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Abstract: This paper describes and presents an experimental program of low-cycle fatigue tests of
austenitic stainless steel 08Ch18N10T at room temperature. The low-cycle tests include uniaxial
and torsional tests for various specimen geometries and for a vast range of strain amplitude.
The experimental data was used to validate the proposed cyclic plasticity model for predicting the strain-
range dependent behavior of austenitic steels. The proposed model uses a virtual back-stress variable
corresponding to a cyclically stable material under strain control. This internal variable is defined by
means of a memory surface introduced in the stress space. The linear isotropic hardening rule is also
superposed. A modification is presented that enables the cyclic hardening response of 08Ch18N10T
to be simulated correctly under torsional loading conditions. A comparison is made between the
real experimental results and the numerical simulation results, demonstrating the robustness of the
proposed cyclic plasticity model.

Keywords: austenitic steel 08Ch18N10T; cyclic plasticity; cyclic hardening; experiments; finite
element method; low-cycle fatigue

1. Introduction

Austenitic stainless steels, for example, 316L in PWR (pressurized water reactor) and 08Ch18N10T
in the Russian VVER concept (water–water power reactor), are usually used for components in primary
circuit reactor internals (a block consisting of guided tubes, a core barrel, a core barrel bottom and a
core shroud), in main primary pipes, and so forth. During their design life, these components must
withstand mechanical operational loads (e.g., pressure pulses and vibrations), thermal loads (regimes
such as heating up and shut-downs), corrosive loads and also irradiation. These regimes subject the
reactor internals to cyclic loading.

When designing or assessing the long term operation of existing structural components, it is
necessary to include fatigue evaluations. In the last decade, the finite element method (FEM) with
phenomenological models has mainly been used in practical applications [1]. A description and a
short history of the development of constitutive models of cyclic plasticity has been provided by
the authors in a previous publication [2]. Their goal is to describe as accurately as possible the
stress-strain behavior of the material, which is found on the basis of experiments under cyclic loading
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conditions [3]. A small deviation in the stress-strain prediction can lead to a major fatigue error,
especially in low cycle fatigue. In this case, stainless steels show cyclic hardening in the initial stage,
followed by cyclic softening [4,5]. This phenomenon depends on the strain range and also on the
type of loading. Non-proportional loading induces more cyclic hardening than proportional loadings.
The most sensitive materials are materials with low stacking fault energy, for example, austenitic
stainless steels [6]. Low-cycle fatigue tests of this type were presented for example, by Jin et al. in
Reference [7]. They presented results for 316L stainless steel under proportional and non-proportional
loadings. In another study, Xing et al. [8] presented the results of experimental testing on 316L stainless
steel under proportional and non-proportional loadings with various strain amplitudes. The authors
also presented a numerical study and compared the numerical results with the experimental data.
They used the visco-plastic numerical model, based on the Ohno-Wang kinematic hardening rule.

The temperature in VVER concept reactor usually does not exceed 350 ◦C in most components.
Temperature effect have significant influence, which is presented in Reference [9]. The additional
hardening due to non-proportional loading has been investigated by many authors. The basic concept
involves modifying the isotropic or kinematic hardening rule with a non-proportional parameter.
For example, Benallal and Marquis [10] introduced the non-proportional angle, which is defined
as the angle between the direction of the increment in plastic deformation and the direction of the
deviatoric stress. Another approach was introduced by Tanaka [11]. He introduced the fourth
rank tensor, which characterizes the internal dislocation structure of the material. This parameter is
dependent on the loading path.

The goal of all the studies mentioned above was to understand the behavior of the material
under specific cyclic loading conditions and to provide the material data for a better fatigue and
lifetime assessment of the structural parts. This paper follows up on the main author’s previous
paper [2] which presents some results of uniaxial low-cycle fatigue tests of austenitic stainless steel
08Ch18N10T at room temperature. The experimental program includes uniaxial tests of hourglass-type
specimens and is now extended by new results for notched specimens with 3 different notch geometries
considering strain amplitudes up to 3%. Torsional loading tests of notched-tube specimens are also
newly presented.

In a previous paper [2], the authors presented a new constitutive material model that is used for
finite element (FE) simulations of experiments on 08Ch18N10T material. The constitutive material
model is based on the Chaboche model. The proposed material model is in very good agreement
with uniaxial loading condition results. In this paper, the model has been modified to provide a better
description of the torsional loading. This modification also enables the cyclic hardening response
of 08Ch18N10T steel to be simulated correctly under torsional loading conditions. The constitutive
material model is based on the memory surface introduced in the stress space, which is analogous to the
theory of Jiang and Sehitoglu [12] for treating the impact of the strain amplitude on the stress response
of the material. The new theory is shown on the kinematic hardening rule based on Chaboche’s model
with three backstress parts. Recently, an approach has been introduced that takes into account a new
internal variable called virtual backstress, corresponding to a cyclically stable material. This provides
an easy way to identify the parameters and to reduce the number of material parameters. A comparison
between the real experimental results and the numerical simulation results demonstrates the robustness
of the constitutive plasticity model.

2. Experiments

The experimental section describes the low-cycle fatigue test measurements of specimens in pure
tension/compression mode and in torsion mode.

2.1. Experimental Setup

Pure axial tension-compression tests were carried out using a MAYES electromechanical testing
machine with a loading capacity of 100 kN. The test specimens were placed in MTS 646 hydraulic
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collet grips to ensure repeatability of the alignment conditions in tensile/compression mode. The axial
deformation of the specimens was controlled by an MTS 634.25 extensometer with an initial gage
length of 10 mm with a 50% measuring range, for uniform gage specimens and with an initial length
of 20 mm with a 20% measuring range, for elliptically-shaped specimens.

Pure torsion tests were conducted on an MTS Bionix servo-hydraulic testing machine with an axial
load capacity of 25 kN and 250 Nm in torsion. The test specimens were carefully mounted in MTS
647 hydraulic wedge grips and were tested with the axial load control set to zero. An EPSILON 3550
axial/torsional extensometer was employed to measure and control the torsional shear angle with a
range of ±2◦. The initial gauge length of the extensometer was 25 mm. The whole test setup is shown
in Figure 1.

These tests were conducted at room temperature and were loaded using a triangular waveform
at a strain rate of 0.002 s−1. During the experimental measurements all channels were recorded, for
example, time, force/torque, displacement/angle, axial/torsional extensometer, with a recording
frequency of 20 Hz.

The digital image correlation (DIC) was used for an analysis of the 3D deformation on the surface
of some specimens, see Figure 1. During cyclic loading, the frame rate was set to cover at least 20 fps
per one loading cycle. The MERCURY RT optical measuring system was used to capture and analyze
the 3D images. The configuration of the system consists of two 5 Mpx CMOS BONITO cameras with
circular polarizing filters to reduce the glare from the reflected surface of the specimen.

Figure 1. Experiment: (a) Experimental Setup, (b) digital image correlation (DIC) Snapshot of Specimen IDF-6.

The test setup (see Figure 1) on the MTS servo-hydraulic testing machine consists of hydraulic
wedge grips, a notched specimen and an EPSILON axial/torsional extensometer and a snapshot of
a notched specimen (see Figure 1) under a loading with a random contrast pattern, which the DIC
algorithm requires and a strain map on the surface.

The stochastic pattern on the surface of the specimen and two digital video cameras allows 3D strain
measurements throughout the fatigue life until fracture, with resolution of 1100 DPI (1 px = 0.22 µm).
In addition, the DIC system can continuously store all captured images in the computer memory.
The fatigue life of each loading condition takes at least several dozen of cycles, even tens of thousands
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of cycles, which can generate up to hundreds of thousands of images to be processed. All captured
images were processed later in post processing to prevent data loss. This loss occurs when the bitrate
increases while real-time processing is being used.

2.2. Experimental Program

The experimental program consists of 6 series of specimens. The first series is used for the material
parameter identification process. According to the ASTM E606 standard [13], the classic uniform-gage
geometry of a specimen is limited to a total strain amplitude of εa = 0.5%. For higher strain levels,
non-uniform hour-glass type geometry is required in order to prevent buckling. The material parameters
identification series (IDF) was therefore compiled from uniform-gage (UG) specimens (see Figure 2)
and non-uniform-gage specimens with an elliptical longitudinal section (E9, see Figure 2). To identify
the material parameters (described in detail in Reference [2]), it is necessary to know the stress-strain
curves in the cycles. For UG specimen geometry, tested according to Reference [13], this can be calculated
directly from the elongation of the extensometer and from the force measured during the experiment.
For E9 specimen geometry, the strain was measured by the DIC (due to the experimental setup, the strain
cannot be calculated directly from the elongation of the extensometer for non-uniform gage geometries).

12

R20

6 10

Lext = 10

a)

ellipse

18

4

6 10

Lext = 20

b)

Figure 2. IDF Specimen Geometry: (a) UG, (b) E9.

The next series consists of E9 geometry (see Figure 2), notch geometry with an R = 1.2 mm
(R1.2, see Figure 3), geometry with an R = 2.5 mm notch (R2.5, see Figure 3) and geometry with
an R = 5 mm notch (R5, see Figure 4). The last series is the notched tube geometry (NT, see Figure 4),
which was exposed to torsional loading.
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Figure 3. Notched Specimens: (a) R1.5, (b) R2.5.
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Figure 4. Notched and Notched Tube Specimens: (a) R5, (b) NT.

All boundary conditions of the experiments and their simulations are together with resulting
experimental lifetimes reported in Appendix A.

3. Constitutive Model with Strain Range Dependency

The concept of single yield surface plasticity with strain range dependency is used. Isothermal
conditions are considered, since the influence of the strain rate is not taken into account.
The constitutive model is described in detail in Reference [2], so just a brief recapitulation of some key
equations is presented here.

3.1. Cyclic Plasticity and Memory Surface

The plasticity function is defined as

f =

√
2
3
(s− a) : (s− a)−Y = 0, (1)

where s is the deviatoric part of stress tensor σ, a is the deviatoric part of back-stress α. The actual
yield surface size Y is defined as

Y = σy + R, (2)

where R is the isotropic variable and σY is the initial size of the yield surface. The accumulated plastic
strain increment dp is defined as

dp =

√
2
3

dεp : dεp. (3)

The superposition of the virtual back stress parts is defined as

αvirt =
M

∑
i=1

αi
virt, (4)

and for each part

dαi
virt =

2
3

Cidεp − γiα
i
virtdp. (5)

For 08Ch18N10T material, three backstress parts are taken into consideration, so M = 3.
The evolution of the memory surface size RM is directed by the following rule

dRM = H(g) 〈L : dαvirt〉 (6)
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where

g = ‖αvirt‖ − RM <= 0 (7)

and

L =
αvirt
‖αvirt‖

. (8)

3.2. Isotropic Hardening

The cyclic isotropic hardening is linear in p, defined incrementally as

dR = R0(RM)dp, (9)

where

R0(RM) = ARR2
M + BRM + CR for RM ≥ RM0 (10)

R0(RM) = ARR2
M0 + BRM0 + CR otherwise, (11)

where AR, BR, CR and RM0 are material parameters.

3.3. Kinematic Hardening

Chaboche’s kinematic hardening rule is used in this study. The backstress is composed of M parts

α =
M

∑
i=1

αi, (12)

the memory term is a function of memory surface RM and accumulated plastic strain p

dαi =
2
3

Cidεp − γiφ(p, RM)αidp, (13)

where M, Ci and γi are the same as in Equation (5). Function φ is defined as

φ(p, RM) = φ0 + φcyc(p, RM), (14)

where φ0 is a material parameter. φcyc is a function defined as follows

dφcyc = ω(RM) ·
(
φ∞ + φcyc(p, RM)

)
dp (15)

φ∞(RM) = A∞R4
M + B∞R3

M + C∞R2
M + D∞RM + E∞ (16)

ω(RM) = Aω + BωR−Cω
M for RM ≥ RMω (17)

ω(RM) = Aω + BωR−Cω
Mω otherwise (18)

where A∞, B∞, C∞, D∞, E∞, Aω, Bω, Cω and RMω are material parameters.
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3.4. Modification for Torsional Loading

The original plasticity model shows very good prediction under uniaxial loading conditions [2].
The original model also predicts well for notched specimen geometries but produces an error of up
to about 15 % under shear stress loading conditions, as will be shown in Section 6. For a low loading
level (see Figure 5a)), where there is limited cyclic hardening, the prediction of the original model [2]
is satisfactory. For a high loading level (see Figure 5b)), the model overpredicts the cyclic hardening
under dominant shear stress loading conditions and the formulation of the material model needs to
be modified.

0 2000 4000 6000
Number of Cycles [-]

a)

7600

7800

8000

8200

8400

8600

8800

9000

9200

A
m

pl
itu

de
 o

f M
om

en
t [

N
m

m
]

0

2

4

6

8

10

12

14

16

18

20

E
rr

or
 [%

]

Experiment
Simulation (original model)
Error
Mean Error

0 500 1000 1500
Number of Cycles [-]

b)

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

A
m

pl
itu

de
 o

f M
om

en
t [

N
m

m
]

104

0

2

4

6

8

10

12

14

16

18

20

E
rr

or
 [%

]

Experiment
Simulation (original model)
Error
Mean Error

Figure 5. Original model under torsional loading: (a) specimen NT-1 (low loading level), (b) specimen
NT-6 (high loading level).

The first modification of the original model [2] is to separate the memory surface function into
two memory surfaces. Memory surface RM for the isotropic hardening part remains the same as in the
original model defined by the set of Equations (4)–(8). The new memory surface RMφ for the kinematic
hardening part is modified and is defined by analogy as

αvirtφ =
M

∑
i=1

αi
virtφ (19)

dαi
virtφ =

2
3

Cidεp − γiKαi
virtφdp, (20)

where

K = (δI J + (1− δI J)Kshear), (21)
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where δI J is Kronecker delta, I, J are indexes of stress tensor σ and Kshear is a new material parameter.
The rest of the equations for defining the memory surface of the kinematic hardening part remain
analogous to the original model [2]:

dRMφ = H(gφ)
〈

Lφ : dαvirtφ
〉

(22)

where

gφ =
∥∥αvirtφ

∥∥− RMφ <= 0 (23)

and

Lφ =
αvirtφ∥∥αvirtφ

∥∥ . (24)

A quick analysis of this modified formulation shows that it provides practically the same
prediction in uniaxial loading conditions (because RMφ ' RM) as the original formulation. However,
depending on the value of Kshear, it can give a different prediction under shear loading conditions:
it is more effective for higher loading levels than for lower loading levels and it can reduce the over
prediction of the model for Kshear > 1.

The second modification to the original model [2], also associated with the memory surface,

is to omit limits RMω and RM0 and to set boundaries of the memory surfaces instead: Rmin
M and

Rmax
M . The value of the memory surface RM and RMφ used for controlling the isotropic and kinematic

hardening part can lie only between these two bounds. For simplification and for mathematically

correct expression, the memory surface size that is used, Rused
M , is defined as

Rused
M = Rmin

M for RM < Rmin
M (25)

Rused
M = RM for Rmin

M < RM < Rmax
M (26)

Rused
M = Rmax

M for RM > Rmax
M (27)

and analogously for Rused
Mφ . The variable RM in Equations (13)–(18) of the original model is simply

replaced by variable Rused
Mφ . The modified form of the kinematic hardening equations is now

dαi =
2
3

Cidεp − γiφ(p, Rused
Mφ )αidp (28)

φ(p, Rused
Mφ ) = φ0 + φcyc(p, Rused

Mφ ) (29)

dφcyc = ω(Rused
Mφ ) ·

(
φ∞ + φcyc(p, Rused

Mφ )
)

dp (30)

φ∞(Rused
Mφ ) = A∞(Rused

Mφ )4 + B∞(Rused
Mφ )3 + C∞(Rused

Mφ )2 + D∞Rused
Mφ + E∞ (31)

ω(Rused
Mφ ) = Aω + Bω(Rused

Mφ )−Cω . (32)
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The third modification of the original model [2] is the definition of the formulation of isotropic
hardening as a non-linear formulation in p as

dR = AR · exp(BR · Rused
M ) · pCR , (33)

where AR, BR and CR are material parameters. This very important modification deserve a short analysis.
In the original model [2], for cyclic loading, the actual yield stress Y increases practically linearly with
the number of cycles. This means that with many cycles, the actual yield stress Y can theoretically go
higher than the total stress amplitude and the computed deformation becomes only elastic.

4. Identification of Material Parameters

The material parameter identification process for 08Ch18N10T is based on knowing the shape of
the stress-strain hysteresis loops during the fatigue life. A total of twelve uniaxial specimens and eight
torsional specimens are used for the identification process. This is described in detail in References [14]
and [2], so just a brief recapitulation of the key steps updated by the unique features of the proposed
modification to the material model is done here.

The Young modulus E, the Poisson ratio µ and the yield strength σy are obtained from a tensile
test. The actual yield strength evolution during the fatigue life is determined using the root mean
square error method. Chaboche material parameters C1, γ1, C2, γ2, C3, γ3 are identified from two
selected hysteresis loops (the bigger loop and the smaller loop).

The first guess of the memory surface size RM for each specimen is computed. It is assumed here

that RMφ ' RM. Boundary parameters Rmin
M and Rmax

M are simply the maximum and minimum values

of RM computed in the identification process.
The actual yield stress is fitted as a function of Rused

M and parameters AR, BR, CR are found from
Equation (33).

Using the experimental data from the tensile test and performing a simulation of this test,
parameter φ0 is found based on the Equation (13) as an optimal value of φ. The value of function φ from
Equation (13) is found, using a similar optimization process as for determining the Chaboche material
parameters. φ∞ is the value of φ for n = Nd, where Nd is the number of cycles after which the crack
occurs on the specimen and the force starts to drop during the experiment. From Equation (16), φ∞ is
then set as a function of Rused

M by finding material parameters A∞, B∞, C∞, D∞, E∞.
For each NT geometry specimen tested, the Error value in each cycle between the experimental

amplitude of torque Ta exp and the simulation amplitude of torque Ta sim can be defined as

Error = (Ta exp − Ta sim)/Ta exp · 100 [%]. (34)

The MeanError over all cycles is calculated as

MeanError =
1

Nd

Nd

∑
n=1

Errorn, (35)

where index n is the number of cycles. The total error over all NT geometry specimens tested is defined as

TotalError =
1
S

S

∑
s=1

MeanErrors, (36)

where s is the NT specimen index and S = 8 is the total number of NT specimens tested (see Table A3
in Appendix A for details).

For the different Kshear from Equation (21), the TotalError value is captured in Figure 6. The final
Kshear material parameter is identified as the optimal value of Kshear where the TotalError is minimal.
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Figure 6. Identification of material parameter Kshear.

The material value parameters are presented in Table 1.

Table 1. Material parameters of the new proposed model for 08Ch18N10T.

E [MPa] ν σy [MPa] C1 [MPa] γ1 C2 [MPa]
210,000 0.3 150 63,400 148.6 10,000

γ2 C3 [MPa] γ3 A∞ B∞ C∞

911.4 2000 0 −1.3127× 10−9 1.7981× 10−6 −8.6705× 10−4

D∞ F∞ AR [MPa−1] BR CR [MPa] Rmin
M [MPa]

1.6678× 10−1 −10.600 3.0113× 10−1 1.4865× 10−1 1.1818× 10−2 130.54

Aω Bω Cω Rmax
M [MPa] φ0 Kshear

0 2.0024× 10−13 −4.8591 506.59 2.3178 1.5

The experimental data from the IDF series of experiments can also be plotted into fatigue diagram
εa-N f , where N f is the number of cycles to failure and εa is the amplitude of the total strain. Due to
the experimental setup, εa is not completely constant during the experiment in the case of E9 geometry

(during the experiments, the amplitude of extensometer elongation ∆Lext
2 is controlled to be constant,

so for UG geometry the εa is also constant but it is not completely constant for E9 geometry), so the mean
value during the experiment is plotted. Fatigue data are shown in Figure 7. Other lifetimes are reported
in the form of tabular data in Appendix A.
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Figure 7. Fatigue data of the IDF series of experiments.

5. FE Simulations

The geometry of most specimens is not uniform, so the non-uniform stress and strain field in
their cross-section are expected and FEA must be used for simulations. The constitutive model is
implemented into Abaqus FE software using the USDFLD subroutine. FE models of each of the
tested geometries were created, see Figures 8–10. The symmetry boundary condition is defined on the
right edge of the model. The left edge of the model always corresponds with the cross-section where
the extensometer is attached to the body of the specimen during the experiment. The displacement
boundary condition on the upper edge of the FE model is created with the same amplitude value as
was recorded from the extensometer during the experiment. Abaqus CAX8R mesh elements are used
for the axisymmetric models and C3D8R elements are used for the NT geometry, which is a 3D model
with cyclic symmetry. The element size in fine mesh areas has been determined using sensitivity study
to 0.1 mm.

The Abaqus Chaboche plasticity material model with combined hardening and the USDFLD
subroutine is used. The equations of the constitutive model are coded into the USDFLD subroutine for

calculating the actual memory surfaces size Rused
M and Rused

Mφ , which, combined with the accumulated

plastic strain p, determines the actual yield stress Y, the value of function φ and the memory term of
the Chaboche model φ · γi. The full Abaqus USDFLD subroutine code written in Fortran is available in
Appendix B.

This subroutine makes possible to use the material model presented here in engineering
computations. Combined with the material parameters identification process described in Section 4,
it can also be used for other materials.



Materials 2019, 12, 4243 12 of 28

Z T

R

  RP−1

(a)

Z T

R

  RP−1

(b)

Figure 8. FE model: (a) UG, (b) E9.

Z T

R

  RP−1

(a)

Z T

R

  RP−1

(b)

Figure 9. FE model: (a) R1.2, (b) R2.5.

Z T

R

  RP−1

(a)

Z T
R

Z
Y

X

  RP−1

  RP−2

(b)

Figure 10. FE model: (a) R5, (b) NT.

6. Experimental and Simulation Results

The implementation of the plasticity model presented here (including the presented modification)
into FE code was verified using FE simulations of all experiments mentioned in Section 2.2.
The following figures show some results of experiments and their FE simulations. Due to the large
scale of the experimental program, only two representative specimens with low and high load levels
were selected for demonstration in this section. The results of remaining specimens are presented in
the form of error values in following tables. The compared variables in each figure are the amplitudes
of the force measured during the experiment (Fa exp) and computed by the FE simulations (Fa sim).
Two constitutive models are shown—the original model [2] and the modified model presented in this
paper. The actual error between each FE simulation and the experiment and the mean error value,
are also displayed.

The error between the experiment and the FE simulation in each cycle n is calculated simply as

Error =
Fa exp − Fa sim

Fa exp
× 100 %. (37)

The mean error and the total error are calculated using Equations (35) and (36) considering
corresponding number of specimens in the series.

The Figure 11 and Table 2 show the experimental and simulation results of E9 geometry series
representing the uniaxial loading conditions. The prediction capability of these two models is comparable.
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Figure 11. Amplitude of force—experiment vs. simulations [2]: (a) E9-1, (b) E9-17.

Table 2. Mean error of all E9 specimens tested—experiment vs. simulations [2].

Specimen Orig. Model Mod. Model Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%] Name Mean Err. [%] Mean Err. [%]

E9-1 2.9226 1.8207 E9-10 7.8144 8.8757
E9-2 2.3311 1.2756 E9-11 2.5028 3.9003
E9-3 2.4027 1.1938 E9-12 4.3523 6.5915
E9-4 1.6977 0.7773 E9-13 4.0929 3.4343
E9-5 8.0687 7.0447 E9-14 2.1610 3.8515
E9-6 8.8658 7.4521 E9-15 2.9195 2.9485
E9-7 11.7310 10.4229 E9-16 1.8601 2.7524
E9-8 3.8241 3.9171 E9-17 4.9766 2.7579
E9-9 9.8245 9.5508

The NT geometry series results are in Figure 12 and Table 3. In this case, the compared variables
are the amplitudes of the torque measured during the experiment (Ta exp) and computed by the
FE simulations (Ta sim). The errors are calculated using Equations (34)–(36). For this geometry,
the difference in the prediction capability of the original model and the modified model is not the
same—the modified model provides a better prediction of the cyclic hardening of the material under
torsional loading for high loading levels.

Finally, the notched specimen geometry series R1.2, R2.5 and R5 follows on Figures 13–15 and
Tables 4–6. The stress field in the cross-section of these specimens is no longer uniaxial and the
prediction capabilities of both models are also comparable.
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Figure 12. Amplitude of force—experiment vs. simulations: (a) NT-1, (b) NT-6.

Table 3. Mean error of all NT specimens tested—experiment vs. simulations.

Specimen Orig. Model Mod. Model Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%] Name Mean Err. [%] Mean Err. [%]

NT-1 1.9100 4.0682 NT-5 14.2137 1.3947
NT-2 0.8367 5.9823 NT-6 15.5549 2.2815
NT-3 11.2048 1.3797 NT-7 13.1168 1.5014
NT-4 11.1021 1.0934 NT-8 8.8054 4.7887

Table 4. Mean error of all R1.2 specimens tested—experiment vs. simulations.

Specimen Orig. Model Mod. Model Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%] Name Mean Err. [%] Mean Err. [%]

R1.2-1 2.8075 2.4172 R1.2-10 1.6518 1.7538
R1.2-2 3.7011 3.1679 R1.2-11 2.0827 2.2332
R1.2-3 2.2438 2.2027 R1.2-12 3.9411 3.2028
R1.2-4 2.8530 2.7056 R1.2-13 2.5308 3.1540
R1.2-5 2.8984 2.7105 R1.2-14 1.4521 1.8444
R1.2-6 4.7877 4.4405 R1.2-15 3.6781 2.6435
R1.2-7 1.4888 1.4897 R1.2-16 1.5820 1.9106
R1.2-8 7.1382 6.7943 R1.2-17 1.6089 2.5930
R1.2-9 2.4171 2.2355 R1.2-18 1.2789 2.2219
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Figure 13. Amplitude of force—experiment vs. simulations: (a) R1.2-1, (b) R1.2-18.
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Figure 14. Amplitude of force—experiment vs. simulations: (a) R2.5-1, (b) R2.5-21.
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Table 5. Mean error of all R2.5 specimens tested—experiment vs. simulations.

Specimen Orig. Model Mod. Model Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%] Name Mean Err. [%] Mean Err. [%]

R2.5-1 7.3714 7.1025 R2.5-12 2.1944 1.6489
R2.5-2 8.1586 7.6327 R2.5-13 1.2466 1.0057
R2.5-3 9.1468 8.6587 R2.5-14 8.7778 9.1473
R2.5-4 6.8139 6.8130 R2.5-15 2.6624 3.0678
R2.5-5 6.6714 6.6118 R2.5-16 1.4643 1.3563
R2.5-6 9.9838 9.1708 R2.5-17 0.9873 1.5697
R2.5-7 4.3249 3.4860 R2.5-18 1.4020 1.4515
R2.5-8 3.8551 3.8250 R2.5-19 1.6099 2.6423
R2.5-9 1.0034 0.9027 R2.5-20 0.9634 2.4069
R2.5-10 4.7921 4.9816 R2.5-21 4.1944 3.2605
R2.5-11 1.9673 2.1464
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Figure 15. Amplitude of force—experiment vs. simulations: (a) R5-1, (b) R5-24.

Table 6. Mean error of all R5 specimens tested—experiment vs. simulations.

Specimen Orig. Model Mod. Model Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%] Name Mean Err. [%] Mean Err. [%]

R5-1 2.1303 1.4186 R5-13 6.7479 6.8700
R5-2 2.0673 1.8112 R5-14 5.1055 5.4414
R5-3 0.7021 0.8284 R5-15 1.3043 1.4251
R5-4 0.9757 0.9284 R5-16 1.1829 1.3661
R5-5 1.4847 1.4209 R5-17 3.6903 3.6048
R5-6 1.7435 1.6993 R5-18 3.1399 2.9518
R5-7 2.9066 2.7548 R5-19 6.1649 6.1226
R5-8 5.3372 5.4106 R5-20 2.8263 2.6683
R5-9 4.9004 4.5530 R5-21 1.0485 1.2882

R5-10 2.3623 2.6227 R5-22 8.2167 7.6119
R5-11 7.0110 6.8065 R5-23 2.2011 1.6441
R5-12 2.3912 3.1025 R5-24 3.5803 3.1425
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7. Discussion

As has been shown in the previous sections, the model proposed in Reference [2] can capture very
well the static and cyclic stress-strain curve for uniaxial loading conditions with a reasonable number
of material parameters. Using the modification proposed in this paper, with only two extra material
parameters, the error under torsional loading conditions can be reduced significantly, without any
harm under uniaxial loading conditions, as is shown in Table 7, where the total errors (defined in
Equation (36)) are summarized. Both models also produce very good predictions for notched specimen
geometries, where the stress-strain field is not uniaxial.

In Figures 11–15, the range of response quantity axis has been chosen to make visible the difference
between experimental values and predicted ones. That is why the error seems to be higher than actually
is. This is true especially in case of the lowest strain amplitude.

In the calibration process dealing with torsional loading, the Kshear value is found as a compromise
between all loading levels, so the proposed modification improves prediction for most, but not all,
specimens tested (see Tables 3 and 7).

Table 7. Total error comparison between the original model and the modified model.

Geometry The Original Nodel [2] The Modified Model
Total Error [%] Total Error [%]

E9 4.84 4.61
NT 9.60 2.85
R1.2 2.79 2.76
R2.5 4.27 4.23
R5 3.30 3.23

It should be pointed out that presented tests consist only of single loading modes. Combinations
of these modes, for example, proportional and also non-proportional combination of tension and
torsion probably induces cyclic non-proportional hardening and another cyclic phenomenons. These
conditions are also limiting for eventual FE analysis on the real components. Combined loading
conditions considering proportional as well as non-proportional loading are potential topics for future
investigation.

8. Conclusions

This paper has described the experimental setup and the experimental program for a low-cycle
fatigue test of 08Ch18N10T austenitic stainless steel. Using FE simulations, material model [2]
capable of capturing the strain-range dependent cyclic hardening has been newly verified on
notched specimens, where the stress-strain field is non-uniform and for torsional loading. With
a newly proposed modification, model can correctly simulate cyclic hardening also for shear stress
loading conditions.

The extensive experimental program was subsequently completely simulated. The Chaboche
plasticity model combined with non-linear isotropic hardening has already been implemented into
Abaqus commercial FE software. The model presented here can easily be implemented into Abaqus
using the USDFLD subroutine as a simple extension of the Abaqus default cyclic plasticity model.
The full Fortran code of subroutine can be found in Appendix B. This implementation makes the
proposed model ready to use for some engineering computations. The usage limitations are given by
the conditions under which the model has been tested (simple, uncombined loading).

The original cyclic plasticity model presented in [2] provides a good prediction of the cyclic
response of uniaxial and notched specimens. With the modification for torsional loading that has
been presented here, it can also provide a good prediction of cyclic hardening under torsional loading
conditions. It can also easily be applied to the Abdel-Karim-Ohno model or to a modified version with
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promised ratcheting prediction [8]. The model can be extended by standard techniques for use in the
area of viscoplasticity [15].

The calibration of the cyclic plasticity model was described briefly in this paper and was used with
experimental data available for 08Ch18N10T. In future work, an automated process for identifying
material parameters could be prepared in a similar way as in [16]. Some authors of this paper also work
on the material parameters identification using results from DIC measurements in order to reduce
number of necessary specimens for recently expensive technologies of 3D printing of metals [17].
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The following abbreviations are used in this manuscript:

DIC digital image correlation
IDF identification specimen series
FE finite element
FEM finite element method
UG uniform-gage

Appendix A. Boundary Conditions of Simulations

Table A1. Boundary conditions of IDF specimens.

Specimen Name Geometry Type ∆Lext [mm] Nd

IDF-1 UG 0.030 37509
IDF-2 UG 0.050 4285
IDF-3 UG 0.075 916
IDF-4 UG 0.100 580
IDF-5 UG 0.125 254
IDF-6 E9 0.132 159
IDF-7 E9 0.154 381
IDF-8 E9 0.176 370
IDF-9 E9 0.198 161
IDF-10 E9 0.245 156
IDF-11 E9 0.264 124
IDF-12 E9 0.353 93
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Table A2. Boundary conditions of E9 specimens.

Specimen Name Geometry Type ∆Lext [mm] Nd

E9-1 E9 0.0447 13382
E9-2 E9 0.0446 15104
E9-3 E9 0.0662 4053
E9-4 E9 0.0662 3887
E9-5 E9 0.0881 1529
E9-6 E9 0.0880 1853
E9-7 E9 0.1100 1158
E9-8 E9 0.1100 631
E9-9 E9 0.1320 748

E9-10 E9 0.1540 546
E9-11 E9 0.1770 406
E9-12 E9 0.1980 332
E9-13 E9 0.2200 253
E9-14 E9 0.2420 181
E9-15 E9 0.2420 195
E9-16 E9 0.2640 220
E9-17 E9 0.3520 128

Table A3. Boundary conditions of NT specimens.

Specimen Name Geometry Type ∆φext [◦] Nd

NT-1 NT 0.8703 5006
NT-2 NT 0.8694 6894
NT-3 NT 1.1423 2222
NT-4 NT 1.1414 2289
NT-5 NT 1.4031 2045
NT-6 NT 1.3772 1532
NT-7 NT 1.6554 1170
NT-8 NT 2.1492 925

Table A4. Boundary conditions of R1.2 specimens.

Specimen Name Geometry Type ∆Lext [mm] Nd

R1.2-1 R1.2 0.0245 1429
R1.2-2 R1.2 0.0246 946
R1.2-3 R1.2 0.0326 715
R1.2-4 R1.2 0.0406 523
R1.2-5 R1.2 0.0407 490
R1.2-6 R1.2 0.0489 290
R1.2-7 R1.2 0.0485 356
R1.2-8 R1.2 0.0560 241
R1.2-9 R1.2 0.0563 256

R1.2-10 R1.2 0.0639 134
R1.2-11 R1.2 0.0642 202
R1.2-12 R1.2 0.0721 171
R1.2-13 R1.2 0.0718 164
R1.2-14 R1.2 0.0794 112
R1.2-15 R1.2 0.0868 145
R1.2-16 R1.2 0.0869 114
R1.2-17 R1.2 0.0945 96
R1.2-18 R1.2 0.0944 105
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Table A5. Boundary conditions of R2.5 specimens.

Specimen Name Geometry Type ∆Lext [mm] Nd

R2.5-1 R2.5 0.0228 5875
R2.5-2 R2.5 0.0341 1245
R2.5-3 R2.5 0.0340 1041
R2.5-4 R2.5 0.0454 607
R2.5-5 R2.5 0.0454 761
R2.5-6 R2.5 0.0568 378
R2.5-7 R2.5 0.0567 429
R2.5-8 R2.5 0.0718 242
R2.5-9 R2.5 0.0679 346

R2.5-10 R2.5 0.0794 265
R2.5-11 R2.5 0.0791 212
R2.5-12 R2.5 0.0904 210
R2.5-13 R2.5 0.0903 221
R2.5-14 R2.5 0.1015 205
R2.5-15 R2.5 0.1015 163
R2.5-16 R2.5 0.1126 189
R2.5-17 R2.5 0.1126 156
R2.5-18 R2.5 0.1237 132
R2.5-19 R2.5 0.1237 129
R2.5-20 R2.5 0.1419 106
R2.5-21 R2.5 0.1346 114

Table A6. Boundary conditions of R5 specimens.

Specimen Name Geometry Type ∆Lext [mm] Nd

R5-1 R5 0.0308 4427
R5-2 R5 0.0461 1700
R5-3 R5 0.0457 1072
R5-4 R5 0.0603 733
R5-5 R5 0.0589 953
R5-6 R5 0.0727 623
R5-7 R5 0.0747 527
R5-8 R5 0.0893 342
R5-9 R5 0.0869 543

R5-10 R5 0.1050 297
R5-12 R5 0.1010 374
R5-13 R5 0.1154 264
R5-14 R5 0.1156 290
R5-15 R5 0.1146 228
R5-16 R5 0.1287 152
R5-17 R5 0.1276 272
R5-18 R5 0.1418 179
R5-19 R5 0.1467 155
R5-20 R5 0.1403 177
R5-21 R5 0.1540 163
R5-22 R5 0.1531 174
R5-23 R5 0.1663 144
R5-24 R5 0.1685 189
R5-25 R5 0.1652 163
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Appendix B. Abaqus USDFLD Subroutine

Appendix B.1. Full Fortran Code of Abaqus USDFLD Subroutine

C Mater ia l model by Miro Fumfera C
C vers ion 2019−11−10 C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C USDFLD Subroutine f o r 08Ch18N10T A u s t e n i t i c S t a i n l e s s S t e e l
C Orig ina l modely by Radim Halama
C modified by Miro Fumfera f o r 08Ch18N10T

SUBROUTINE USDFLD( FIELD , STATEV,PNEWDT, DIRECT , T , CELENT,
1 TIME , DTIME,CMNAME,ORNAME, NFIELD ,NSTATV,NOEL, NPT, LAYER,
2 KSPT , KSTEP , KINC, NDI ,NSHR,COORD,JMAC, JMATYP,MATLAYO,LACCFLA)
INCLUDE ’ABA_PARAM. INC ’
CHARACTER∗80 CMNAME,ORNAME
CHARACTER∗3 FLGRAY( 1 5 )
DIMENSION FIELD (NFIELD ) ,STATEV(NSTATV) , DIRECT ( 3 , 3 ) , T ( 3 , 3 ) , TIME ( 2 )
DIMENSION ARRAY( 1 5 ) , JARRAY( 1 5 ) ,JMAC( ∗ ) , JMATYP( ∗ ) ,COORD( ∗ )
parameter ZERO=0D0 ,ONE=1D0 ,TWO=2D0 ,THREE=3D0 , TOLER=1D−12,

+ NTENS=6 !NTENS=4 f o r Axisymetric , NTENS=6 f o r 3D
r e a l ∗8 RMused ,RM,RMmax,RMmin,oRM,dRM, RMRused ,RMR,oRMR,dRMR,

+ heavisideG ,DDP,G, DirVec (NTENS) , DirVecR (NTENS)
r e a l ∗8 ALPHAv(NTENS) ,dALPHA1v(NTENS) ,ALPHA1v(NTENS) ,

+ dALPHA2v(NTENS) ,ALPHA2v(NTENS) ,dALPHA3v(NTENS) ,ALPHA3v(NTENS) ,
+ dALPHAv(NTENS) ,oALPHAv(NTENS) ,magALPHAv

r e a l ∗8 ALPHAr(NTENS) ,dALPHA1r(NTENS) ,ALPHA1r(NTENS) ,
+ dALPHA2r(NTENS) ,ALPHA2r(NTENS) ,dALPHA3r(NTENS) ,ALPHA3r(NTENS) ,
+ dALPHAr(NTENS) ,oALPHAr(NTENS) ,magALPHAr

r e a l ∗8 EPLAS(NTENS) , oEPLAS(NTENS) , dEPLAS(NTENS) ,EQPLAS, oEQPLAS,
+ dEQPLAS,FLOW(NTENS)

r e a l ∗8 R , oR , dR ,AR, BR , CR, ER
r e a l ∗8 Phi Inf ty , dPHIcyc , PHIcyc , oPHIcyc , PHI0 , PHI
r e a l ∗8 AInfty , BInfty , CInfty , DInfty , EInf ty
r e a l ∗8 AOmega, BOmega , COmega
r e a l ∗8 KShear
r e a l ∗8 C1 ,GAMMA1, C2 ,GAMMA2, C3 ,GAMMA3
i n t e g e r K1 , iEPLAS , iALPHA1v , iALPHA2v , iALPHA3v , iEQPLAS , iRM , iPHI ,

+ iPHIcyc , iALPHAv, iR , iFIELD1 , iFIELD2 , iALPHA1r , iALPHA2r , iALPHA3r ,
+ iRMR, iALPHAr

parameter ( iEPLAS=7 ,iALPHA1v=31 ,iALPHA2v=37 ,iALPHA3v=43 ,iEQPLAS=49 ,
+ iR =50 ,iRM=51 , iPHI =52 , iPHIcyc =53 , i P h i I n f t y =54 ,iRMR=61 ,iALPHA1r=71 ,
+ iALPHA2r=77 ,iALPHA3r=83 , iRMRused=95 , iRMused=96 ,iALPHAv=97 ,
+ iALPHAr=94 , iFIELD1 =98 , iFIELD2 =99)

C Mater ia l parameters
C1 = 6.339971 e+04
GAMMA1 = 1.485569 e+02
C2 = 9.999778 e+03
GAMMA2 = 9.113512 e+02
C3 = 2000
GAMMA3 = 0
SYIELD = 150
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PHI0 = 2 .317802 e+00
AInfty = −1.312737e−09
BInf ty = 1 .798138 e−06
CInfty = −8.670490e−04
DInfty = 1 .667770 e−01
EInf ty = −1.060028 e+01
RMmin = 1.305410 e+02
RMmax = 5.065918 e+02
BR = 3.011316 e−01
CR = 1.486489 e−01
ER = 1.181843 e−02
AOmega = 0
BOmega = 2.002387 e−13
COmega = −4.859126 e+00
KShear = 1 . 5 0

C get PE components
c a l l GETVRM( ’ PE ’ ,ARRAY, JARRAY,FLGRAY, JRCD ,JMAC, JMATYP,

+ MATLAYO,LACCFLA)
C EQPLAS

EQPLAS = ARRAY( 7 )
oEQPLAS = STATEV( iEQPLAS )
dEQPLAS = EQPLAS − oEQPLAS

C get PE
do K1=1 ,NTENS

oEPLAS(K1) = STATEV( iEPLAS−1+K1)
EPLAS(K1) = ARRAY(K1)
dEPLAS(K1) = EPLAS(K1) − oEPLAS(K1)

enddo
C get ALPHAv

do K1=1 ,NTENS
ALPHA1v(K1) = STATEV(iALPHA1v−1+K1)
ALPHA2v(K1) = STATEV(iALPHA2v−1+K1)
ALPHA3v(K1) = STATEV(iALPHA3v−1+K1)
oALPHAv(K1) = STATEV(iALPHAv−1+K1)

ALPHA1r(K1) = STATEV( iALPHA1r−1+K1)
ALPHA2r(K1) = STATEV( iALPHA2r−1+K1)
ALPHA3r(K1) = STATEV( iALPHA3r−1+K1)
oALPHAr(K1) = STATEV( iALPHAr−1+K1)

enddo
C get FLOW vector

i f (dEQPLAS . gt .ZERO) then
do K1=1 ,NDI

FLOW(K1) = dEPLAS(K1)/dEQPLAS
enddo
do K1=NDI+1 ,NTENS

FLOW(K1) = dEPLAS(K1)/TWO/dEQPLAS
enddo

e l s e
do K1=1 ,NTENS
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FLOW(K1) = ZERO
enddo

endi f
C RM

RM = STATEV(iRM)
oRM = RM

C dALPHAv
do K1=1 , NDI

dALPHA1v(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗ALPHA1v(K1)∗dEQPLAS) / (ONE+GAMMA1∗dEQPLAS)

dALPHA2v(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗ALPHA2v(K1)∗dEQPLAS) / (ONE+GAMMA2∗dEQPLAS)

dALPHA3v(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗ALPHA3v(K1)∗dEQPLAS) / (ONE+GAMMA3∗dEQPLAS)

ALPHAv(K1) = (ALPHA1v(K1)+dALPHA1v(K1 ) ) +
+ (ALPHA2v(K1)+dALPHA2v(K1 ) ) + (ALPHA3v(K1)+dALPHA3v(K1 ) )

!dALPHAv(K1) = ALPHAv(K1)−oALPHAv(K1)
dALPHAv(K1) = dALPHA1v(K1) + dALPHA2v(K1) + dALPHA3v(K1)

enddo
do K1=NDI+1 , NTENS

dALPHA1v(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗KShear∗ALPHA1v(K1)∗dEQPLAS) / (ONE+GAMMA1∗dEQPLAS)

dALPHA2v(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗KShear∗ALPHA2v(K1)∗dEQPLAS) / (ONE+GAMMA2∗dEQPLAS)

dALPHA3v(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗KShear∗ALPHA3v(K1)∗dEQPLAS) / (ONE+GAMMA3∗dEQPLAS)

ALPHAv(K1) = (ALPHA1v(K1)+dALPHA1v(K1 ) ) +
+ (ALPHA2v(K1)+dALPHA2v(K1 ) ) + (ALPHA3v(K1)+dALPHA3v(K1 ) )

!dALPHAv(K1) = ALPHAv(K1)−oALPHAv(K1)
dALPHAv(K1) = dALPHA1v(K1) + dALPHA2v(K1) + dALPHA3v(K1)

enddo
do K1=1 , NTENS

ALPHA1v(K1) = ALPHA1v(K1) + dALPHA1v(K1)
ALPHA2v(K1) = ALPHA2v(K1) + dALPHA2v(K1)
ALPHA3v(K1) = ALPHA3v(K1) + dALPHA3v(K1)
ALPHAv(K1) = ALPHA1v(K1) + ALPHA2v(K1) + ALPHA3v(K1)

enddo
C magALPHAv

magALPHAv = ZERO
do K1=1 , NDI

magALPHAv = magALPHAv + ALPHAv(K1)∗∗2
enddo
do K1=NDI+1 , NTENS

magALPHAv = magALPHAv + TWO∗ALPHAv(K1)∗∗2
enddo
magALPHAv = s q r t (THREE/TWO∗magALPHAv)

C G funct ion
G = magALPHAv − RM
i f (magALPHAv. gt .ZERO) then

do K1 = 1 , NTENS
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DirVec (K1)=ALPHAv(K1)/magALPHAv
enddo

e l s e
do K1 = 1 , NTENS

DirVec (K1) = ZERO
enddo

endi f
C double dot product DDP

DDP = ZERO
do K1 = 1 , NDI

DDP = DDP+DirVec (K1)∗dALPHAv(K1)
enddo
do K1 = NDI+1 , NTENS

DDP = DDP+TWO∗DirVec (K1)∗dALPHAv(K1)
enddo

C heavis ide funct ion of G
i f (G. gt .ZERO) then

heavisideG = ONE
e l s e i f ( abs (G) . l t . TOLER) then

heavisideG = ONE/TWO
e l s e

heavisideG = ZERO
endi f

C memory s u r f a c e RM
dRM = heavisideG∗abs (DDP)
RM = oRM + dRM
i f (RM. l t .RMmin) then

RMused = RMmin
e l s e i f (RM. gt .RMmax) then

RMused = RMmax
e l s e

RMused = RM
endif

C RMR
RMR = STATEV(iRMR)
oRMR = RMR
do K1=1 , NDI

dALPHA1r(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗ALPHA1r(K1)∗dEQPLAS) / (ONE+GAMMA1∗dEQPLAS)

dALPHA2r(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗ALPHA2r(K1)∗dEQPLAS) / (ONE+GAMMA2∗dEQPLAS)

dALPHA3r(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗ALPHA3r(K1)∗dEQPLAS) / (ONE+GAMMA3∗dEQPLAS)

ALPHAr(K1) = (ALPHA1r(K1)+dALPHA1r(K1 ) ) +
+ (ALPHA2r(K1)+dALPHA2r(K1 ) ) + (ALPHA3r(K1)+dALPHA3r(K1 ) )

!dALPHAr(K1) = ALPHAr(K1)−oALPHAr(K1)
dALPHAr(K1) = dALPHA1r(K1) + dALPHA2r(K1) + dALPHA3r(K1)

enddo
do K1=NDI+1 , NTENS

dALPHA1r(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
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+ GAMMA1∗KShear∗ALPHA1r(K1)∗dEQPLAS) / (ONE+GAMMA1∗dEQPLAS)
dALPHA2r(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −

+ GAMMA2∗KShear∗ALPHA2r(K1)∗dEQPLAS) / (ONE+GAMMA2∗dEQPLAS)
dALPHA3r(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −

+ GAMMA3∗KShear∗ALPHA3r(K1)∗dEQPLAS) / (ONE+GAMMA3∗dEQPLAS)
ALPHAr(K1) = (ALPHA1r(K1)+dALPHA1r(K1 ) ) +

+ (ALPHA2r(K1)+dALPHA2r(K1 ) ) + (ALPHA3r(K1)+dALPHA3r(K1 ) )
!dALPHAr(K1) = ALPHAr(K1)−oALPHAr(K1)
dALPHAr(K1) = dALPHA1r(K1) + dALPHA2r(K1) + dALPHA3r(K1)

enddo
do K1=1 , NTENS

ALPHA1r(K1) = ALPHA1r(K1) + dALPHA1r(K1)
ALPHA2r(K1) = ALPHA2r(K1) + dALPHA2r(K1)
ALPHA3r(K1) = ALPHA3r(K1) + dALPHA3r(K1)
ALPHAr(K1) = ALPHA1r(K1) + ALPHA2r(K1) + ALPHA3r(K1)

enddo
C magALPHAr

magALPHAr = ZERO
do K1=1 , NDI

magALPHAr = magALPHAr + ALPHAr(K1)∗∗2
enddo
do K1=NDI+1 , NTENS

magALPHAr = magALPHAr + TWO∗ALPHAr(K1)∗∗2
enddo
magALPHAr = s q r t (THREE/TWO∗magALPHAr)

C G funct ion
G = magALPHAr − RMR
i f (magALPHAr. gt .ZERO) then

do K1 = 1 , NTENS
DirVecR (K1)=ALPHAr(K1)/magALPHAr

enddo
e l s e

do K1 = 1 , NTENS
DirVecR (K1) = ZERO

enddo
endi f

C double dot product DDP
DDP = ZERO
do K1 = 1 , NDI

DDP = DDP+DirVecR (K1)∗dALPHAr(K1)
enddo
do K1 = NDI+1 , NTENS

DDP = DDP+TWO∗DirVecR (K1)∗dALPHAr(K1)
enddo

C heavis ide funct ion of G
i f (G. gt .ZERO) then

heavisideG = ONE
e l s e i f ( abs (G) . l t . TOLER) then

heavisideG = ONE/TWO
e l s e
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heavisideG = ZERO
endi f

C memory s u r f a c e RMR
dRMR = heavisideG∗abs (DDP)
RMR = oRMR + dRMR
i f (RMR. l t .RMmin) then

RMRused = RMmin
e l s e i f (RMR. gt .RMmax) then

RMRused = RMmax
e l s e

RMRused = RMR
endi f

C R
oR = STATEV( iR )
AR = CR∗exp (ER∗RMRused)
dR = AR∗ ( (EQPLAS+dEQPLAS)∗∗BR−EQPLAS∗∗BR)
R = oR + dR ;

C PHIinfty
P h i I n f t y = AInfty∗RMused∗∗4 + BInf ty ∗RMused∗∗3 +

+ CInfty ∗RMused∗∗2 + DInfty∗RMused + EInf ty
C Omega

OMEGA~= AOmega+BOmega∗ (RMused)∗∗−COmega
C PHIcyc

oPHIcyc = STATEV( iPHIcyc )
dPHIcyc = OMEGA∗ ( Phi Inf ty−oPHIcyc )∗DEQPLAS
PHIcyc = oPHIcyc + dPHIcyc

C PHI
PHI = PHI0 + PHIcyc

C save STATEV
STATEV( iEQPLAS ) = EQPLAS
do K1=1 ,NTENS

STATEV( iEPLAS−1+K1) = EPLAS(K1)
STATEV(iALPHA1v−1+K1) = ALPHA1v(K1)
STATEV(iALPHA2v−1+K1) = ALPHA2v(K1)
STATEV(iALPHA3v−1+K1) = ALPHA3v(K1)
STATEV(iALPHAv−1+K1) = ALPHAv(K1)
STATEV( iALPHA1r−1+K1) = ALPHA1r(K1)
STATEV( iALPHA2r−1+K1) = ALPHA2r(K1)
STATEV( iALPHA3r−1+K1) = ALPHA3r(K1)
STATEV( iALPHAr−1+K1) = ALPHAr(K1)
STATEV(120+K1) = dALPHAv(K1)

enddo
STATEV( iR ) = R
STATEV(iRM) = RM
STATEV(iRMR) = RMR
STATEV( iRMused ) = RMused
STATEV( iRMRused ) = RMRused
STATEV( iPHIcyc ) = PHIcyc
STATEV( iPHI ) = PHI
STATEV( i P h i I n f t y ) = P h i I n f t y
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STATEV( 1 2 7 ) = SYIELD+R
STATEV( 1 2 8 ) = DDP

C FIELD ( 1 )
FIELD ( 1 ) = SYIELD+R
STATEV( iFIELD1 ) = FIELD ( 1 )

C FIELD ( 2 )
FIELD ( 2 ) = PHI
STATEV( iFIELD2 ) = FIELD ( 2 )
RETURN
END

Appendix B.2. Material Parameters Definition in the Abaqus Input File

The example of material parameters definition in Abaqus input file:

∗Material , name=Material−1
∗Depvar

128
∗ E l a s t i c
2 1 0 0 0 0 . 0 , 0 . 3
∗ P l a s t i c , dependencies =2 , hardening=COMBINED, datatype=PARAMETERS,
number b a c k s t r e s s e s =3
∗∗ Mater ia l data as~a~funct ion of FIELD1 and~FIELD2 fol lows :
SYIELD , C1 ,GAMMA1, C2 ,GAMMA2, C3 ,GAMMA3, FIDEL1 , FIELD2
%%

In the last material data line, the numeric values of material parameters are written. The material
data line repeats for different values of variables FIELD1 and FIELD2. Variables definitions are:
SYIELD = Y, C1 = C1, GAMMA1 = φ · γ1, C2 = C2, GAMMA2 = φ · γ2, C3 = C3, GAMMA3 =

φ · γ3, FIELD1 = Y, FIELD2 = φ. So, for presented material model, few material data lines can look
like this:

∗∗ Mater ia l data as~a~funct ion of FIELD1 and~FIELD2 fol lows :
∗∗ . . .
2 5 0 . 0 , 6 3 3 9 9 . 7 0 8 8 9 , 2 2 2 . 8 3 5 3 9 , 9 9 9 9 . 7 7 7 8 8 , 1 3 6 7 . 0 2 6 8 6 , 2 0 0 0 . 0 , 0 . 0 , 2 5 0 . 0 , 1 . 5
1 5 0 . 0 , 6 3 3 9 9 . 7 0 8 8 9 , 2 3 7 . 6 9 1 0 8 , 9 9 9 9 . 7 7 7 8 8 , 1 4 5 8 . 1 6 1 9 9 , 2 0 0 0 . 0 , 0 . 0 , 1 5 0 . 0 , 1 . 6
1 5 1 . 0 , 6 3 3 9 9 . 7 0 8 8 9 , 2 3 7 . 6 9 1 0 8 , 9 9 9 9 . 7 7 7 8 8 , 1 4 5 8 . 1 6 1 9 9 , 2 0 0 0 . 0 , 0 . 0 , 1 5 1 . 0 , 1 . 6
∗∗ . . .
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on Computational Mechanics, Špičák, Czech Republic, 6–8 November 2017.

15. Abdel-Karim, M.; Ohno, N. Kinematic hardening model suitable for ratchetting with steady-state. Int. J. Plast.
2000, 16, 225–240. [CrossRef]
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