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Abstract: This paper presents the problem of the description of fatigue cracking development
in metallic constructional materials. Fatigue crack growth models (mostly empirical) are usually
constructed using a stress intensity factor ∆K in linear-elastic fracture mechanics. Contrary to the
kinetic fatigue fracture diagrams (KFFDs) based on stress intensity factor K, new energy KFFDs show
no sensitivity to mean stress effect expressed by the stress ratio R. However, in the literature there is a
lack of analytical description and interpretation of this parameter in order to promote this approach
in engineering practice. Therefore, based on a dimensional analysis approach, ∆H is replaced by
elastic-plastic fracture mechanics parameter—the ∆J-integral range. In this case, the invariance
from stress is not clear. Hence, the main goal of this paper is the application of the new averaged
(geometrically) strain energy density parameter ∆S* based on the relationship of the maximal value
of J integral and its range ∆J. The usefulness and invariance of this parameter have been confirmed
for three different metallic materials, 10HNAP, 18G2A, and 19th century puddle iron from the
Eiffel bridge.

Keywords: fatigue crack growth; mean stress effect; J-integral; energy approach; generalized Paris’
Law; crack growth rate; R-ratio

1. Introduction

Fatigue and fatigue cracking are the two main (more than 70% of all failures) phenomena
responsible for the process of destroying steel structures. The fatigue crack growth phase is an
essential process for the long-term operating structures subjected to cyclic loading. A fatigue crack
may be formed either as a result of the accumulation of fatigue damage (intrusions and extrusions)
or as a result of manufacturing processes. The appearance of fatigue cracks can also be the result of
unfavorable operating conditions. The mere fact that a crack exists does not necessarily (anymore)
mean that such an element (still referred to as metallic construction materials) has to be eliminated
from service. The period of precritical fatigue crack growth can be expressed in a general way using
an integral:

Ncr =

acr∫
ao

da
f (σext, a, Pf c, Y, R)

(1)

where: Ncr is precritical fatigue crack growth period, ao is the crack length, acr is the critical crack
length, σext is the external load, Pfc is the fracture mechanics parameter, the so-called crack driving
force (CDF), Y is the geometric constraint, and R (σmin/σmax) is the stress ratio.

In the case of static loads, it is crucial to determine the critical load that triggers the avalanche
development of the crack or to look for the critical length of the crack at which the element will continue
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to carry the assumed load. For safety reasons, an important issue is to determine the subcritical time of
fatigue crack development under cyclic loading condition. According to the above, it is necessary to
solve Equation (1) with known boundary conditions. However, in this case, it is crucial to provide
a fatigue crack growth law that is as robust as possible. In the 1960s, Paris [1] correlated a quantity
derived from classical fracture mechanics—∆K stress intensity factor range (SIF)—with the fatigue
crack growth rate from experimental data. Paris proposed this relationship in the form of a power-law
function—known in the literature as the Paris law:

da
dN

= C(∆K)m (2)

Engineers are predicting the life of an element with a defect using various analytical and numerical
techniques (including FEM and BEM). In Equation (2) C, m are constants determined from the Kinetic
Fatigue Fracture Diagram (KFFD) presented in Figure 1. ∆K is related to the range of load changes ∆K
= Kmax − Kmin, corresponding successively to the range of external load changes.
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Figure 1. Schematic Kinetic Fatigue Fracture Diagram (KFFD): (a) sigmoidal shape of the fatigue crack
growth rate (FCGR) curve; (b) the scheme of the stress R-ratio impact on the FCGR curves (R4 > R3 >
R2 > R1).

The constant m in the Paris’ law model is related to the angle of inclination of the experimental
data straight line (Figure 1a), while the constant C is the ordinate at the intersection of the extension
straight line from Area II. Generally speaking, the typical graph of fatigue cracking kinetics is divided
into three areas (Figure 1a). Area I is the domain of the so-called low crack growth rate, i.e., from 0 to
approximately 10−9 m/cycle, while Area II corresponds to the straight line of average fatigue crack
growth rate in the range 10−9–10−6 m/cycle—so called Paris regime. Area III is the domain of high
fatigue crack growth rate, i.e., above 10−5 m/cycle. These ranges are contractually accepted as they
depend on the material, its properties, the environment, and the load itself. The range (I) is limited on
the left by the asymptote corresponding to the threshold ∆Kth value—the threshold range of stress
intensity coefficient below which fracture does not propagate or propagates at an insignificantly low
speed. The development of cracking ends when the stress factor reaches the critical value ∆Kfc, above
which cracking propagates unstable. The effect of the stress ratio R factor is schematically represented
as in Figure 1b. For higher R-factors, the ∆Kth threshold value, which triggers the fatigue cracking
process, is lower, and all da/dN-∆K curves are shifted. Therefore, the adaptation of Equation (2),
taking into account the effect of the cycle asymmetry coefficient, is a major topic in Fatigue Fracture
Mechanics (FFM). One of the well known is the solution proposed by Forman [2]:

da
dN

=
C(∆K)m

(1− R)KC − ∆K
(3)
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The Kc quantity in Equation (3) is the fatigue fracture toughness (or critical stress intensity factor)
for the given load conditions. In the event of difficulties in its establishment, it is very often replaced by
known KIC. Accurate determination of constants m and C requires knowledge of crack speed courses
for different cycle asymmetry coefficients. Another proposal is well-known as Walker's law [3]:

da
dN

=
Cw

(1− R)nw (∆K)mr (4)

The constant Cw is determined here experimentally for different values of R. For R = 0 this constant
is equivalent to the Paris’ constant C. The exponent mr is treated as a constant, similarly nw—is obtained
from experimental data. It is also determined by the extrapolation of data from kinetic fatigue fracture
diagrams constructed for different R-ratios.

The influence of the cycle asymmetry coefficient strongly determines the analytical description of
the fatigue gap closing process noticed by Wolf Elber [4]. The model covering the above issues is the
model known in the literature on the subject of Forman-Mettu [5]:

da
dN

= C
[(

1− f
1− R

)
∆K
]n
(

1− ∆Kth
∆K

)p

(
1− Kmax

Kc

)q (5)

In the Forman-Mettu model expressed in Equation (5), c, n, p, and q are experimentally determined
constants, and f is associated with the function of crack opening. The form of this function can be
determined based on, e.g., FITNET procedures [6]. However, the application of this model is not
easy—mainly due to a large number of experimentally determined constants.

A different group of attractive fatigue fracture models are the mathematical models based on the
relationship of low cycle fatigue (LCF) parameters with the fatigue crack propagation rate. Fatigue
crack growth is considered an elementary act in the local plastic zone of fracture including two different
areas: static, corresponding to the maximum value of load in the cycle, and cyclic, corresponding
to the amplitude of load. This concept is presented in Figure 2. Several authors [7–14] proposed
excellent relationships between LFC (Low Cycle Fatigue) and FCGR (Fatigue Crack Growth Rate) data.
However, in all cases, the presented models work well for the maintained R-ratio. It is more likely
that the main reason of the mathematical collapse in R-ratio invariance of the fatigue crack growth
description is associated with the fact that the crack driving force still depends only on the ∆K range
or on the maximum value of K.
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Tip Opening Displacement CTOD—δ.

Kujawski [15,16] proposed a new, crack driving force for a ∆K description of FCGR—the
geometrical mean value of positive ∆K and Kmax. The next development of the proposed model
was the introduction of the weighting exponent α [17,18]:

K∗ =
(
∆K+

)1−α · Kα
max (6)
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According to the above, it is worth underlining an excellent contribution of Kujawski’s model
into the force approach combaning positive part of the stress intensity factor range ∆K-∆K+ and Kmax.
However, the meaning of the α parameter (ranged from 0 to 1) is debatable and in each case should be
calibrated from da/dN-∆K curves.

Therefore, the main aim of this work is to propose a new, crack driving force parameter with a
good physical interpretation responsible for the fatigue fracture process without R-ratio influence.

Alternative methods of describing the kinetics of fatigue cracking are also being searched in order
to eliminate the problem of avoiding the R-ratio effect. Research conducted by the author shows
that it is possible to obtain such a dimensional base for KFFD, in which the description of fatigue
cracking kinetics will not depend on the stress ratio. Energy as a dimensional quantity combining the
dimensions of “force” and “displacement” seems to be naturally predestined to describe the kinetics
of cracking. Many of the hypotheses concerning both fatigue and the description of fatigue cracking
are based on energy irreversibly dissipated in each cycle of the load spectrum [19,20]. The dissipated
energy accumulated in the material can be recorded as a hysteresis loop during the test. Determination
of the subcritical period of fatigue crack growth requires the application of the first principle of
thermodynamics. Assuming an infinite solid body model subjected to sinusoidal alternating external
loads with a central part-thru, this balance can be formulated as follows [21–24]:

A + Q = W + Ke + Γ (7)

In Equation (7), A represents the work of external loads after N cycles, Q represents the heat
supplied to the body during loading, and W is the deformation energy after N cycles. The kinetic energy
of the body is marked as Ke. Γ is the damage energy necessary for fatigue crack growth increment.
When formulating the energy balance expressed in Equation (7), according to [23], the quantities
A, Q, W, and Ke, are referred to unit of thickness. It is also assumed that the fatigue crack will
grow slowly during each cycle so that the kinetic energy and heat exchanged during this process
can be disregarded (i.e., for low loading frequencies). After the differentiation of Equation (7) and
simplifications, the energy balance can be represented by

∂A
∂N

=
∂W
∂N

+
∂Γ
∂N

(8)

However, damage energy Γ can be expressed as a sum of static and cyclic components:

Γ = Wc + Ws (9)

The energy of the static (monotonic) component of cyclic plastic deformations Ws, corresponding
to the maximal value of external loading, is considered as the maximum value of the dissipation of
the static energy activating the fracture process without the energy of cyclic deformation changes
(Wc = 0) [24]. Wc corresponds to the dissipated energy during cyclic loading. For fatigue crack growth,
both quantities are equally important. Hence, the final form of the fatigue crack growth surface can be
expressed as

∂S
∂N

=
∂Wc/∂N

∂(Γ−Ws)/∂S
(10)

dS/dN =
αW(1)

c

σpl f ε f c(1− K2
I max/K2

f c)
(11)

Thus, the proposed crack driving force ∆H (expressed in J/m2) is equal:

∆H =
W(1)

c

B(1− K2
I max/K2

f c)
(12)
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The Paris-like model can be represented by

da/dN = A(∆H)k (13)

In the above equations, α is a constant dimensionless factor, S is the fatigue crack area, σplf is the
cyclic yield point, εfc is the critical strain value under cyclic conditions, and ∆H is the new energy
parameter—the crack-driving force. In Equation (13), k should be equal to 1 (based on dimensional
analysis approach). However, it is also reported in [22] that k varies from 0.87 to 1.38 for different
ductility levels of the tested materials. On the other hand, in the original approach [24], this parameter
strongly depends on the hysteresis loop area measured in the load line. It is more likely that this
approach seems to be correct from a physical point of view but strongly depends on the experimental
techniques of the registered dissipated energy. The problem of measuring dissipated energy regarding
the global-local energy approach is widely discussed in [19]. There are no doubts that the energy
approach supported by numerical methods is a powerful tool in a proper description of FCGR and
residual lifetime estimation based on a rather physical not an empirical model. So far, no attempts
have been made to analyze the ∆H characterization of the parameter, to link it with well-known
parameters from classical fracture mechanics, i.e., CTOD or J-integral. This fact explains, among
other reasons, the relatively low acceptance of energetic models in engineering practice. From the
physical point of view, the other well interpretable quantity with this physical dimension ∆H is the
integral J. Moreover, contemporary numerical and full field experimental methods allow determining
the integral J for advanced materials and loading cases in an efficient way. Many times in the range
of linear fracture mechanics, integral J allows one to determine stress intensity factors where there
are no closed-form analytical solutions. This has been demonstrated in the author’s and co-author’s
works [25–28] devoted to mixed mode fatigue crack growth description. However, it is worth noting
that the number of kinetic energy models based on integral J is still negligible. Dowling and Begley [29]
were the pioneers in describing the kinetics of fatigue cracking [29] using the cyclic J integral concept.
At a later stage, Dowling [30] demonstrated the independence of integral J as a CDF (Crack Driving
Force) from the geometry of samples, which encouraged the stability of this size in the description of
the kinetics of fatigue curing. The path independence in applications to fatigue crack growth problems
is also proven in many papers [31–34]. However, also in this case, the full invariability with respect to
the R-ratio coefficient is not always obtained by substitution of the crack driving force from ∆K to the
integral ∆J. As evidence, the experimental data for 18G2A and 10HNAP steels (according to standard
Polish nomenclature) recorded in papers [35–39] using bended specimens in FCGR experiment in a
linear and nonlinear fracture mechanics validity range.

Independently from Rozumek’s results [36–39], Joyce et al. [40] reported for cast stainless steel
equivalent to ASME SA-351CF8M a similar impact of R-ratio in elastic-plastic cyclic ∆J-crack driving
obtained from standardised compact tension (CT) specimens. On the other hand, there are no doubts
that the J-integral crack driving force can be applied where the validity of the linear elastic fracture
mechanics is limited, so the ∆K approach is debatable. However, experimental observations [29–40]
have confirmed the fact that the J-integral approach does not entirely solve the problem of the mean
stress effect in the description of the FCGR. On the other hand, many analytical models seem to confirm
the fact that the solution in the unification of the fatigue cracking process should be sought not so
much in the amplitude of the force driving the crack but in the mutual combination of maximum CDF
values and CDF amplitude.

Considering the above, the previously formulated basics of energy modeling allowed for
the determination of the relation between fatigue fracture rate and energy parameters. Details of
the dimensional analysis modeling [41,42] are available in [21–24,43,44]. In these works, it was
demonstrated that the required energetic parameter with the physical dimension (J/m2) is responsible
for the fatigue fracture process. As it is based on the energy measured in the form of a local hysteresis
loop, the ambiguities with multi-axis loads and geometries of the specimens did not allow for its
proper application. On the other hand, the concept initiated by Kujawski [16] for the elastic parameter
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∆K seems to be worth considering when applying for elastic-plastic states. From experimental works
and methods of energy accumulation [45], it can be indicated that schematically variable average
load connects ∆J and Jmax. During fatigue crack growth, as is shown in Figure 3, under a different
load ratio R, in the case of load paths from point i to j (negative maximal load value), the damage
accumulation cannot cause crack growth (no crack opening means that ∆J+ is zero). For the load
case from k to l (negative stress ratios), the crack is partially open (excluding the Elber crack closure
phenomenon) in the positive part of the loading (∆J+ < ∆J). For the positive R-ratios (load path from m
to n), the ∆J+ is equal to ∆J. It is worth noting that, during a cyclic load, Jmax and ∆J are the values that
bind the local stress intensity in front of the crack front—J plays the same role as K in the elastic-plastic
fracture mechanics. Therefore, the geometric mean of ∆J+ and Jmax is proposed as a new crack driving
force candidate:

∆S∗ =
√

∆J+ · Jmax (14)
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2. Kinetic Fatigue Fracture Diagrams for 10HNAP, 18G2A, and the Eiffel bridge 19th-Century
Puddle Iron

For experimental verification, the published fatigue crack growth data (for steel 10HNAP and
18G2A) based on the ∆J integral range [35–38] was used. In Rozumek’s papers [35–38], the test fatigue
crack growth experiment based on elastic-plastic fracture mechanics was performed on the fatigue test
stand MZGS-100 (Figure 4), enabling cyclically variable and static (mean) loading.

In an experimental campaign (based on ∆J parameter as a crack driving force), a bent beam
(Figure 5) made from 10HNAP and 18G2A steel was used. The specimens subjected to bending had an
external unilateral sharp notch of 5 mm in depth, with the rounding radius ρ = 0.5 mm. The specimen
dimensions were length L = 120 mm, width W = 20 mm, and thickness t = 4 mm. The scheme of the
specimen is presented in Figure 5.

In the cited experimental campaign, the total ∆J parameter [24,35,36] was considered as a sum of
the elastic and plastic components of the cyclic ∆J parameter [24]:

∆J = ∆Je + ∆Jp = 2πY2a

 ∆εe∫
0

σdεe +

∆εp∫
0

σdεp

 (15)
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In Equation (15) ∆Je represents elastic part of ∆J integral range, ∆Jp – plastic part, Y—geometric
constraint, εe—elastic strains, εp—plastic strains measured in the vicinity of a crack tip. The tests were
performed on the fatigue test stand MZGS-100 (Figure 3) with the loading frequency 29 Hz and the
maximal bending moment was equal: Ma = 15.64 nm under the Mode I condition. Three different
R-ratios were considered; R = 0, R = −0.5, R = −1. During the experiments, the crack length was
observed using optical methods. All experimental details can be found in Rozumek’s papers [36–39].
After experiments, the elastic-plastic J integral was calculated using boundary element methods
(BEM) and FRANC3D software for fracture mechanics analysis. The detailed experimental-numerical
procedure is described in [36–39]. Finally, the elastic-plastic, kinetic fatigue fracture diagrams were
constructed based on the J-parameter.
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Figure 4. Fatigue testing machine MZGS-100: 1—bed, 2—rotational head with a holder, 3—specimen,
4—holder, 5—lever (effective length = 0.2 m), 6—motor, 7—rotating disk, 8—unbalanced mass, 9—flat
springs, 10—driving belt, 11—spring actuator, 12—spring, 13—hydraulic connector [36].
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Figure 5. Scheme of the specimen subjected for the bending test in Gasiak & Rozumek [35] experiment,
L = 120 mm, W = 20 mm, notch length a0 = 5 mm (notch tip angle 60◦, root radius ρ = 5 mm), a—fatigue
crack length.

As an alternative, for the ∆S* crack driving force, the kinetic fatigue fracture diagrams were
parallel-constructed. The FCGR experiment for the Eiffel bridge [46] puddle iron was designed and
performed in accordance with the American standard ASTM E647 [47]. Scheme of the specimen is
presented in Figure 6. The stress intensity factor (SIF) for the standardized Compact Tension (CT)
specimen is described by [47]

∆K =
∆F

B
√

W
f (a/W) (16)
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f
( a

W

)
=

(2 + α)(0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4)√
(1− α)3

(17)

where α is the normalized crack length referred to the specimen width (α = a/W), B is the thickness of
the specimen, W represents the specimen width, and ∆F is the applied force range. The crack length
was monitored using compliance methods from the clip-gage mounted on additional knives on the
front side of the specimen—CMOD (crack mouth opening displacement).
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(puddle iron, all dimensions in mm).

For the energy fatigue crack growth description (puddle iron from the Eiffel bridge), only the
elastic part of the ∆J-integral range was analyzed using a well-known relationship from linear-elastic
fracture mechanics (with assumed plane stress conditions):

∆Je =
∆K2

E
(18)

The chemical composition of analyzed materials is presented in Table 1. Tables 2 and 3 include
both static and cyclic mechanical properties of the considered materials. Kinetic fatigue fracture
diagrams for all materials are shown in Figures 7–9.

Table 1. Chemical composition (in % by weight) of the tested materials.

Material C Mn Si P S Cr Ni Cu Fe

10HNAP [37] 0.14 0.88 0.31 0.066 0.027 0.73 0.30 0.345 bal.
18G2A [36] 0.20 1.49 0.33 0.023 0.024 0.01 0.01 0.035 bal.

tested puddle iron 0.01 0.01 0.07 0.354 0.045 - - - bal.

Table 2. Static mechanical properties of the analyzed metallic materials.

Material
Ultimate Tensile

Strength UTS
(MPa)

Yield Strength
σpl/σ0.2 (MPa)

Young
Modulus E

(GPa)

Poisson
Ratio ν (-)

Fracture
Toughness

JIC (MPa·m)

10HNAP [37] 566 418 215 0.29 0.178
18G2A [36] 535 357 210 0.3 0.320

Eiffel Bridge
puddle iron [46] 342 292 193 0.3 n/a
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Table 3. Low cycle fatigue properties of the analyzed materials.

Material
Fatigue Strength

Coefficient σf’ (MPa)
Fatigue Ductility
Coefficient εf’ (-)

Fatigue Strength
Exponent b (-)

Fatigue Ductility
Exponent c (-)

10HNAP [37] 746 0.442 −0.080 −0.601
18G2A [36] 782 0.693 −0.118 −0.410

Puddle Iron Eiffel
Bridge [46] 603 0.160 −0.078 −0.797
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As observed, the impact of R is noticeable in the case of the ∆J description in the FCGR diagrams.
In the same way, a similar tendency in the case of the da/dN-Jmax description using the relationship
between Jmax and ∆J can be demonstrated. However, in the case of an energy approach, the main
concept assumed the representation of the fatigue crack growth rate using invariant kinetic fatigue
fracture diagrams based on a new, crack driving force—∆S*. ∆S* involves both ∆J and Jmax parameters.
However, ∆J should be limited only for ∆J+. Of course, possible corrections can be done using an
effective ∆J+ range based on crack closure measurements. Recently, in [48,49], an efficient experimental
method was described for in-situ J-integral calculation using DIC—digital image correlation. In the
presented case, in order to analyze the invariance ability from stress ratio R, the crack driving force
was examined by the simple statistical R2 data fitting using a Paris-like relationship, for ∆J and ∆S*
crack driving forces:

da
dN

= A1(∆J)n (19)

da
dN

= D(∆S∗)p (20)

As was expected in each case, the new ∆S* crack driving force consolidated all experimental
results for different R-ratios into one straight line in the Paris regime. Moreover, the Paris-like law
data fitting is better in the case of the description of the FCGR curves using the newly proposed crack
driving force. Statistical outputs of the R-square data fitting to the Equations (19) and (20) are presented
in Table 4. According to the statistical analysis, in each case, the introduction of the ∆S* parameter
caused a significant increase in data fitting for the Paris-like model expressed in Equation (20) in
comparison to the model expressed in Equation (19).

Table 4. Statistical analysis of data fitting for the Kinetic Fatigue Fracture Diagram (KFFD) based on ∆J
and ∆S* (all R-ratios).

All Data from FCGR Tests R2 da/dN-(∆J) Equation (19) R2 da/dN-(∆S*) Equation (20)

10HNAP 0.73 0.94
18G2A 0.54 0.91

Puddle Iron from the Eiffel Bridge 0.64 0.97

3. Conclusions

This article presents an understanding of dimensional analysis identifying the energy force driving
the crack. In the course of this work, it was established that this value is the parameter of ∆H (J/m2)
proposed by Szata [24]. In the absence of an unambiguous analytical interpretation of this parameter,
it was replaced by the integral J, which did not allow avoiding the influence of average load in the
form of R. A new CDF—∆S*—based on the geometric mean of the maximum value of cyclic J-integral
and its range ∆J has been proposed to describe the kinetics of fatigue cracking. Its suitability for three
different engineering materials (10HNAP and 18G2A steels and puddle iron) has been tested. On the
basis of the above considerations, the following conclusions may be formulated:

• In contrast to J, S* unambiguously describes the fatigue crack kinetics for 10HNAP and 18G2A
steels in the range of non-positive stress ratio R (considering elastic-plastic conditions).

• In contrast to J, S* unambiguously describes the fatigue crack kinetics for 19th-century puddle
iron from the Eiffel bridge in the range of positive stress ratio R (considering linear elastic fracture
mechanics conditions).

• In each case, the description of KFFD including S* resulted in higher values of R2 data fitting
coefficient for the power-law description of the FCGR in the Paris regime.

• A good physical interpretation of S* as opposed to H allows for its easy implementation into the
numerical environment.
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