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Abstract: A new 2D microstructure is proposed herein in the form of rigid unit cells, each taking
the form of a cross with two opposing crossbars forming slots and the other two opposing crossbars
forming sliders. The unit cells in the microstructure are arranged in a rectangular array in which the
nearest four neighboring cells are rotated by 90◦ such that a slider in each unit cell is connected to
a slot from its nearest neighbor. Using a kinematics approach, the Poisson’s ratio along the axes of
symmetry can be obtained, while the off-axis Poisson’s ratio is obtained using Mohr’s circle. In the
special case of a square array, the results show that the Poisson’s ratio varies between 0 (for loading
parallel to the axes) and −1 (for loading at 45◦ from the axes). For a rectangular array, the Poisson’s
ratio varies from 0 (for loading along the axes) to a value more negative than−1. The obtained results
suggest the proposed microstructure is useful for designing materials that permit rapid change in
Poisson’s ratio for angular change.
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1. Introduction

Auxetic materials are solids that exhibit a negative Poisson’s ratio, i.e., such materials expand
laterally when stretched axially and contract laterally when compressed axially and are therefore
classified under the broad category of metamaterials with negative properties. Metamaterials are
materials that are engineered to possess characteristics that are not exhibited in naturally occurring
materials; they consist of smaller units arranged in such a manner that the metamaterial behavior
arises from the geometrical microstructures rather than from that of the base material. Research in
auxetic materials began in earnest with the works of Lakes [1,2] and Wojciechowski et al. [3–5], leading
to a great number of potential applications [6–23]. Due to the negativity of Poisson’s ratio, auxetic
fibers are resistant towards pull-out from the matrix material because the tensile load of the fiber
causes the fiber diameter to increase, thereby producing a self-locking mechanism. Auxetic sheets are
suitable for wrapping around dome-shaped surfaces because the action of bending on two opposing
sides of the sheet material causes the other two sides to curve in similar way to form a synclastic shape.
In addition, an auxetic half-space is useful for reinforcing against projectile impact because the action
of point load on a surface causes the material to move radially towards the line of force. Pertaining
to the last example, Shodja et al. [24] showed a very strong influence of the Poisson’s ratio, via the
elastic constants, on Boussinesq indentation of a transversely isotropic half-space embedded with
an inextensible membrane.

The application of auxetic materials vis-à-vis conventional ones is of interest as the overall
properties of structures made of auxetic materials differ from—and, under some circumstances,
are not achievable by—structures made from conventional ones. By way of example, a study of the
axisymmetric response of a bi-material full-space with an interfacial thin film by Ahmadi et al. [25]
showed that in a reinforced homogeneous full-space made from materials with small positive Poisson’s
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ratio or with negative Poisson’s ratio, the thin film reinforcement has an insignificant influence on
elastic responses. In addition, reinforced full-spaces made of auxetic materials exhibit more compliant
properties in comparison to reinforced conventional materials [25].

Of late, progress has been made on planar tessellations that are capable of controlling the Poisson’s
ratio, including triggering auxetic behavior [26,27]. In addition to the microstructural level, auxeticity
can also be derived by introducing perforations [28] and other forms of porosity [29,30]. Due to
an exponential increase in this area of research in the past decades, it is no longer possible to list relevant
works sufficiently. The reader is referred to recent comprehensive reviews in auxetic materials [31–36]
and a related monograph [37]. The proposed microstructure resembles the interlocking hexagons
model [38], in which no microstructural rotation occurs, but, instead, sliding takes place between
neighboring blocks. Essentially, the unit cells are rigid or of a very high stiffness such that the
assumption of rigid units is valid and only translational motion takes place. One such example has
been suggested by Alderson and Scarpa [39] in regard to eliminating mechanical vibrations and noise
experienced by newborn babies during transfer in vehicles, whereby the interlocking model could be
used to help make safer neonatal transfer vehicles.

In this paper, a 2D metamaterial is proposed to exhibit zero Poisson’s ratio along its principal
axes, while exhibiting negative values of Poisson’s ratio in other directions, i.e., the microstructure
exhibits great sensitivity in change in Poisson’s ratio from change in loading direction. The proposed
2D metamaterial and some of its deformation mechanisms are illustrated in Figure 1. Each unit
cell is rigid and takes the form of a cross such that two opposing crossbars are slots and the other
two opposing crossbars are sliders, as shown in Figure 1a. The unit cells in the microstructure are
arranged in a rectangular array with the nearest four neighboring cells rotated by 90◦ so that a slider
from one cell is placed in the slot of its neighbor. A sample of 4 × 4 unit cells that make up the
microstructure is furnished in Figure 1b. This indicates the microstructural conformation at the
original, or undeformed, state; a dashed purple square that encompasses the given microstructure
before deformation is imposed on the microstructure with deformation so as to facilitate comparison
against the former. Under loading along the y direction, as shown in Figure 1c, the Poisson’s ratio is
vyx = 0, while loading in the direction of the x axis, as shown in Figure 1d, gives vxy = 0. Under the
action of off-axis loading, as indicated in Figure 1e, we have a negative Poisson’s ratio. The underlying
hypothesis requires that the relative motion of each unit, with reference to its neighboring unit cell,
is uniform. It follows that the increase or decrease in the gap is uniform when measured from each
axis. It is further assumed that the contact areas between the slot and slider are frictionless, or that
the effect of friction is negligible, as a result of sufficient lubrication. With the advancement of rapid
prototyping technology, the currently proposed microstructure can be designed and fabricated using
3D printing or kirigami manufacture.
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Figure 1. (a) A unit cell of the microstructure; (b) 4 × 4 unit cells in the original state; (c) loading in the 
y direction; (d) loading in the x direction; and (e) off-axis loading. Note: the dashed purple squares 
indicate the undeformed boundaries, while the dashed green squares or rectangles denote deformed 
boundaries. 
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Figure 1. (a) A unit cell of the microstructure; (b) 4 × 4 unit cells in the original state; (c) loading
in the y direction; (d) loading in the x direction; and (e) off-axis loading. Note: the dashed purple
squares indicate the undeformed boundaries, while the dashed green squares or rectangles denote
deformed boundaries.
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2. Analysis

The analysis of Poisson’s ratio for the proposed 2D metamaterial is made in reference to Figure 2,
wherein neighboring unit cells are spaced at distances of x0 and y0 along the x axis and y axis,
respectively. While the analysis of Poisson’s ratio values vxy and vyx can be easily made by sliding
cell A along the x axis and by sliding cell B along the y axis, such an approach does not permit the
analysis of the Poisson’s ratio in the other direction. Hence, a general approach can be attempted by
taking the displacement of cell C with respect to cell O, which the origin of the coordinate system
lies on. Let θ indicate the loading direction. By symmetry, it is sufficient to model the movement of
C for 0◦ < θ < 90◦. The movement of C in the direction 90◦ < θ < 180◦ is not defined as it would be
appropriate to model the displacement of cell E in that direction with reference to cell O. Similarly,
the motion of C in the direction 270◦ < θ < 360◦ is undefined, as it would be proper to do so for cell F in
that direction with reference to cell O. The displacement of C in the direction 180◦ < θ < 270◦ indicates
compressive loading, but this is not required as the analysis of loading in the 0◦ < θ < 90◦ direction
includes that in the 180◦ < θ < 270◦ direction by using negative values for the displacement components.
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Figure 2. Schematic view for analysis.

To cater for off-axis loading, we introduce on the cell C the local x’–y’ axes, which are rotated by
an angle of θ anti-clockwise from the global x–y axes, such that the x’ axis coincides with the loading
direction. Let cell C displace by a distance dx’. Resolving the dx’ displacement along the x axis and the
y axis, we have

dx = dx′cosθ

dy = dx′sinθ
(1)
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which lead to the corresponding strains

εx = dx
x0

= dx′
x0

cosθ

εy = dy
y0

= dx′
y0

sinθ
(2)

in the x axis and y axis, respectively. Since the x and y axes are axes of symmetry, the corresponding
strains are principal strains. Upon recognizing that Equation (2) gives the principal strains, the strains
in the x’ and y’ directions can be obtained using Mohr’s circle for strain, as shown in the Appendix A.
From Figure A1 of the Appendix A, we have

εAVE =
εx + εy

2
=

dx′
2

(
cosθ

x0
+

sinθ

y0

)
(3)

and

R =
εx − εy

2
=

dx′
2

(
cosθ

x0
− sinθ

y0

)
(4)

which lead to the strains in the direction of loading x’ of

εx′ = εAVE + Rcos2θ =
dx′
2

[
cosθ

x0
(1 + cos2θ) +

sinθ

y0
(1− cos2θ)

]
(5)

and in the direction perpendicular to the direction of loading of

εy′ = εAVE − Rcos2θ =
dx′
2

[
cosθ

x0
(1− cos2θ) +

sinθ

y0
(1 + cos2θ)

]
(6)

The off-axis Poisson’s ratio, vx’y’, is therefore

vx′y′ = −
εy′
εx′

= −
cosθ
x0

(1− cos2θ) + sinθ
y0

(1 + cos2θ)

cosθ
x0

(1 + cos2θ) + sinθ
y0

(1− cos2θ)
(7)

It can be seen that the substitution of θ = 0◦ (i.e., vx’y’ = vxy) into Equation (7) gives vx’y’ = 0,
and likewise the substitution of θ = 90◦ (i.e., vx’y’ = vyx) into Equation (7) also gives vx’y’ = 0.
The Poisson’s ratio results for off-axis loading are discussed in the next section.

3. Results and Discussion

If the cells are arranged such that OC makes an angle of 30◦ with the x axis (i.e., y0 = x0/
√

3) or
60◦ with the x axis (i.e., y0 = x0

√
3), then the off-axis Poisson’s ratio equations simplify to

vx′y′ = −
cosθ(1− cos2θ) +

√
3sinθ(1 + cos2θ)

cosθ(1 + cos2θ) +
√

3sinθ(1− cos2θ)
(8)

and

vx′y′ = −
√

3cosθ(1− cos2θ) + sinθ(1 + cos2θ)√
3cosθ(1 + cos2θ) + sinθ(1− cos2θ)

(9)

respectively. For the special case of a square array (i.e., y0 = x0), the Poisson’s ratio is further reduced to

vx′y′ = −
cosθ(1− cos2θ) + sinθ(1 + cos2θ)

cosθ(1 + cos2θ) + sinθ(1− cos2θ)
(10)

The variation of the off-axis Poisson’s ratio with the direction of loading for these three spatial
arrays is plotted in Figure 3. It can be seen that the most negative Poisson’s ratio for a square array
occurs when loading is imposed in the diagonal direction, with a value of −1. A greater extent
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of auxeticity is obtained when the cell array is not square (y0 6= x0). Specifically, the minimum
vx’y’ for a rectangular array is more negative than −1 due to the highly anisotropic nature of this
microstructural mechanism.
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Figure 3. Variation of Poisson’s ratio with loading direction for a square array y0 = x0 (purple) and for
rectangular arrays with y0 =

√
3x0 (blue) and y0 = x0/

√
3 (red).

Particular case studies can be made for the situation wherein the loading direction is parallel to
OC in Figure 2. This occurs when the unit cells in the first and third quadrants are stretched away
from, or compressed towards, the origin. A similar effect is obtained when the unit cells in the second
and fourth quadrants are loaded such that the line of force passes through O. Under such a category,
we note that

tanθ =
y0

x0
(11)

Substituting Equation (11) into Equation (7) gives vx’y’ =−1. This result is displayed in Figure 3 for
θ = 30◦, 45◦, and 60◦ when y0/x0 = tan 30◦, y0/x0 = tan 45◦, and y0/x0 = tan 60◦, respectively. Another
set of particular cases takes place when the array is extreme, such that Equation (7) simplifies to

vx′y′ = −
1± cos2θ

1∓ cos2θ
(12)

where the upper and lower signs correspond to y0 << x0 and y0 >> x0, respectively. This is shown in
Figure 4a to facilitate comparison between the Poisson’s ratio for extreme arrays (y0 << x0 and y0 >> x0)
with that for moderate arrays (y0 = x0, y0 =

√
3x0, and y0 = x0/

√
3). Figure 4b demonstrates the manner

in which the Poisson’s ratio changes as the loading direction approaches the axes.
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Figure 4. Variation of Poisson’s ratio with loading direction for extreme arrays (yellow and green):
(a) in comparison to moderate arrays (red, purple and blue), and (b) a visual display on the extent
of auxeticity.

As the current model assumes rigid unit cells, one may expect the actual properties to deviate if
the deformation of the unit cells is significant. Specifically, the flexure of the slots and sliders as beam
deflections would reduce the strains perpendicular to the direction of the deflected slots and sliders.
However, with sufficient lubrication between the slot of a unit cell and the slider in a neighboring unit
cell, the suggested microstructure permits smooth relative motion between neighboring unit cells with
insignificant deformation of the unit cells. Evidence of this observation is furnished in Figure 5 with
a square array (x0 = y0) for (a) the original state, as well as for (b) stretching and (c) compression along
θ = 45◦, while stretching and compression along the axes are shown in Figure 5d–g.
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4. Conclusions

While most auxetic microstructures exhibit some form of rotation, with the exception of the
interlocking hexagons model [38], a new microstructure that is based on sliding mechanism is proposed
herein. Unlike the interlocking hexagons model, the currently proposed model exhibits a high level
of porosity, and therefore more suitable for applications where low weight is desired. In general,
the model demonstrates two axes of symmetry, but the axes of symmetry increase to four in the case
of a square array. For the special case of a square array, the Poisson’s ratio fluctuates between 0 and
−1 for every 45◦ change in loading direction. A greater extent of auxeticity can be found when the
array is not square. This is due to the high level of anisotropy of the microstructure. The extent
of anisotropy increases when the array goes to the extremes, thereby leading to extreme negative
Poisson’s ratios. The results from this paper, in conjunction with earlier works on auxetic beams [40,41],
auxetic rods [42–44], auxetic plates [45–52], auxetic shells [53,54], auxetic composites [55–62] and 2D
metamaterial structures [63,64], would avail more design options for the engineer in developing novel
load bearing materials and structures.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A
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