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Abstract: Thin fiber networks are widely represented in nature and can be found in man-made
materials such as paper and packaging. The strength of such materials is an intricate subject due to
inherited randomness and size-dependencies. Direct fiber-level numerical simulations can provide
insights into the role of the constitutive components of such networks, their morphology, and
arrangements on the strength of the products made of them. However, direct mechanical simulation
of randomly generated large and thin fiber networks is characterized by overwhelming computational
costs. Herein, a stochastic constitutive model for predicting the random mechanical response of
isotropic thin fiber networks of arbitrary size is presented. The model is based on stochastic volume
elements (SVEs) with SVE size-specific deterministic and stochastic constitutive law parameters.
The randomness in the network is described by the spatial fields of the uniaxial strain and strength
to failure, formulated using multivariate kernel functions and approximate univariate probability
density functions. The proposed stochastic continuum approach shows good agreement when
compared to direct numerical simulation with respect to mechanical response. Furthermore, strain
localization patterns matched the one observed in direct simulations, which suggests an accurate
prediction of the failure location. This work demonstrates that the proposed stochastic constitutive
model can be used to predict the response of random isotropic fiber networks of arbitrary size.

Keywords: thin fiber networks; multi-scale modeling; stochastic volume element (SVE); mechanical
failure; plastic softening; strain localization

1. Introduction

Materials are characterized by certain degrees of random variations in their mechanical properties.
This is true for all materials but especially pronounced in disordered materials such as thin fiber
networks [1]. Such variations can be the cause of unexplained occasional failures that cannot be
predicted by deterministic material models [2–4]. It is, therefore, crucial to develop a sound stochastic
approach in studying mechanical failure of thin fiber networks of arbitrary size.

The rapid development of characterization tools enables the quantification of randomness at
different scales and the construction of random realizations of a fiber network. In our previous
works, the mechanical behavior of randomly generated networks was investigated using detailed
direct micromechanical simulations [5–8] (see Section 2.1). However, although such simulations
can capture the complicated mechanisms of failure, they cannot yet be employed for product
development due to the overwhelming computational costs required to capture the relevant product
sizes. For instance, simulation of the uniaxial mechanical response up to strain localization and failure
of a 24 mm × 24 mm fiber network takes two days on a modern 28-core, 128 GB RAM supercomputer.
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Therefore, the straightforward use of direct micromechanical simulations for predicting the mechanical
response of large structures of complex geometry will be impossible in the foreseeable future.
In Figure 1, examples of paper-based products composed of random fiber networks are shown.
A micro-tomography of a typical fiber network (Figure 1b) followed by numerical reconstruction
(Figure 1c) is also shown. An example of random occurrence of breaks of paper-based products can
be found in paper-making machines. Every break costs around 6000 € and some paper machines can
experience up to six breaks a day. With the speed of the machine reaching 2000 m/min, the break can,
therefore, occur once per 480 km of produced paper, which makes it an extremely stochastic event.

The aforementioned difficulties associated with predicting the mechanical response of larger
structures based on random local material properties has been the topic of extensive research for a
wide variety of materials including fiber systems [9–17]. In recent works, different methods based
on stochastic volume elements (SVEs) [18] have been used in a variety of applications to alleviate
the computational burden. In Reference [19], microstructure–property relations of heterogeneous
materials were assessed using a hierarchical decomposition of statistically representative volume
elements (RVEs) [20] into smaller SVEs. In Reference [21], analysis of particle reinforced viscoelastic
polymer nanocomposites was also performed using SVEs. Similarly, a stochastic multiscale model
for polycrystalline materials based on SVEs was developed in Reference [22]. In general, three
different scales are involved in such analysis: (1) the micro-scale, which is a characteristic size of
the microstructure; (2) the mesoscale, an intermediate scale such as the size of the volume element
over which a homogenization can be performed; and (3) the macro-scale which is the size of the
structural problem.

In this work, a stochastic constitutive model is proposed to address the aforementioned
computational difficulties associated with modeling large random fiber networks. The model is based
on SVEs and random field generation of local material properties. It includes three major components:
a deterministic constitutive model, characterization of SVE size-dependent model parameters, and
generation of two correlated non-Gaussian random spatial fields describing local material properties.
The model is numerically validated by ensuring (1) accurate prediction of mechanical failure, i.e.,
strength and strain to failure as well as strain localization pattern; and (2) generation of continuum
random realizations that are statistically equivalent to the ones generated using a direct simulation of
fiber networks.
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Figure 1. (a) Example of fiber-based product, (b) micro-tomography of fiber network, and (c) fiber
network schematic reconstruction.
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The methodology proposed in this work is generic but demonstrated for isotropic fiber networks
subjected to uniaxial loading until failure. The paper is organized as follows. An introduction to the
direct fiber network simulation as well as important concepts in stochastic multiscale modeling and
random spatial field modeling are presented in Section 2. The proposed stochastic constitutive model
is presented in Section 3. In Section 4, a validation of the model is first performed for small specimens
by comparing the results to direct fiber network simulations. The approach is thereafter demonstrated
by random generation and mechanical simulation of large continuum models of fiber networks.

2. Technical Background

2.1. Direct Simulation of a Thin Fiber Network

A 3D network of fibers is generated using a deposition technique in which the fibers are
sequentially deposited on a flat surface from two sides. The deposition algorithm can be outlined
as follows:

1. The fiber geometry is chosen from the fiber characterization data acquired with FiberLab
(Valmet Fiber Image Analyzer), which is an apparatus for measuring fiber characteristics.
It contains length, width, height, wall thickness, and curvature. The curvature is represented
through an arc of constant curvature located in a single plane parallel to the deposition plane.
The cross-sectional data is corrected using microtomography scans of a paper produced using
the considered softwood kraft pulp. The details of the correction are described elsewhere [6].

2. The fiber orientation is chosen randomly in this work although it can be controlled to match a
specific distribution.

3. The fiber position before deposition onto the domain is chosen randomly.
4. The first fibers are deposited on the flat plane consecutively from above or below. For the

subsequent fibers, we first find the intersection between them and the previously deposited fibers
in the plane (Figure 2a).

5. The found intersection points are lifted discretely to exclude penetration (Figure 2b). The contact
search diameter depicted in the figure corresponds to the height of the fiber, which is smaller or
equal to the width of the fiber normally.

6. The fiber geometry is smoothed to remove discontinuities caused by the previous step (Figure 2c).
During the smoothing, we control the maximum angle the fibers can form, and it was set to
5 degrees in this study.

7. When the grammage (the basis weight or the weight per unit area) of the network has reached
the prescribed value, the deposition procedure is stopped. The grammage used in this work was
28 g/m2, which is relatively low but corresponds to the set of handsheets used to calibrate the
measurements in Reference [6].

8. The thickness of the network is evaluated and measured using the procedure described in
Reference [6]. Thereafter, the thickness is brought to the target value by uniform scaling of the
coordinates in the thickness direction with respect to the center plane of the network. The target
value in this study was 68 micrometers, which corresponds to the measured value used in the
calibration [6]. The scaling may result in interpenetration, which are zeroed out during the
subsequent computations.

After generation of the geometry, the fibers are represented with a fine mesh of curved segments
and imported into a custom finite element code. The fibers are converted into cubic splines and a full
3D network finite element model [5,6,23] is used, in which fibers are resolved as a chain of 3D quadratic
Timoshenko/Reissner beam elements [24] with six degrees of freedom at each node. The implicit
time-integration is used. During contact detection, cross-sections of the fibers are treated as circular
and rigid, with the diameter equal to the mean of the values of fiber width and height. The mechanical
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bonds behavior is described with traction-separation laws with a cohesive zone model based on the
contact forces [6].Materials 2018, 11, x FOR PEER REVIEW  4 of 27 
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Table 1 summarizes the details of the fibers used in the analysis. The underlying data is identical
to that used by Reference [6], who focused on the mean values of the tensile properties of the networks.
The constitutive response of the fibers is described by a bilinear plasticity model with the material
parameters as listed in Table 2.

Table 1. Fiber geometrical data used in the network simulation, based on the direct measurement on
wet pulp (FMA), on dry sheets (µCT), and numerical parameters in terms of length-weighted mean
and standard deviation (SD) values.

Mean SD

Fiber length, mm 2.34 0.90
Fiber width, µm 23.83 7.09

Fiber wall thickness, µm 3.96 1.90
WH ratio, (-) 2.9 1.72

Fiber shape factor 0.945 0.015
Maximum interface angle, ◦ 5 -
Radius swelling factor 1, (-) 0.78 0.68

Wall thickness swelling factor, (-) 0.528 0.31
1 The ratio between dry and wet measured radius and wall thickness, respectively.

Table 2. Fiber material parameters used in the network simulation.

Elastic Modulus, GPa Tangent Modulus, GPa Yield Stress, MPa

30 10 150

The contact conditions at the fiber bonds are governed by a bilinear cohesive traction–separation
law. It requires the definitions of a bond’s stiffness, a bond’s strength and separation, see Table 3.
Since the beam’s cross-section is rigid against the local normal forces and shear forces, the physical
compliance of the fiber at the bonding sites is represented solely with the stiffness of the penalty-based
contact element.

Table 3. Characteristics of bonds used in the network simulation.

Tangential Direction Normal Direction

Bond strength, mN 11.00 2.75
Bond stiffness, 109 N/m 8.90 8.00
Separation distance, µm 1.56 0.35

The selection of the parameters listed in Tables 2 and 3 are based on the experimental calibration
in the tensile test described in Reference [6].
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The software used for the fiber network reconstruction as well as the input data are uploaded as a
Supplementary Materials to the current paper.

2.2. Multi-Scale Modeling

Multi-scale mechanical modeling of thin fiber networks is a powerful technique aimed at
predicting the mechanical response at the macro-mechanical level, based on properties at the meso- and
microscale. The up-scaling methodology in multi-scale methods generally relies on either SVEs [18] or
RVEs [25–29]. In the former, elements are characterized by a stochastic variation in their mechanical
response. Put another way, SVEs taken from different locations within the macroscopic body have
different material properties due to random variation at the micromechanical level. This is opposed
to the concept of RVEs, for which the material properties or any chosen statistical descriptor remain
constant regardless of the location of the RVEs within the macroscopic body [20]. An RVE can, therefore,
be defined as the smallest volume over which statistical representation can be made for the considered
material property [29]. It is used to determine the corresponding effective properties for a homogenized
macroscopic model. According to the micro–meso–macro principle [30], the RVE should be sufficiently
large in order to contain representative information about the microstructure, but its size should be
small compared to the studied macroscopic body.

Multi-scale strategies aiming at reconstructing a macroscopic body using RVEs may not be
successful, since an RVE may not exist [29]. An attempt to find an appropriate size of the RVE can be
made by increasing the size of an SVE until its response becomes independent of its spatial location.
In statistical terms, an appropriate RVE size is considered to be found when the standard deviation of
the chosen material property vanishes, and its mean value converges to a constant value. It has been
shown that, for instance, when considering a statistical descriptor related to the softening behavior of
the material in question, its mean value does not converge with increasing element size [5]. In such
cases, a multi-scale model based on the response of SVEs may be more appropriate.

As opposed to multi-scale applications where the focus is solely on the linear elastic response,
prediction of strength to failure of thin fiber networks is the main target of the present work. In Figure 3,
a multi-scale model for thin fiber networks based on SVEs is described. A fiber network is spatially
discretized using a chosen SVE size, see Figure 3a. It should be noted that the discretization may
involve overlapping SVEs. In Figure 3b, the response from direct numerical simulations on SVEs from
different spatial locations is shown and the random variation is apparent. In order to correctly model
the transition between different scales, the fiber network is created using a statistically equivalent
microstructure, Figure 3c. However, direct numerical simulation on a large fiber network in Figure 3a
is not possible due to formidable computational cost. The aim of this multi-scale strategy is therefore
to predict the mechanical response of the fiber network based on the mechanical response of the SVEs
in Figure 3b.
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Figure 3. (a) A large paperboard. (b) Numerical testing of a uniaxially loaded Stochastic Volume
Element (SVE) [7]. (c) Computer simulation of a statistically equivalent fiber network.

2.3. Random Field Representation

Accurate models of random local spatial variations of material response, such as the one observed
in Figure 3b, are necessary to correctly predict mechanical failure of the disordered fiber network.
In order to describe these local variations, random spatial fields are needed. A random field can be
represented as an infinite expansion of orthogonal basis functions and random expansion coefficients.
Let h(r, ω) : D ×Ω→ R be such a random continuous spatial field defined over a spatial domain

D, where r =
[

x y z
]T

is the spatial vector and ω ∈ Ω denotes an element of the sample space
indicating that the involved quantity is random. The random field’s covariance function is denoted
as C(r, r′) = cov(h(r, ω), h(r′, ω)). By the definition of a covariance function, it has the spectral
decomposition [31]

C
(
r, r′
)
=

∞

∑
i=1

λiηi(r)ηi
(
r′
)
, (1)

where λi and ηi(r) are the eigenvalues and eigenfunctions of the covariance function, respectively.
That is, they are the solution to the Fredholm integral∫

D
C
(
r, r′
)
ηi(r)dr = λiηi

(
r′
)
. (2)

The Karhunen-Loeve (KL) expansion [31] of the random field h(r, ω) uses the eigenfunctions of
the covariance function as expansion basis according to



Materials 2019, 12, 538 7 of 28

h(r, ω) = h(r) +
∞

∑
i=1

√
λiηi(r)ξi(ω), (3)

where h(r) is the mean function and ξi(ω) are orthogonal random variables with zero mean and
unit variance. Explicit expression for ξi(ω) can be found by multiplying Equation (3) by ηi(r) and
integrating over the spatial domain D according to

ξi(ω) =
1√
λi

∫
D

[
h(r, ω)− h(r)

]
ηi(r)dr, (4)

where use is made of the orthogonality property of the set {ηi(r)}∞
i=1.

The choice of basis function and expansion coefficients in the KL expansion is motivated by
truncating the infinite expansion according to Equation (3) and minimizing the total truncation
error. If the expansion is truncated at the M-th term, the truncation error is given by eM(r) =

∑∞
i=M+1

√
λiηi(r)ξi(ω). It can be shown that the total mean square error

∫
D eM(r)2dr is minimized

(subject to the orthogonality condition of {ηi(r)}) if the Fredholm integral equation according to
Equation (2) is satisfied. Therefore, of all possible choices of expansion basis, the Karhunen–Loeve (KL)
expansion [31] is the best approximation of the original random field in the sense that it minimizes the
total mean-square error resulting of its truncation.

The usefulness of the Karhunen–Loeve expansion hinges on the ability to determine the
eigenvalues and eigenfunctions of the random field covariance function through the Fredholm integral
equation. In this work, the continuous random field is discretized at N spatial points r1, r2, . . ., rN in
the domain D. An N × N covariance matrix with elements Cpq = C

(
rp, rq

)
can be defined, where rp

and rq are two spatial locations. For this discrete and finite case, the Fredholm integral equation can be
rewritten as

Cηi = λiηi, (5)

where {λi}N
i=1 and {ηi}N

i=1 are eigenvalues and eigenvectors of the covariance matrix C. That is, when
the random field is discretized, operations on functions are transformed into operation on matrices.
The KL expansion of the discrete random field [32–35] can be written as

h(ω) = h +
N

∑
i=1

√
λiηiξi(ω), (6)

where
h(ω) =

[
h(r1, ω) h(r2, ω) · · · h(rN , ω)

]T
(7)

denotes a random vector whose elements are the random field values at the N discrete points and

h =
[

h(r1) h(r2) · · · h(rN)
]T

. The random coefficients are obtained from

ξi(ω) =
1√
λi

(
h(ω)− h

)T
ηi. (8)

In general, the underlying covariance function C(r, r′) is not known. One crucial task is therefore
the modelling of the covariance function based on sampling and characterization of the spatial random
fields. It should be noted that the above description can be extended to represent multivariate random
spatial fields. In this case, the covariance matrix C is composed of both auto- and cross- covariances,
where the latter describes the correlation between different spatial fields, see Section 3.2.
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3. Continuum Random Realization and Mechanical Failure of Thin Fiber Networks

3.1. Overview of Methodology

The aim of this work is to model computationally expensive random isotropic 3D-fiber network
realizations by statistically equivalent random continuum realizations, see Figure 4. The model is
based on the random spatial fields of strain to failure εf(r, ω) and strength σf(r, ω) which are found
using direct mechanical simulation on SVEs. The latter is defined as the ratio of the applied force on
the SVE and the average thickness of the whole fiber network. The characterization and reconstruction
of the random spatial fields as well as the stochastic constitutive model used to predict the mechanical
response of isotropic fiber networks of arbitrary size, is presented in Sections 3.2–3.5.
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3.2. Characterization and Simulation of Random Spatial Fields of Strength and Strain to Failure Based on
Stochastic Volume Elements (SVEs)

The proposed continuum model of isotropic 3D fiber networks is based on two continuous
macro-mechanical spatial fields describing the material properties at each material point in a 2D spatial

domain r =
[

x y
]T

. These are the uniaxial strength σf(r, ω) and uniaxial strain to failure εf(r, ω).
The characterization methodology of the random spatial fields is detailed in Table 4.

The first step is the sampling of the spatial fields. Since the fiber network is isotropic, it is
sufficient to determine the spatial fields in one coordinate direction, see Figure 5a. A specimen of
length L is discretized using SVEs of size LSVE ×WSVE. The discretization distance ∆L is the distance
between the centers of two neighboring SVEs corresponding to material points in the continuum model.
All SVEs are cut from the fiber network and a numerical uniaxial test is performed. The resulting
one-dimensional spatial fields of the strain to failure εf(x, ω) and strength σf(x, ω) are schematically
shown in Figure 5b.
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An important characteristic of these spatial fields is their mutual correlation. It is computed
from the Pearson’s correlation coefficient based on the one-dimensional spatial fields in Figure 5b
according to

ρt
εfσf

=
N ∑N

i=1 εf(xi)σf(xi)−∑N
i=1 εf(xi)∑N

i=1 σf(xi)√
N ∑N

i=1 εf(xi)
2 −

(
∑N

i=1 εf(xi)
)2
√

N ∑N
i=1 σf(xi)

2 −
(

∑N
i=1 σf(xi)

)2
. (9)

In Equation (9), superscript “t” denotes that this is a target value that needs to be satisfied when
simulating new realization of εf(x, ω) and σf(x, ω) or εf(r, ω) and σf(r, ω).

Table 4. Characterization and simulation methodology.

Steps Details

C
ha

ra
ct

er
iz

at
io

n

1D Sampling of:
εf(x, ω) and σf(x, ω)

Figure 5a,b

Computing Pearson’s correlation coefficients:
ρt

εfσf

Equation (9)

Fitting probability distribution of:
εf(ω) and σf(ω)

Equation (10)
Figure 5c

Transformation to correlated Gaussian fields:
g1(x, ω) and g2(x, ω)

Equation (11)
Figure 5d

Average distance between two zero level upcrossings:
µt

upcr1 and µt
upcr2

Equations (12) and (13)
Figure 11 b,c

Modeling of auto- and cross-covariance function for
multivariate Gaussian fields:

K11(r, r′|`1), K22(r, r′|`2), K12(r, r′|ρ12, `12)

Equation (14)
Equation (15)

Determination of constants: `1, `2, ρ12, `12

Initial guesses: `(0)1 , `(0)2 , ρ
(0)
12 , `(0)12

Equation (19)
Equation (20)

Si
m

ul
at

io
n Simulation using Karhunen-Loeve expansion of 2D

correlated Gaussian fields: g1(r, ω) and g2(r, ω)
Equation (21)

Transformation to original random field:
εf(r, ω) and σf(r, ω)

Equation (22)

The next step is to fit a probability density function for the random variables εf(ω) and σf(ω).
In Figure 5c, histograms of m random outcomes of εfi and σfi are shown. These are generated by
cutting SVEs from random spatial locations in a large fiber network. The probability density functions
(pdf) fεf(εf) and fσf(σf) are approximated based on the kernel density estimators fεf(εf) =

1
mhεf

∑m
i=1 ϕ

(
εf i−εf

hεf

)
fσf(σf) =

1
mhσf

∑m
i=1 ϕ

(
σf i−σf

hσf

) , (10)

where ϕ is the standard normal density function and hεf , hσf > 0 are smoothing bandwidth.
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Figure 5. (a) Sample used to characterize the spatial random fields of εf and σf with discretization
distance ∆L. Schematic (b) Spatial random fields of εf and σf. (c) Univariate approximation of the
probability density function of εf and σf. (d) Transformed Gaussian random fields.

Thereafter, a transformation from the non-Gaussian fields (εf(x, ω) and σf(x, ω)) to correlated
Gaussian random fields (g1(x, ω) and g2(x, ω)) with zero mean and unit variance is performed.
It should be emphasized that this step is performed to facilitate the modeling of the covariance function
and that the Gaussian fields are later transformed back to the original spatial fields. The transformation
to Gaussian random fields is performed using the relation [36,37]{

g1(x, ω) = φ−1{Fεf [εf(x, ω)]}
g2(x, ω) = φ−1{Fσf [σf(x, ω)]}

, (11)

where Fεf(εf) and Fσf(σf) are the cumulative density functions (CDFs) found by integration of the
kernel density estimators according to Equation (10), and φ is the standard normal CDF. In Figure 5d),
these Gaussian random fields are schematically shown. An important characteristic of each of these
one-dimensional Gaussian fields gi is the average distance between two zero level up-crossings
denoted by µt

upcri [38]. These are computed based on the number of up-crossings in the interval [0, L]
corresponding to the specimen length in Figure 5a, defined as

Nupcri , #
{

x ∈
[

0 L
]

: gi(x) = 0,
dgi
dx

> 0
}

. (12)

The average distance between two zero level up-crossings for g1 and g2 is therefore given by{
µt

upcr1 = L
Nupcr1−1

µt
upcr2 = L

Nupcr2−1
. (13)
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From Equation (13) it is seen that the required specimen length L has to be chosen sufficiently
large so that both µt

upcr1 and µt
upcr2 converges to a constant value, see Section 4.1 and Figure 11c,d.

These values are target values in the sense that they need to be satisfied when simulating new
realization of εf(x, ω) and σf(x, ω) followed by the transformation according to Equation (11).

A crucial step in the characterization of random spatial fields is to choose an appropriate model
for the underlying covariance function. This is easiest performed in the transformed Gaussian random
variable space. The choice of model is important in that the properties of the Gaussian random field,
such as smoothness or differentiability, are determined by the eigenvalues and eigenfunctions of the
covariance function. In this work, the squared exponential kernel is used to model the auto-covariance
for g1(r, ω) and g2(r, ω), denoted by K11(r, r′) and K22(r, r′), respectively, according to

K11(r, r′) = exp
(
− |r−r′ |2

2`1
2

)
K22(r, r′) = exp

(
− |r−r′ |2

2`2
2

) . (14)

This choice of covariance function satisfies the condition of high smoothness and is infinitely
differentiable. From Equation (14), it can be seen that the auto-covariance is only a function of the
distance between two spatial locations |r− r′| in relation to a characteristic length scale (`1 and `2),
see Figure 5d. The choice of length scale therefore affects how far away two spatial field values need
to be in r-space before they can be significantly different. Furthermore, the spatial fields g1(r, ω) and
g2(r, ω), representing the normalized strain to failure and strength, are assumed spatially correlated.
Therefore, the cross-covariance function cov(g1(r, ω), g2(r′, ω)) needs to be modeled to describe this
spatial correlation. The cross-covariance is modeled as

K12
(
r, r′
)
= ρ12 exp

(
−|r− r′|2

2`12
2

)
, (15)

i.e., using an exponential kernel function with a correlation coefficient ρ12 and characteristic length
`12. A total of four unknowns `1, `2, ρ12 and `12, need to be determined based on the one dimensional
sample spatial field data in Figure 5d. For a discretized random field, the multivariate covariance
matrix is given by

K =

[
K11 K12

K12 K22

]
, (16)

where K11,pq = K11
(
rp, rq

)
, K22,pq = K22

(
rp, rq

)
, and K12,pq = K12

(
rp, rq

)
. Using the one-dimensional

spatial field data, see Figure 5d, these matrices become N × N covariance matrices. The sample data
from both random fields can be collected into the vector

g(ω) =
[

g1(ω)T g2(ω)T
]T

(17)

where g1(ω) =
[

g1(x1, ω) · · · g1(xN , ω)
]T

and g2(ω) =
[

g2(x1, ω) · · · g2(xN , ω)
]T

.
This set of observations g(ω) can be regarded as samples from a multivariate Gaussian distribution,
i.e., g(ω) ∼ N (0, K). The log-marginal likelihood function [38] (MLII) is the natural logarithm of the
distribution of g(ω), which can be written as

logN (0, K) = −1
2

(
g(ω)TK−1g(ω) + log|K|+ 2N log 2π

)
. (18)

A widely used method for the determination of unknown parameters of the Gaussian random
fields is the maximization of the log-marginal likelihood function. In this work the unknown
parameters `1, `2, ρ12, and `12 are determined by the maximization of the log-marginal likelihood
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function according to Equation (18) subject to three constraints. This can equivalently be written as a
minimization problem according to

min
`1, `2, ρ12, `12

g(ω)TK−1g(ω) + log|K|

s.t. ρεfσf = ρt
εfσf

s.t µupcr1 = µt
upcr1

s.t µupcr2 = µt
upcr2

. (19)

The first constraint enforces that correlation coefficient between the strength and strain to failure
ρεfσf matches the one computed from the analysis of the L×WSVE specimen in Figure 5d, where ρt

εfσf
is

given by Equation (9). The second and third constraints enforces that the average distance between two
zero levels up-crossings for the normalized spatial fields g1(x, ω) and g2(x, ω), respectively, matches
the target ones, µt

upcr1 and µt
upcr2, computed in Equation (13).

Successful solution of the optimization problem according to Equation (19) is simplified if good
initial guesses for the unknown parameters are used. The following initial values are used in the
first iteration: 

`
(0)
1 =

µt
upcr1
2π

`
(0)
2 =

µt
upcr2
2π

ρ
(0)
12 = ρt

εfσf

`
(0)
12 =

`
(0)
1 +`

(0)
2

2 .

. (20)

As is seen, the initial guesses for the characteristic length scales `(0)1 and `
(0)
2 are proportional to

the target average distance between zero-level up-crossings. The proportionality constant 2π is based
on the analysis of univariate one-dimensional spatial fields with an underlying exponential Gaussian
covariance function [38]. Furthermore, the initial guess ρ

(0)
12 is given by ρt

εfσf
. It should be observed

that ρ12 6= ρεfσf due to the non-linear transformation that relates the normalized spatial fields and the

original spatial fields. The initial guess `(0)12 is chosen arbitrarily.
In order to generate new realizations of 2D-spatial fields of strain to failure εf(r, ω) and

strength σf(r, ω), simulation of Gaussian random fields g1(r, ω) and g2(r, ω) is first performed.
The KL-expansion is used to simulate discrete and correlated Gaussian random fields g(ω) =[

g1(ω)T g2(ω)T
]T

, see Section 2.3. It can be written as

g(ω) =
N

∑
i=1

√
λiηiξi(ω), (21)

where {λi}N
i=1 and {ηi}N

i=1 are eigenvalues and eigenvectors of the covariance matrix K in Equation (16).
Since g(ω) ∼ N (0, K), the random variables ξi(ω) become independent standard normal variables.
A transformation is thereafter performed according to{

εf(r, ω) = Fεf
−1{φ[g1(r, ω)]}

σf(r, ω) = Fσf
−1{φ[g2(r, ω)]}

. (22)

3.3. Constitutive Model

An empirical relation between the equivalent stress σeq and the equivalent strain εeq of the form

σeq

σf
=

(
1− f1(κ, n)

(
εeq

εf

)n)
f2(κ, n)tan h

(
κ

εeq

εf

)
, εeq ≤ εf (23)



Materials 2019, 12, 538 13 of 28

is assumed to model the response of each SVE in the network. In Equation (23), κ > 0 is a
parameter controlling the elastic and elastoplastic modulus, n > 0 is a damage exponent and
f1−2 > 0. The relation is a variant of a Bammann–Chiesa–Johnson (BCJ) model previously used
in stochastic constitutive modeling [39]. Enforcing that σeq

(
εeq = εf

)
= σf and ∂σeq

∂εeq

∣∣∣εeq=εf = 0 , yields
the following relations  f1(κ, n) = κ

nsin h(κ)cos h(κ)+κ

f2(λ, n) = nsin h(κ)cos h(κ)+κ

nsin h2(κ)

. (24)

The elastic modulus can be written as

E =
nsin h(κ)cos h(κ) + κ

nsin h2(κ)

σf
εf

. (25)

Since f1−2 are functions of n and κ, it is sufficient to study the effect of these two parameters in
Equation (23). As can be seen from Figure 6, increasing the damage exponent n or decreasing the
parameter κ has a similar effect on the stress–strain curve. In the proposed model, one value of the
damage exponent n is assumed suitable to model the response of SVEs of same size, while κ is fitted to
each SVE realization. The residual sum of squares resulting from fitting Equation (23) to a uniaxial test
performed on the jth SVE is denoted by ej

(
n, κj

)
. The optimal parameter n is found by minimizing the

total sum of these errors for all SVEs, i.e., min
n

∑NSVE
j=1 ej

(
n, κ∗j

)
s.t. κ∗j = arg min

κj
ej
(
n, κj

)
, j = 1..NSVE

, (26)

where NSVE is the total number of SVEs and the parameters
{

κ∗j

}NSVE

j=1
are found by minimizing the

error for each uniaxial test, as is seen from the constraints in Equation (26). The procedure is outlined
in Figure 7. A large number of SVEs of the same size are randomly cut from a large fiber network, see
Figure 7a. This assures that the SVEs are uncorrelated. A numerical uniaxial tensile test is performed
on all extracted SVEs, see Figure 7b. All curves are scaled by their respective strength and strain to
failure, see Figure 7c, and the relation in Equations (23) and (24) is fitted to the responses according to
Equation (26).

From Figure 6b, it is apparent that increasing the parameter κ, for a constant n (i.e., constant SVE
size), also corresponds to an increasing elastic and plastic work in a uniaxial test. It is therefore clear
that larger κ values are typical for responses characterized by larger strain to failure values. This leads
to the assumption κ ∝ εf, see Figure 7d and Section 4.1. A stochastic relation of the form

κ = c1 + c2εf + R (27)

is assumed, where c1 and c2 are found by least squares fit for SVEs of the same size and the residual
error R ∼ N (0, sR) is assumed to follow a normal distribution with a standard deviation sR computed
from the residual fitting errors

{
Rj
}NSVE

j=1 , see Figure 7d. The last term in Equation (27) ensures that
the elastic modulus according to Equation (25) is not solely dependent on σf and εf but involves an
additional random component. The uncertainty can be seen as an epistemic model error, resulting
from the assumption according to Equation (27).
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The softening part of the SVE response is modeled as

σeq

σf
= −ξ

(
εeq

εf
− 1
)2

+ 1, εeq ≥ εf, (28)

where ξ > 0 is a parameter controlling the softening rate of the SVE response, see Figure 6. A small
softening parameter ξ = 0.15 is chosen in order to increase the compliance of the system and assure
numerical stability, but large enough for strain localization to onset in a large sample composed
of SVEs.

An isotropic plane stress state is assumed to prevail, and a non-linear hardening model is used to
model the constitutive response of the thin fiber network. The relation between the increment in stress

vector σ =
[

σx σy τxy

]T
and strain vector ε =

[
εx εy γxy

]T
is given by

∆σ = Dtan∆ε, (29)

where Dtan = D−Dpl is the tangent stiffness matrix. The elastic stiffness matrix is given by

D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1

2 (1− ν)

, (30)

with Poisson’s ratio ν = 0.3 and elastic modulus given from Equation (25). The elastic–plastic tangent
stiffness matrix is expressed as [40]

Dpl =
9E2

4Aσeq2(1− ν2)
2


s∗xx

2 s∗xxs∗yy (1− ν)s∗xxsxy

s∗yys∗xx

(
s∗yy

)2
(1− ν)s∗yysxy

(1− ν)sxys∗xx (1− ν)sxys∗yy (1− ν)2sxy
2

, (31)

where σeq is the equivalent stress according to Equation (23) computed at the effective plastic strain

εe,pl =
(

2
3 ∑i ∑j εij,plεij,pl

)1/2
, εij,pl is the plastic strain component, sij is the deviatoric stress component,

s∗xx = sxx + νsyy, s∗yy = syy + νsxx, and A is given by

A = H +
9E

4(1 + ν)σeq2

∑
i

∑
j

sijsij +
ν

1− ν

(
∑

i
sii

)2
. (32)

In Equation (32), H is the plastic modulus computed as H =
∂σeq
∂εeq

∣∣∣
εeq=εe,pl

using Equation (23).

The consistency condition with a von Mises plasticity assumption states that the plastic strain increment
is given by

∆εij,pl = ∆εe,pl
3sij

2σeq
. (33)

The plane stress condition implies that szz =
(
σx + σy

)
/3 and therefore ∆εz,pl 6= 0.

3.4. Finite-Element Implementation

The determined parameters n, c1, c2, and sR and the spatial fields εf(x, y) and σf(x, y) are used
to specify the material properties in a Finite-Element (FE) model. The randomly generated spatial
fields are applied on the integration points and extrapolated to the nodes. This ensures a continuous
material property spatial field.



Materials 2019, 12, 538 16 of 28

3.5. Summary of the Proposed Stochastic Constitutive Model

A flowchart of the proposed method is presented in Figure 8. The parameters `1, `2, ρ12, and `12

are used to construct the random spatial fields of strength and strain to failure σf(r, ω) and εf(r, ω).
Given these spatial fields as input to the isotropic constitutive model in Section 3.3, as well as the
parameters n, c1, c2, and sR, the random tangent stiffness matrix Dtan(r, ω) = D(r, ω)−Dpl(r, ω) can
be determined. The randomness of the elastic stiffness matrix D given in Equation (30) at any spatial
location r follows from the randomness of the elastic modulus. The latter can be expressed using
Equations (25) and (27) according to

E(r, ω) =
nsin h(c1 + c2εf(r, ω) + R)cos h(c1 + c2εf(r, ω) + R)

nsin h2(c1 + c2εf(r, ω) + R)
σf(r, ω)

εf(r, ω)
. (34)
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Figure 8. Flowchart of the proposed stochastic constitutive model.

As can be seen the parameter sR contributes to the random response through the normal random
variable R ∼ N (0, sR). The same is true for the elastic-plastic tangent stiffness matrix. The parameters
`1, `2, ρ12, `12 as well as n, c1, c2, and sR are all dependent on the chosen SVE size so that the
constitutive response becomes independent of the latter. Poisson’s ratio ν = 0.3 is assumed constant
and independent of SVE size. The softening behavior at each material point is assumed constant and
negligible with ξ = 0.15.

4. Results

4.1. Determination of SVE Size-Dependent Stochastic Constitutive Model Parameters

The eight parameters in the stochastic constitutive model, n, c1, c2, sR, `1, `2, ρ12, and `12 are
dependent on the choice of SVE size, see Table 5. In this section, the determination of these parameters
for an SVE size of 6 × 6 mm2 and 4 × 4 mm2 is demonstrated.

Table 5. Stochastic constitutive model parameters using 6 × 6 mm2 or 4 × 4 mm2 SVEs.

SVE Size n c1 c2 sR `1 `2 ρ12 `12

6 × 6 40.7 0.5058 0.7702 0.0671 0.85 1.95 0.55 1.25
4 × 4 34.6 0.4591 0.8017 0.0977 0.80 1.90 0.65 1.20

The parameters n, c1, c2, and sR in the relation according to Equation (23) and Equation (27)
are first determined. A total of 70 SVEs of the same size are cut from random locations in a large
fiber network, and a uniaxial test is performed on each SVE. The responses for all SVEs are shown in
Figure 9a,b. The response of three SVEs together with the corresponding fitted model according to
Equation (23) is shown in Figure 9c,d. Based on the procedure outline in Section 3.3, a value of n = 40.7
was found to minimize the sum of all least square errors from fitting Equation (23) to all 6 × 6 mm2

numerical tests. The corresponding optimal κj values, one for each SVE test, resulted in c1 = 0.5058
and c2 = 0.7702 after performing the linear regression κj = c1εf j + c2, see Figure 9e. The standard
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deviation of the residual fitting error was sR = 0.0671 and was used as a deterministic parameter in
the stochastic relation according to Equation (27).Materials 2018, 11, x FOR PEER REVIEW  16 of 27 
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simulation and fitted models for three (c) 6 × 6 mm2 and (d) 4 × 4 mm2 SVEs. Linear regression 
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Figure 9. Seventy numerical experiments using direct simulations of uniaxially loaded (a) 6 × 6 mm2

and (b) 4 × 4 mm2 SVEs cut from different spatial locations in a fiber network. Response from direct
simulation and fitted models for three (c) 6 × 6 mm2 and (d) 4 × 4 mm2 SVEs. Linear regression
between optimal κ values and εf according to Equation (27) for (e) 6 × 6 mm2 and (f) 4 × 4 mm2 SVEs.

The random spatial field distributions of εf(r, ω) and σf(r, ω) were characterized by the parameters
`1, `2, ρ12, and `12, see Table 5, which were determined by the optimization problem according
Equation (19). In the following, the determination of the target values for the three constraints as well
as initial guesses for the optimization parameters are detailed for the 6 mm × 6 mm SVE size, see
Table 6.
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Table 6. Constraints and the initial guess for the optimization problem according to Equation (19) for
6 × 6 mm2 SVEs.

Constraints Initial Guess

ρt
εfσf

µt
upcr1 µt

upcr2 ρ
(0)
12 `

(0)
1 `

(0)
2 `

(0)
12

0.55 6.3 11.9 0.55 1.0 1.9 1.45

Following the methodology outlined in Figure 5, a realization of the spatial fields εf(x, ω) and
σf(x, ω) computed by discretizing a 360 × 6 mm2 specimen using 6 × 6 mm2 SVEs is shown in
Figure 10a,b. A total of N = 360 points or SVE uniaxial tests are performed with a discretization
distance of 1 mm. The target correlation ρt

εfσf
was determined by computing the correlation between

εf(x, ω) and σf(x, ω), resulting in ρt
εfσf

= 0.55. The initial guess for the parameter ρ12 was given by

ρ
(0)
12 = ρt

εfσf
= 0.55. In Figure 10c,d, the probability density functions of εf and σf, computed from

the 70 SVE tests used in the determination of n, c1, c2 and sR are shown together with the fitted
kernel distributions.
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Figure 10. Spatial random fields of (a) εf and (b) σf. Kernel approximation of the probability density
function of (c) εf and (d) σf.

The resulting normalized spatial fields g1(x, ω) = φ−1{Fεf [εf(x, ω)]} and g2(x, ω) =

φ−1{Fσf [σf(x, ω)]}, computed using the kernel approximation of the PDFs, are shown in Figure 11a,b.
In Figure 11c,d, the average distance between two zero level up-crossings was computed for an
increasing number of points along the length of the specimen. As can be seen, a specimen length of
L = 250 mm was necessary for convergence to µt

upcr1 = 6.3 mm and µt
upcr2 = 11.9 mm. The initial

guesses `
(0)
1 = µt

upcr1/2π = 1.0 mm, `(0)2 = µt
upcr2/2π = 1.9 mm, and `

(0)
12 =

`
(0)
1 +`

(0)
2

2 ≈ 1.45 can
therefore be computed.
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Figure 11. Transformed Gaussian random field of (a) εf and (b) σf. Average distance between two
zero-level up-crossings for (c) g1 and (d) g2 as a function of specimen length.

4.2. Continuum Reconstruction of A 18 × 18 mm2 Sample and Choice of SVE Size

Validation of the methodology was performed by comparing results from uniaxial tensile tests on
the fiber network and the SVE-based continuum model. The boundary conditions applied on the fiber
network is shown in Figure 12a. For the proposed continuum model, the same boundary conditions
would result in stress concentration and in turn erroneous strain localization initiation. Therefore, the
clamped ends in the fiber network were modeled in the continuum model using a contact boundary
condition, see Figure 12b. Very low contact penalty stiffness was used to allow free contraction at the
boundaries. In order to avoid uneven deformation at the ends due to the low contact stiffness, the
boundary nodes were coupled with respect to their axial deformation ux.

A uniaxial tensile test was performed on a specimen of size 18 × 18 mm2 using direct simulation
and the continuum model based on both a 4 × 4 mm2 and a 6 × 6 mm2 SVE size. The constitutive
model parameters used are according to Table 5. The discretization distance (see Figure 5a), i.e., the
distance between the centers of the SVEs, is half of the SVE size in both the length and width direction.
The spatial distribution of stress σf and strain to failure εf for both SVE sizes is presented in Figure 13.
As can be seen, the weakest material point using the 4 × 4 mm2 SVE is at the lower right part of the
specimen and has a value of 13.90 MPa. The corresponding value using 6 × 6 mm2 SVEs is 14.86 MPa
at approximately the same location. For the smaller SVE size, a higher variation in strength and strain
to failure values can be observed within the specimen.
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Figure 12. Finite element model and boundary conditions of a uniaxial test using (a) direct fiber
simulation and (b) proposed continuum model.
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Figure 13. Spatial distribution of strength σf (MPa) and strain to failure εf (%) using SVEs of size
(a) 4 × 4 mm2 and (b) 6 × 6 mm2 and a discretization distance of half the SVE size.
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In Figure 14a, the uniaxial response in the x-direction using the continuum model is shown
together with the response from the direct simulation. The results for both SVE sizes are in good
agreement with direct simulation, with an absolute relative error in strength to failure of 0.4% and
−2% for the 4 × 4 mm2 and 6 × 6 mm2 SVE size, respectively. The corresponding errors in strain
to failure, 6% and −6%, are, however, larger. In Figure 14b, the responses are also compared for an
applied load in the transverse y-direction, with an overall performance similar to the x-direction.

In Figure 15, the spatial distribution of uniaxial strain in the loading direction is shown using
direct simulation on the fiber network as well as the continuum model using 4× 4 mm2 and 6× 6 mm2

SVEs. The spatial distributions are shown for an increasing uniaxial load applied in the x-direction.
By comparing Figures 13 and 14, it is clear that strain localization was initiated at weak material points.
It is also seen that the strain localization pattern from direct simulation matched the ones from the
continuum models relatively well.
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Figure 15. Spatial distribution of uniaxial strain with increased loading for: direct simulation,
continuum model with SVE size 4 × 4 mm2, and continuum model with SVE size 6 × 6 mm2.

4.3. Random Continuum Simulation of 18 × 18 mm2 and A4 Paper Sample

In this section, random continuum realizations of the fiber network were subjected to a uniaxial
loading. The proposed stochastic continuum model presented in Section 3 is used for both stochastic
realization (Section 3.2) and constitutive response (Section 3.3). For a specimen size of 18 mm × 18 mm,
the results are presented in Figure 16. Two correlated random spatial fields of strength and strain
to failure, see Figure 16a,b, are first constructed based on an SVE size of 6 mm × 6 mm, i.e., using
`1, `2, `12, and ρ12 according to Table 5. As can be seen, these randomly generated spatial fields are
similar to the spatial fields obtained by cutting and testing direct fiber networks, see Figure 13c,d.
The mechanical response is thereafter computed based on these spatial fields as well as the parameters
n, c1, c2, and sR, see Figure 16c. It should be emphasized that the randomness in the model is not only
determined by σf and εf but also depends on sR, as can be seen from the expression of the stiffness
according to Equation (34). In Figure 16d, the uniaxial strain defined as the spatial derivative of the
displacement field, is computed for the maximum applied stress marked in red in Figure 16c. As can
be seen, damage localization was observed consistent with the observation from the analysis of the
direct fiber network in Figure 15.
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Figure 16. Randomly simulated spatial field of (a) strength σf(Mpa) and (b) strain to failure εf (%); (c)
uniaxial response; and (d) spatial distribution of uniaxial strain at the maximum applied stress (marked
by a red point in (c)).

The major potential of the stochastic continuum model is demonstrated by the construction
of larger specimens for which results cannot be validated using direct numerical simulation.
A 297 × 210 mm2 specimen (A4 paper size) was constructed and analyzed using the proposed model
based on a 6 mm × 6 mm SVE size. Similarly to the result presented in Figure 16, the constructed
spatial fields of strength and strain to failure are presented in Figure 17a,b, respectively, and the global
uniaxial response of the specimen is presented in Figure 17c. The spatial distribution of uniaxial strain
computed at the maximum global uniaxial stress, marked by a red point in Figure 17c, is presented in
Figure 17d. By comparing Figures 17c and 16c, it is seen that the response is more brittle for the larger
specimen. This is, for instance, seen by comparing the softening branch of the response in both figures.
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for all three realizations, the difference between the strongest and weakest material points within the 
specimen is high due to the large considered size. From the uniaxial response also shown in the 
figure, a small variation in strength can be observed. The variation in corresponding strain to failure 
is, however, larger. This statistical variation in material response demonstrated using the proposed 
model, together with the variation in the applied load, can be seen as a major reason for the random 
occurrence of breaks in paper machines. From this example, it can be concluded that the disordered 
nature of the fiber network contributes to the statistical variation in mechanical response, even for 
such large specimens. 
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4.4. Simulation of Stochastic Failure in Paper-Making Machines

Consider a paper-making machine, Figure 18a, with a construction that results in breaks that
mostly occur in an open draw of 1 m [18], see Figure 18b.
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Figure 18. (a) Paper machine during the paper-making process. (b) Paperboard with rollers placed
1-m apart.

Using the proposed method, random realizations of 1 m × 8 m samples can be simulated.
In Figure 19, three constructed spatial fields of strength and strain to failure are shown. It is seen that,
for all three realizations, the difference between the strongest and weakest material points within
the specimen is high due to the large considered size. From the uniaxial response also shown in the
figure, a small variation in strength can be observed. The variation in corresponding strain to failure
is, however, larger. This statistical variation in material response demonstrated using the proposed
model, together with the variation in the applied load, can be seen as a major reason for the random
occurrence of breaks in paper machines. From this example, it can be concluded that the disordered
nature of the fiber network contributes to the statistical variation in mechanical response, even for
such large specimens.
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5. Discussion

In this paper, a stochastic constitutive model for disordered fiber networks, derived through the
mechanical response of stochastic volume element, is presented. The model is based on two correlated
random spatial fields representing the spatial distribution of strength and strain to failure of the SVEs.
These spatial fields are constructed using a multivariate kernel characterized by four parameters
that are determined by analyzing realizations of direct fiber networks. The multiaxial non-linear
mechanical response is modeled using an isotropic plasticity model with four additional parameters.
The randomness in the material response is determined through the stochastic spatial fields εf(x, y)
and σf(x, y) as well as the parameter sR in the constitutive model. All model parameters are dependent
on the chosen SVE size. This assures that the global response is relatively independent of SVE size.
The independence of SVE size is achieved as long as the ratio between the spatial correlation length
and mesh size is large [22]. However, a large enough SVE should be chosen in order to limit the
influence of boundary conditions during the numerical tests performed on SVEs cut from the direct
fiber network. It should be noted that, the constitutive model obtained using SVEs face two sources
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of uncertainties: one contribution resulting from the applied boundary conditions and the other one
from the uncertainties in the micro-structure. However as is seen in Reference [22], the uncertainties
resulting from the micro-structure randomness, is assumed more important than the ones resulting
from the applied boundary conditions.

The proposed methodology based on SVEs is validated by comparing the mechanical response of
18 mm × 18 mm samples using direct numerical simulation on the fiber network and the proposed
continuum model. The results are compared through uniaxial loading in both the longitudinal and
transverse direction. It has been shown that both mechanical response and strain localization pattern
using the continuum model matches the one from the direct simulation relatively well. Based on
the demonstrated accuracy, it may be concluded that using two spatial fields εf(x, y) and σf(x, y) is
enough to characterize the material behavior and that the error from neglecting other spatial field
variations is small. An important aspect explaining the error observed in the global strain and strength
to failure is the assumption of isotropy of the SVE in the constitutive model. In future work, the use of
an anisotropic plasticity model to describe the mechanical response of the SVE may further increase the
accuracy in the global response. It should furthermore be noted that the results are mesh independent,
since failure is assumed to occur when the maximum global stress is reached, and the mesh-dependent
global softening behavior is therefore not of interest.

The proposed model paves the way to quantifying uncertainties in the response of thin fiber
networks using the stochastic constitutive model. The eight parameters in the model can be linked to
microstructural features [18] of the fiber network which opens the possibility to designing the network
such that the variability in the global response is limited. For instance, it has been noted that the spatial
fields of strain to failure and strength have different characteristic length. This is directly linked to
microstructural features such as fiber connectivity and fiber orientation, which may affect the spatial
fields differently. In the future, it is intended to enrich the present description by performing reliability
estimation [41,42] and reliability-based design optimization (RBDO) [43], where both material and
load variability are incorporated.

6. Conclusions

The conclusions in the papers can be summarized as follows.

• A stochastic constitutive model was proposed for isotropic fiber networks.
• The effect of fiber disorder for isotropic fiber networks can be quantified at the macromechanical

level using the proposed method.
• In order to implement the stochastic constitutive model, eight SVE size-specific material

parameters are necessary.
• The randomness in the model was simulated using random field realizations of strain to failure

and strength. An epistemic uncertainty parameter also contributes to the randomness.
• Different characteristic lengths for the spatial fields of strain to failure and strength are assumed,

which is in agreement with what is observed in direct fiber network simulation.
• The proposed model speeds up the simulation time of fiber networks compared to direct numerical

simulations. A 24 mm × 24 mm simulation takes 2 min on a modern 128 GB RAM supercomputer
while a corresponding direct fiber network simulation takes 2 days.

• The constitutive model captures the transition from ductile behavior for small sample size to
semi-brittle behavior for larger sample size (Section 4.3).

Supplementary Materials: The software used for the fiber network reconstruction as well as the input data are
available online at http://www.mdpi.com/1996-1944/12/3/538/s1.

Author Contributions: R.M.: Funding acquisition, Methodology, Software, Writing; A.K.: Funding acquisition,
Methodology, Software, Supervision, Writing; W.C.: Supervision; M.O.: Methodology, Supervision.

http://www.mdpi.com/1996-1944/12/3/538/s1


Materials 2019, 12, 538 27 of 28

Funding: The authors at the Royal Institute of Technology acknowledge and thank the VINN Excellence center
BiMaC Innovation and its industrial partners as well as ÅForsk and The Swedish Research Council, grant number
2015-05282, for their financial support of this research. The computations resources were provided by the Swedish
National Infrastructure for Computing (SNIC) at HPC2N, Umeå (Project SNIC2017-1-175). Wei Chen is supported
by Center for Hierarchical Design (ChiMad NIST 70NANB14H012).

Conflicts of Interest: There is no conflict of interest.

References

1. Uesaka, T. Statistical aspects of failure of paper products. In Mechanics of Paper Products (Chapt 8);
Niskanen, K., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012.

2. Hristopulos, D.T.; Uesaka, T. Structural disorder effects on the tensile strength distribution of heterogeneous
brittle materials with emphasis on fiber network. Phys. Rev. B 2004, 70, 064108. [CrossRef]

3. Uesaka, T.; Juntunen, J. Time-dependent, stochastic failure of paper and box. Nord. Pulp Pap. Res. J. 2012, 27,
370–374. [CrossRef]

4. Mattsson, A.; Uesaka, T. Characterisation of time-dependent, statistical failure of cellulose fibre network.
Cellulose 2018, 25, 2817–2828. [CrossRef]

5. Kulachenko, A.; Uesaka, T. Direct simulations of fiber network deformation and failure. Mech. Mater. 2012,
51, 1–14. [CrossRef]

6. Borodulina, S.; Motamedian, H.R.; Kulachenko, A. Effect of fiber and bond strength variations on the tensile
stiffness and strength of fiber networks. Int. J. Solids Struct. 2018, 154, 19–32. [CrossRef]

7. Borodulina, S.; Kulachenko, A.; Tjahjanto, D.D. Constitutive modeling of a paper fiber in cyclic loading
applications. Comput. Mate. Sci. 2015, 110, 227–240. [CrossRef]

8. Borodulina, S.; Nygårds, M.; Kulachenko, A. Stress-strain curve of paper revisited. Nord. Pulp Pap. Res. J.
2012, 27, 318–328. [CrossRef]

9. Li, Y.; Chen, Z.; Su, L.; Chen, W.; Jin, X.; Xu, H. Stochastic Reconstruction and Microstructure Modeling of
SMC Chopped Fiber Composites. Compos. Struct. 2018, 200, 153–164. [CrossRef]

10. Chen, Z.; Huang, T.; Shao, Y.; Li, Y.; Xu, H.; Avery, K.; Zeng, D.; Chen, W.; Su, X. Multiscale finite element
modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructured
reconstruction. Compos. Struct. 2018, 188, 25–38. [CrossRef]

11. Domaschke, S.; Zundel, M.; Mazza, E.; Ehret, A.E. A 3D computational model of electrospun networks and
its application to inform a reduced modelling approach. Int. J. Solid Struct. 2018, 158, 76–89. [CrossRef]

12. Ban, E.; Barocas, V.H.; Shephard, M.S.; Picu, C.R. Effect of fiber crimp on the elasticity of random fiber
network with and without embedding matrices. J. Mech. Des. 2016, 83, 041008. [CrossRef] [PubMed]

13. Godinho, P.M.J.S.; Jajcinovic, M.; Wagner, L.; Vass, V.; Fischer, W.J.; Bader, T.K.; Ulrich, H.; Bauer, W.;
Eberhardsteiner, J.; Hellmich, C. A continuum micromechanics approach to the elasticity and strength
of planar fiber networks: Theory and application to paper sheets. Eur. J. Mech. A Solids 2018. In Press.
[CrossRef]

14. Beex, L.A.A.; Peerlings, R.H.J.; Geers, M.G.D. A multiscale quasicontinuum method for lattice models with
bond failure and fiber sliding. Comput. Methods Appl. Mech. Eng. 2014, 269, 108–122. [CrossRef]

15. Marulier, C.; Dumont, P.J.J.; Orgéas, L.; Caillerie, D.; Rolland du Roscoat, S. Towards 3D analysis of pulp
fibre networks at the fibre and bond levels. Nord. Pulp Pap. Res. J. 2012, 27, 245–255. [CrossRef]

16. Bakar, I.A.A.; Kramer, O.; Bordas, S.; Rabczuk, T. Optimization of elastic properties and weaving patterns of
woven composites. Compos. Struct. 2013, 100, 575–591. [CrossRef]

17. Wang, W.; Dai, Y.; Zhang, C.; Gao, X.; Zhao, M. Micromechanical Modeling of Fiber-Reinforced Composites
with Statistically Equivalent Random Fiber Distribution. Materials 2016, 9, 624. [CrossRef] [PubMed]

18. Yin, X.; Chen, W.; To, A.; McVeigh, C.; Liu, W.K. Statistical volume element method for predicting
microstructure-constitutive property relations. Comput. Methods Appl. Mech. Eng. 2008, 197, 3516–3529.
[CrossRef]

19. Xu, H.; Greene, M.S.; Deng, H.; Dikin, D.; Brinson, C.; Liu, W.K.; Burkhart, C.; Papakonstantopoulos, G.;
Poldneff, M.; Chen, W. Stochastic reassembly strategy for managing information complexity in heterogeneous
materials analysis and design. J. Mech. Des. 2013, 135, 101010. [CrossRef]

20. Liu, Y.; Greene, M.S.; Chen, W.; Dikin, D.A.; Liu, W.K. Computational microstructure characterization and
reconstruction for stochastic multiscale material design. Comput.-Aided Des. 2013, 45, 65–76. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.70.064108
http://dx.doi.org/10.3183/NPPRJ-2012-27-02-p370-374
http://dx.doi.org/10.1007/s10570-018-1776-5
http://dx.doi.org/10.1016/j.mechmat.2012.03.010
http://dx.doi.org/10.1016/j.ijsolstr.2016.12.013
http://dx.doi.org/10.1016/j.commatsci.2015.08.039
http://dx.doi.org/10.3183/NPPRJ-2012-27-02-p318-328
http://dx.doi.org/10.1016/j.compstruct.2018.05.079
http://dx.doi.org/10.1016/j.compstruct.2017.12.039
http://dx.doi.org/10.1016/j.ijsolstr.2018.08.030
http://dx.doi.org/10.1115/1.4032465
http://www.ncbi.nlm.nih.gov/pubmed/27222599
http://dx.doi.org/10.1016/j.euromechsol.2018.10.005
http://dx.doi.org/10.1016/j.cma.2013.10.027
http://dx.doi.org/10.3183/NPPRJ-2012-27-02-p245-255
http://dx.doi.org/10.1016/j.compstruct.2012.12.043
http://dx.doi.org/10.3390/ma9080624
http://www.ncbi.nlm.nih.gov/pubmed/28773744
http://dx.doi.org/10.1016/j.cma.2008.01.008
http://dx.doi.org/10.1115/1.4025117
http://dx.doi.org/10.1016/j.cad.2012.03.007


Materials 2019, 12, 538 28 of 28

21. Hu, A.; Li, X.; Ajdari, A.; Jiang, B.; Burkhart, C.; Chen, W.; Brinson, C. Computational analysis of particle
reinforced viscoelastic polymer nanocomposites—statistical study of representative volume element. J. Mech.
Phys. Solids 2018, 114, 55–74. [CrossRef]

22. Lucas, V.; Golinval, J.-C.; Paquay, S.; Nguyen, V.-D.; Noels, L.; Wu, L. A stochastic computational multiscale
approach; Application to MEMS resonators. Comput. Methods Appl. Mech. Engrg. 2015, 294, 141–167.
[CrossRef]

23. Motamedian, H.R.; Kulachenko, A. Rotational Constraint between Beams in 3-D Space. Mech. Sci. 2018, 9,
373–387. [CrossRef]

24. Ibrahimbegovic, A. On finite element implementation of geometrically nonlinear Reissner’s beam theory:
Three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 1995, 122, 11–26. [CrossRef]

25. Stapleton, S.E.; Appel, L.; Simon, J.-W.; Reese, S. Representative volume element for parallel fiber bundles:
Model and size convergence. Compos. Part A Appl. Sci. Manuf. 2016, 87, 170–185. [CrossRef]

26. Sonon, B.; Massart, T.J. A Level-Set Based Representative Volume Element Generator and XFEM Simulations
for Textile and 3D-Reinforced Composites. Materials 2013, 6, 5568–5592. [CrossRef] [PubMed]

27. Geers, M.G.D.; Kouznetsova, V.G.; Matouš, K.; Yvonnet, J. Homogenization Methods and Multiscale
Modeling: Nonlinear Problems. In Encyclopedia Computational Mechanics, 2nd ed.; Wiley Online Library:
Hoboken, NJ, USA, 2017.

28. Sun, W.C.; Andrade, J.E.; Rudnicki, J.W. Multiscale method for characterization of porous microstructures
and their impact on macroscopic effective permeability. Int. J. Numer. Meth. Eng. 2011, 88, 1260–1279.
[CrossRef]

29. Gitman, I.M.; Askes, H.; Sluys, L.J. Representative Volume: Existence and size determination.
Eng. Fract. Mech. 2007, 74, 2518–2534. [CrossRef]

30. Hashin, Z. Analysis of Composite Materials—A Survey. J. Appl. Mech. 1983, 50, 481–505. [CrossRef]
31. Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer: New York, NY,

USA, 1991.
32. Chen, W.; Yin, X.; Lee, S.; Liu, W.K. A multiscale design methodology for hierarchical systems with random

uncertainties. J. Mech. Des. 2010, 132, 041006. [CrossRef]
33. Yin, X.; Lee, S.; Chen, W.; Liu, W.K. Efficient Random Field Uncertainty Propagation in Design Using

Multiscale Analysis. J. Mech. Des. 2009, 131, 021006. [CrossRef]
34. Ghanem, R.G.; Doostan, A. On the construction and analysis of stochastic models: Characterization and

propagation of the errors associated with limited data. J. Comput. Phys. 2006, 217, 63–81. [CrossRef]
35. Clément, A.; Soize, C.; Yvonnet, J. Uncertainty quantification in computational stochastic multiscale analysis

of nonlinear elastic materials. Comput. Methods Appl. Mech. Eng. 2013, 254, 61–82. [CrossRef]
36. Mansour, R.; Olsson, M. Response surface single loop method with higher order reliability assessment.

Struct. Multidiscip. Optim. 2016, 54, 63–79. [CrossRef]
37. Popescu, R.; Deodatis, G.; Prevost, J.H. Simulation of homogenous nonGaussian stochastic vector fields.

Probab. Eng. Mech. 1998, 13, 1–13.
38. Rassmussen, C.E.; Williams, C.K.I. Gaussian Process for Machine Learning; The MIT Press: London, UK, 2006.
39. Greene, M.S.; Liu, Y.; Chen, W.; Liu, W.K. Computational uncertainty analysis in multiresolution materials

via stochastic. Comput. Methods Appl. Mech. Eng. 2011, 200, 309–325. [CrossRef]
40. Ottosen, N.; Ristinmaa, M. The Mechanics of Constitutive Modelling; Elsevier: London, UK, 2005.
41. Mansour, R.; Olsson, M. Efficient reliability assessment with the conditional probability method. J. Mech. Des.

2018, 140, 081402. [CrossRef]
42. Mansour, R.; Olsson, M. A Closed-Form Second-Order Reliability Method Using Noncentral Chi-Squared

Distributions. J. Mech. Des. 2014, 136, 101402. [CrossRef]
43. Aoues, Y. A Chateauneuf, Benchmark study of numerical methods for reliability-based design optimization.

Struct. Multidiscip. Optim. 2010, 41, 277–294. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmps.2018.02.013
http://dx.doi.org/10.1016/j.cma.2015.05.019
http://dx.doi.org/10.5194/ms-9-373-2018
http://dx.doi.org/10.1016/0045-7825(95)00724-F
http://dx.doi.org/10.1016/j.compositesa.2016.04.018
http://dx.doi.org/10.3390/ma6125568
http://www.ncbi.nlm.nih.gov/pubmed/28788409
http://dx.doi.org/10.1002/nme.3220
http://dx.doi.org/10.1016/j.engfracmech.2006.12.021
http://dx.doi.org/10.1115/1.3167081
http://dx.doi.org/10.1115/1.4001210
http://dx.doi.org/10.1115/1.3042159
http://dx.doi.org/10.1016/j.jcp.2006.01.037
http://dx.doi.org/10.1016/j.cma.2012.10.016
http://dx.doi.org/10.1007/s00158-015-1386-x
http://dx.doi.org/10.1016/j.cma.2010.08.013
http://dx.doi.org/10.1115/1.4040170
http://dx.doi.org/10.1115/1.4027982
http://dx.doi.org/10.1007/s00158-009-0412-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Technical Background 
	Direct Simulation of a Thin Fiber Network 
	Multi-Scale Modeling 
	Random Field Representation 

	Continuum Random Realization and Mechanical Failure of Thin Fiber Networks 
	Overview of Methodology 
	Characterization and Simulation of Random Spatial Fields of Strength and Strain to Failure Based on Stochastic Volume Elements (SVEs) 
	Constitutive Model 
	Finite-Element Implementation 
	Summary of the Proposed Stochastic Constitutive Model 

	Results 
	Determination of SVE Size-Dependent Stochastic Constitutive Model Parameters 
	Continuum Reconstruction of A 18  18 mm2 Sample and Choice of SVE Size 
	Random Continuum Simulation of 18  18 mm2 and A4 Paper Sample 
	Simulation of Stochastic Failure in Paper-Making Machines 

	Discussion 
	Conclusions 
	References

