
=


c2 s2 sc
s2 c2

−sc
−2sc 2sc c2

− s2

, s = sin
(
θ(l)

)
, c = cos

(
θ(l)

) (21)

For the curvilinear fiber format (Figure 4c) the number of design variables is equal to the number
of parameters defining the curve θ(x,y)—see Muc, Ulatowska [54,55]. For angle-ply laminates (±θ) one
design variable determines the allowable orientations in the case plotted in Figure 4a and the number
of domains Ωi in the case shown in Figure 4b. The number of design variables increases for arbitrary
orientations in each of the plies constituting laminate. For the Love-Kirchhoff hypothesis the laminate
configuration is represented by 12 lamination parameters in the domain Ω (or each of the domains Ωi).
It grows further for transverse shear deformation theories—see Muc [56].

It is possible to reduce the total number of design variables by introducing the pairs of discrete
fiber orientations {00

2,±450, 900
2}—each of the plies has an identical thickness t/N. For symmetrically

laminated plates/shells all terms in the stiffness matrix [B] are equal to zero and the plate/shell stiffnesses
are characterized by twelve nonzero parameters, i.e., A11, A12, A22, A66, A16, A26, and D11, D12, D22,
D66, D16, D26—see Muc [57]. However, they are not independent and can be expressed by four natural
values: N0—the number of pair of plies oriented at 00, N90—the number of pair of plies oriented at
900 and:

ND
0 =

N/4∑
l=1

[3l(l− 1) + 1] for plies oriented at 00

ND
90 =

N/4∑
l=1

[3l(l− 1) + 1] for plies oriented at 900
(22)

In addition, knowing the values ND
0 , ND

90 it is possible to derive the corresponding numbers
of plies N0, N90 although the mapping is not unique—Muc [58]. Therefore, the space (plane) ND

0 ,
ND

90 seems to be the most convenient representation of the optimization results—Figure 5. To compare
discrete with angle-ply (continuous) fiber orientations it is better to introduce the following definition:

xD =
4
t3

N∑
l=1

(
z3

l
− z3

l−1

)
cos(2θ(l)), yD =

4
t3

N∑
l=1

(
z3

l
− z3

l−1

)
cos2(2θ(l)) (23)
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Figure 5. The design space for discrete and continuous fiber orientations.

A lot of papers studied the influence of the fiber orientations, stacking sequences, and fiber
mechanical properties on critical aerodynamic speed [21,59–68]. Hertz et al. [69] called the above
process as aeroelastic tailoring, i.e., the design that makes use of the directional properties of fibrous
composite materials in wing skins and orients these materials in optimum directions—see also
References [70–88]. In different papers the dominant role of the bending stiffness D11 is observed.
Vijay, Durvasulah [35] introduced the critical parameter (17) as the value divided by the D11 value.
The similar effects were noticed by Muc, Flis [14], Rikards, Teters [15]—see Figure 6. It is interesting to
note that the decrease of the aerodynamic critical pressure with the growth of the fiber orientations
(the angle-ply configuration is considered) is almost insensitive to the form of boundary condition and
the orthotropy ratio EL/ET.
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Figure 6. Variations of the normalized critical pressures for square angle-ply plates (Lx/Ly = 1,
EL/ET = 40).

Steering and control fiber orientations in finite elements (Figure 4b) combined with topology
optimization is discussed by Muc et al. [89,90] Figure 7 shows the example of possible solutions for
three discrete fiber orientations considered (i.e., {00

2,±450, 900
2}).
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It has been noticed that the flutter maximal speed can be increased or decreased depending on
the variable fiber spacing—Shih-Yao Kuo [91]. Stodieck et al. [92,93] studied the aeroelastic behavior
of rectangular composite wing. Tow-steered composites were used to tailor the aeroelastic behavior,
and they showed a good performance over traditional unidirectional composite laminates. The identical
conclusion to the above was formulated later in References [92–101]. Stodieck et al. [94] assessed the
potential wing weight savings of a full-size aeroelastically tailored wing. It turned out that optimized
tow-steered laminates achieve much better mass reductions than optimized straight fiber composites.
Haddadpour and Zamani [95] investigated the aeroelastic design of composite wings with curvilinear
fiber which were modelled as thin-walled beams. The wing was optimized with a linear spanwise
variation of the fiber orientation to maximize the aeroelastic instability speed. It was shown that much
improved aeroelastic stability was achieved by the optimal variable stiffness wings compared with
the conventional, constant-stiffness ones. Stanford et al. [96] studied the aeroelastic tailoring of a
cantilevered flat plate in low-speed flow, locating the Pareto front between static aeroelastic stresses
and dynamic flutter boundaries using a genetic algorithm. Guimaraes et al. [97] investigated the
flutter behavior of tow-steered composite panels using the Ritz method combined with supersonic
aerodynamic piston theory. The flutter stability boundaries for constant stiffness laminates and variable
stiffness laminates were compared. Akhavan and Ribeiro [98] studied the aeroelastic instability
of variable stiffness composite laminates in supersonic airflow. A third-order shear deformation
theory and linear piston theory were used for structural and aerodynamic modelling, respectively.
The p-version finite element method was adopted to discretize the aeroelastic model. The effects of
boundary conditions, fiber angles and airflow direction on the flutter and divergence occurrence were
investigated. Khalafi and Fazilati [99] developed an enhanced isogeometric finite element method
to investigate the free vibration and the linear flutter characteristics of variable stiffness square and
skew laminated plates. Their results were compared with those in the literature to verify the accuracy
and effectiveness. Ouyang and Liu [100] researched the nonlinear flutter behavior of tow-steered
composite laminates in high supersonic flow using finite element method, and investigated the effects
of boundary conditions and fiber orientation on the nonlinear flutter behavior.

5.2. Functionally Graded Materials and Nanocomposite Structures—Thermal Protection

Since 2000, numerous investigations were devoted to the study on flutter analysis of structures
made of functionally graded materials (FGMs) [32], [101–125] and of nanocomposites (NC) [126–146].
In this area the parametric investigations (not always optimal search for solutions) dealt with the
analysis of flutter characteristics of structures especially in view of thermal protection.

The stiffness and mass distribution of the wing or the blade structure both have effects on the
aeroelastic properties. Functionally graded materials and nanocomposites have continuously varying
properties by spatially varying the distribution of two (or more) materials—see the relations (9), (10).
Various gradient strategies can be applied at the different directions of the wing/blade—Figure 8.
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FGMs/NCs enable changes in structural stiffness, thermal and mass distribution without necessarily
requiring a geometric change in the structural geometry.
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Figure 8. Property grading across the chord-wise/span-wise/thickness direction.

The effective material properties are usually obtained by a linear rule of mixture, assuming the
prescribed volume (density) fraction of the FG/NC material (a grading function usually in the form of
the power function).

Three types of FGM/NC constructions can be analyzed—see Figure 9:

1. Ceramic/metal (FGM) structures with ceramic (C) and metal (M) isotropic properties and the
prescribed form of a grading function having an unknown power law coefficient n.

EFGM = Em(1−VC) + ECVC, VC =
(z

t
+

1
2

)n
, 0 ≤ n < ∞,−

t
2
≤ z ≤

t
2

(24)

2. Sandwich structures made of a FGM core and laminated faces; the core Young’s modulus can be
determined from the following relation:

EFGM = Es

(1− ρFGM
ρs

)2ρ2
FGM

ρ2
s

+
ρ2

FGM

ρ2
s

 (25)

where EFGM and ρFGM (grading function) are the Young’s modulus and mass density of the core,
respectively; Es and ρs are the Young’s modulus and mass density of the solid material.

3. Carbon nanotubes (CNT) embedded in the matrix–orthotropic properties of CNTs (four material
constants), Young’s modulus of the matrix, and the volume fraction and distribution of CNTs
(Ref [118]).
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Figure 9. Forms of the material constructions used as the thermal protection.

For material 1 the total number of design variables is reduced to three (two Young’s moduli and
the power law coefficient), whereas for material 2 with isotropic faces also to the identical three design
variables as previously. The material 3 has seven independent design variables. For material 2 with
laminated faces the number of design variables increases and it is equal to the number of variables
discussed in Section 5.1 plus two characterizing the FGM core. Let us note that for three design
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variables the optimization studies can be replaced by the parametric analysis describing the influence
of all parameters. Similarly the influence of material properties and CNTs distributions on flutter
characteristics are investigated by the parametric analysis only.

The majority of works is devoted to the investigations of flutter characteristics
and the aerodynamic performance of rectangular panels made of the material 1
(ceramic/metal)—References [101–108,110,114,116,119,121,124]. In two papers [111,119] the similar
analysis as mentioned in the previous sequence was carried for beam structures and in one paper [123]
for a pipe conveying fluid. The studies were mainly focused on the problems of the thermal protection
and were limited to the parametric considerations.

Sandwich structures with FGM core (material 2) were applied in the analysis of flutter problems
of beams [112], panels [110], doubly curved shells [113,117], and truncated conical shells [115].

In the numerous references shown in this section in two papers only [109,110] the authors
employed optimization algorithms to investigate the flutter behavior in detail. Peng; Xiaoping [109]
analyzed the rectangular sandwich structures having laminated facesheets and FGM core with three
types of linearly grading strategies. The authors conducted the optimal design of facesheets using the
lamination parameters. Dunning et al. [110] used the similar grading strategy as in the previous work
to optimize the aeroelastic performance of an aluminum alloy and AlSiC cantilever plate. The authors
implemented genetic algorithms and the Pareto method.

The optimal choice of the grading strategy can be solved properly with the use of the topology
optimization strategies. The most general approach should be based on the topology optimization of
various material distributions inside the structure. For plates made of porous material De Leon et al. [32]
analyzed the variable material distribution assuming the existence of two possible materials: one with
the defined mechanical properties and the second (pores) with the zeroth properties.

Recently a large volume of literature has also studied the supersonic flutter behaviors of
nanocomposite structures. In general, the analysis demonstrated the necessity of the use of
higher order transverse shear deformation theories in order to evaluate correctly the vibrational
modes—References [126–130]. The flutter speed of CNT-reinforced composite plated/shell structures
does not always increase with an increase in CNT volume fraction.

The third material discussed in this Section cannot be classified as the classical FG material;
however, it is mainly connected with the application of nanocomposites to thermal protection problems
which belongs directly to the area of possible application of functionally graded materials. These studies
are presented in References [118,120,125].

Asadi et al. [131–137] investigated the aeroelastic flutter behaviors of carbon nanotube
(CNT)-reinforced composite beams, flat panels, cylindrical shells, conical shells, and truncated conical
curved panels in supersonic airflow. The flutter behavior of nanocomposite (CNT) cylindrical shells
was studied by Zhang et al. [138–142]. Various physical problems connected with nanocomposites,
flutter, and fluid behavior were discussed in References [143–147].

5.3. Piezoelectric (PZT) Patches–Active and Passive Flutter Control

A broad discussion of optimization problems (vibration and buckling) and methods encountered in
the analysis of laminated structures reinforced by PZT patches was presented in References [17,148,149].
Usually, the optimization technique was applied to find the best geometry of the location of PZT
actuators/sensors on the top/bottom surfaces of structures. The basic structure to be investigated is
shown in Figure 10 where a panel, either flat or cylindrical, has two equal piezoelectric layers attached
to the top and bottom surfaces. This voltage makes the laminate structure deform. Both the shape and
the location of PZT patches are treated as design variables.
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Figure 10. Illustration of: (a) The laminated panel and (b) the laminate cross-section.

Usually, in optimal design of structures with S/As two forms of the response function are
considered. They are directly connected with the active control of structural deformations. The first
type of the response function R can be identified with the magnitude of displacements (total or
components)—see Figure 2. Such an optimization problem can be formulated both for static and
dynamic problems (active damping). In the second case the natural frequency can be treated as the
response function. Now, the application of active control is becoming increasingly important especially
for flutter characteristics (Figure 1). Piezoelectric materials have been applied in structural vibration
control to take advantage of their fast response, their flexibility to be used as S/As in a large variety of
applications, and the fact that they provide broadband frequency responses. Smart structures, which
contain main structures and distributed piezoelectric S/As, can simultaneously detect certain vibration
modes and generate control forces to reduce the vibration of the structures.

Various problems referring to the flutter suppression by PZT patches (applying passive or active
control to eliminate instability) were studied in References [150–176]. Even up to a 49% flutter velocity
enhancement has been achieved by using piezoelectric actuation.

The use of piezoelectric control of dynamic instability seems to be a powerful tool in changing
the flutter characteristics. However, we do not intend herein to discuss the achievements of different
approaches but to indicate only this problem and to demonstrate the variety of existing works. In our
opinion, it is necessary to emphasize only that the location of the PZT patches is commonly selected
with the use of optimization algorithms, e.g., in the form of genetic algorithms—see Song et al. [29].

5.4. Sandwich Structures

Sandwich constructions usually consists of two faces which are kept separated by a core. Because
of the increasing number of new materials the different materials may be utilized as the facings and
the core. Some of them used in the aircraft constructions and optimized with respect to the divergence
or flutter behavior are given below: lattice sandwich panel [177], blade stiffened panel [178], rotated
sandwich plates [179–186], PVC foam laminated wing [187–190], honeycomb with MR pockets [191],
sandwich panels with CNT facesheets [192,193], FGM foam—Section 5.2.

The additional design variables introduced by the structure of sandwich constructions are directly
connected with the form of cores. At the end of the present section we intend to summarize the number
and the form of design variables characterizing the different materials used in the construction of
structures that may fail by the loss of dynamic instability (flutter). They are presented in Table 2.
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Table 2. Number of material design variables.

Multilayered Composite Laminates
FGM Nanocomposites PZT Sandwich

Angle-Ply Discrete
0/45/90

Curvilinear Fiber
Format

1 4
Parameters defining

the characteristic
curve

Mechanical properties of the constituents
Parameters defining the grading function

Voltage
Positions of
the patches

Mechanical
properties of

the core

For material design variables the optimization algorithms are commonly employed in the
derivation of optimal stacking sequences of laminates and in searching for the optimal positions of
piezoelectric actuators. The optimization algorithms can be also used in defining of grading functions.
In this case the topology optimization methods should be adopted to this class of problems.

6. Geometric Design Variables

Wings are the most critical elements in the structural systems of aircrafts. In general, problems
encountered in this area are connected with the geometric representation of two parameters/quantities:
(1) the wing section parameters and (2) the wing profile parameters. To reduce the complexity
and the cost of optimization process it is necessary to introduce an appropriate parameterization.
In References [194,195] it is demonstrated that the distributions of design variables mentioned above can
be written as 2D curves representing not only the shape of the edge of the structure or its mid-surface,
but also dimensional optimization (e.g., thickness) or topology optimization (distributions: density,
volume fraction of the constituents or material with different Young’s modulus). The general method
of constructing curves on the x-y plane is demonstrated in detail using cubic spline functions of various
types and the theoretical introduction is supplemented by the numerical solutions of different problems.
It is worth to mention that Skinner, Zare-Behtash [196] discussed state-of-the-art in aerodynamic shape
optimization methods in a different manner that are presented herein.

6.1. Cross-Section Parameters–Variable (Stepped) Thickness

The cross-section of a wing is characterized by many parameters describing not only the
size of the profile (the skin thickness, spar or rib sectional area) but also the shape of the profile
(rectangular, parabolic), rib/spar locations, and the total number of spars/ribs—see References [197–201].
The fundamental aim of the analysis is to design the thickness distribution satisfying the criterion (16)
(the minimum weight of a structure). Several studies were performed in this area. The solutions of
such optimization problems were demonstrated in References [34,202–208]. The similar analysis was
carried out for the tiltrotor composite wings (complicated shapes of the blade)—References [209–218].

6.2. Form of the Structure

Aeroelastic characteristics of subsonic and supersonic structures are analyzed for different forms
of 2D mid-surfaces and types of loading and boundary conditions. Now, we intend to distinguish the
fundamental forms of structures considered in the literature and to present the supplementary references
devoted to structural analysis, but not always to the optimization problems in the discussed area.

Usually, in view of the aeroelastic behavior the following structures are investigated:

• Beams—References [219–236],
• Flat plates (triangular, rectangular, trapezoidal)—References [237–245],
• Panels: cylindrical [246–255], spherical [256,257], truncated conical [258–263],
• Cylindrical shells—References [264–270].

In our opinion, the work presented in this section should help the readers to recognize the
differences in the approach to different types of structures and maybe to adopt the approaches to their
own optimization problems.
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7. Numerical (Finite Element) Packages

The numerical (finite element) study on supersonic panel flutter has received much attention in
literatures. Finite element method to panel flutter analysis by Olson [271] in 1967 and then the review
of existing works was presented by Bismarck-Nasr [272,273]. Many of the researchers have built their
own procedures to analyze flutter problems. The flutter analysis can be also investigated with the use
of commercial FE packages as e.g., Ansys, Nastran, Abaqus, or Nisa II Family of Programs (Nisa/Areo).
Recently, the package ZEUS (ZONA) [274,275] is a new proposal for aeroelastic design/analysis.

The advantages of the application of the finite element packages are obvious since they allow us:

• To introduce different variants of boundary conditions;
• To investigate arbitrary laminate configurations with no elimination of the Bij, A16, A26, D16, D26

terms in the stiffness matrices;
• To use the first order transverse shear shell/plate theories instead of the simplest

Love-Kirchhoff theories.

However, they have also different disadvantages and the following problems can be emphasized
as the most significant:

• The problems with the accuracy of solved flutter problems;
• The problems with the solution of the optimization problems, particularly for laminated structures

where non-uniqueness of solutions is commonly encountered.

8. Optimization Algorithms

Various optimization algorithms can be applied in the optimization of aerothermoelastic problems.
Usually, the quality of the optimized design depends upon the quality of the starting point. Thus,
to enhance the quality of preliminary design it is better to apply gradient free/heuristic methods,
such as for instance genetic algorithms, evolutionary algorithms, particle swarm optimization methods
or simulated annealing—see Muc [22,89,276]. It is not expected to improve (reduce) the computational
time needed for the search but it is necessary to obtain better than for starting points values (not
necessarily global optimum) of the objective function/functional.

A lot of efforts have been put into the introduction and application of effective optimization
algorithms in the design of 2-D or 3-D laminated plated and shell structures. On the other hand, because
of anisotropy and inhomogeneity these structures show rather complicated states of stresses and
strains such that several adequate mechanical models for composites structures have been developed
in recent years—see e.g., [1,2]. However, those models may be successfully implemented into
optimization problems using FE models and procedures only since analytical approach is impossible
(e.g., for complicated loading and boundary conditions) or may lead to very complicated formula.
Such an analysis have been conducted by the author and presented in References [3,6]. In the present
paper we intend to focus our attention on the extension of the optimization analysis into the field of
the uncertainty of mechanical properties of composite materials. It will be done with the use of the
fuzzy set—the details of the formulation of various mechanical problems for composites in a fuzzy set
environment are presented in Reference [7].

A unified, consistent approach to various optimization problems in a fuzzy environment is
based on an appropriate conjunction of four elements: (1) Definition and coding of design variables
describing the analyzed structures, (2) optimization algorithms, (3) a FE code and (4) a fuzzy set
formulation of variability (uncertainty) of mechanical properties. The latter problem is formulated
with the use of appropriate membership functions. All abovementioned elements are or may be
formulated independently and this is the significant advantage of the proposed approach since using
the proposed methodology it is possible to formulate and solve completely different optimization
problems. The flowchart of the general optimization method with the use of the numerical FE approach
is demonstrated in Figure 11.
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9. Concluding Remarks

A unified, consistent approach to various optimization problems subjected to flutter constraints
is presented and discussed in the work. By combining optimization objectives (any of those written
by the relations (11)–(19)) with the assumed forms of the design variables (materials–Section 5 and
geometric–Section 6) the selected objective functions/functional can be found with the aid of the
numerical code (Section 7). The allowable set of equality and inequality constraints is included during
the evaluation of the objective. Then implementing optimization algorithms or varying values of
design variables the fitness landscape (demonstrating variations of the objective with design variables)
can be built and the global optimum can be found.

The presented review demonstrates evidently that:

1. The majority of considerations is based on the parametric investigations by observing the influence
of various effects on values of objective functions; it is especially visible in problems dealing with
geometric design variables;

2. The optimization algorithms (evolutionary techniques) are mainly employed in three groups
of problems:

a. Searching for the optimal stacking sequences in laminated structures or sandwich structures
with laminated facesheets; in the paper a special attention is focused on the reduction of the
total number of design variables for multilayered laminate constructions;

b. Location and final shapes of piezoelectric actuators/sensors used in the active or passive
control of the structural response;

c. Variable thickness optimization of structures.

3. The broader use of optimization methods is, in our opinion, required in the following class
of problems:

a. Shape optimization of structures considered, particularly in view of their loss of dynamic
stability (geometric design variables);

b. Topology optimization of grading functions introduced for ceramic/metal (functionally
graded materials) and/or nanocomposites reinforced with carbon nanostructures

We hope that the presented review can help the readers in choosing their own path in the optimal
design of structures subjected to flutter constraints.
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formal analysis, A.M.; writing—original draft preparation, A.M.; writing—review and editing, J.F. and M.A;
visualization, A.M. and J.F.; supervision, A.M.
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