

Supplementary materials: Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach

Naser Ali, Joao A. Teixeira, Abdulmajid Addali, Maryam Saeed, Feras Al-Zubi, Ahmad Sedaghat and Husain Bahzad

SEM images of the Stainless steel evaporant source and deposited thin films:

Figure S1. (a1) SEM image of the 0.05 Å/s deposited film.

Materials 2019, 12, 571 2 of 12

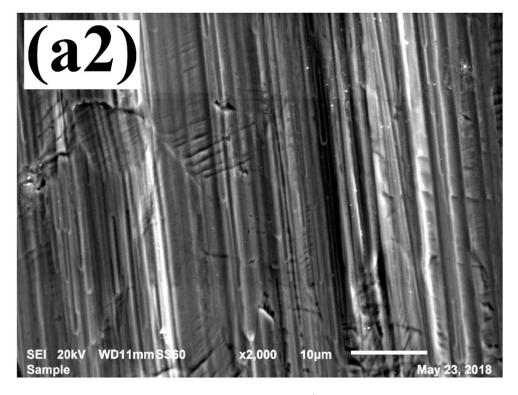
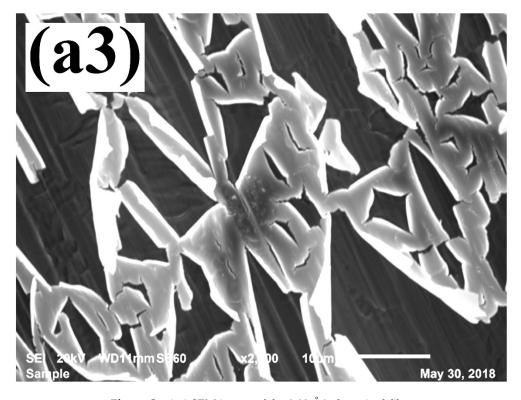



Figure S1. (a2) SEM image of the 0.16 Å/s deposited film.

Figure S1. (a3) SEM image of the 0.82 Å/s deposited film.

Materials **2019**, 12, 571 3 of 12

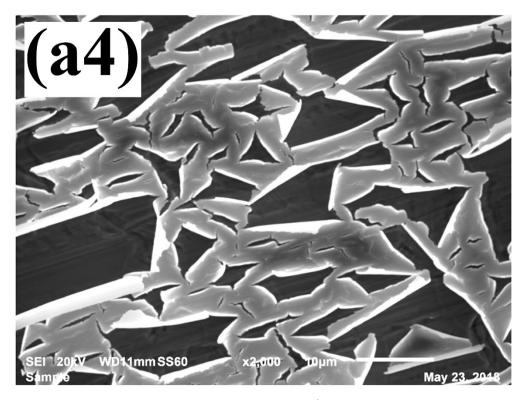
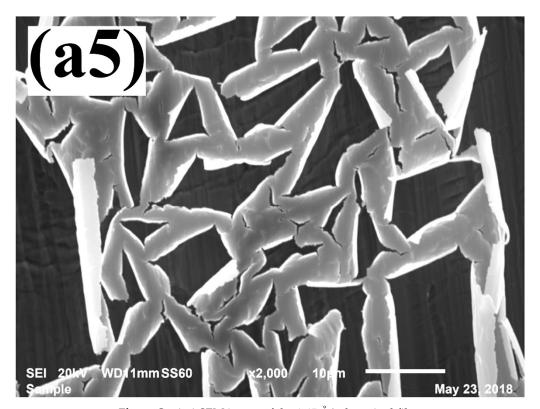



Figure S1. (a4) SEM image of the 1.07 Å/s deposited film.

Figure S1. (a5) SEM image of the 1.45 Å/s deposited film.

Materials **2019**, 12, 571 4 of 12

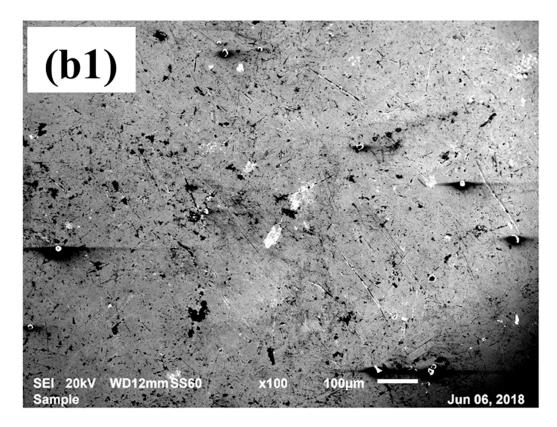


Figure S1. (b1) SEM image of the as-received evaporant source before film deposition.

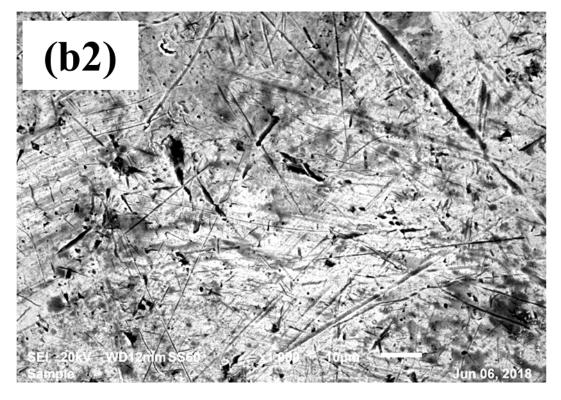
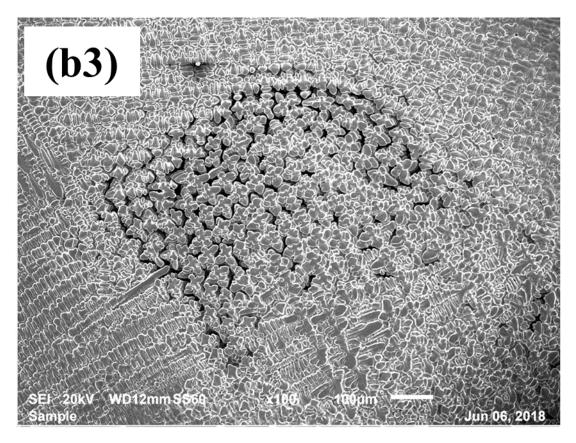
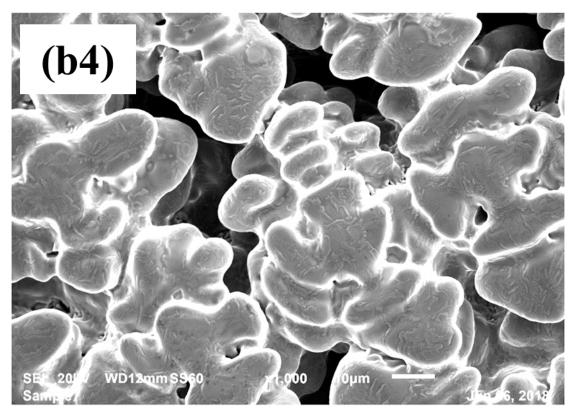
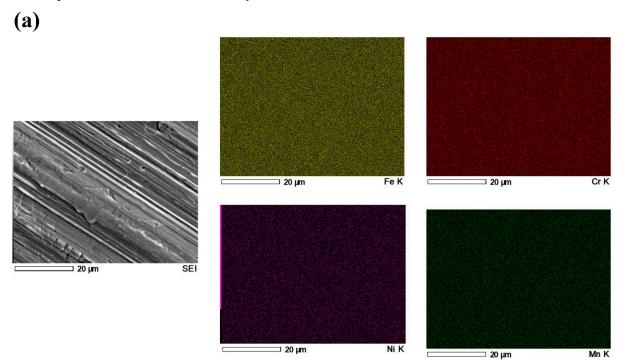
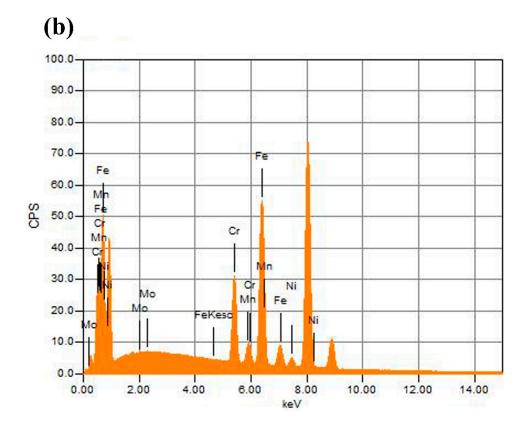




Figure S1. (b2) Higher resolution SEM image of the as-received evaporant source before film deposition.

Materials **2019**, 12, 571 5 of 12


Figure S1. (b3) SEM image of the as-received evaporant source after 0.05~Å/s film deposition.


Figure S1. (**b4**) Higher resolution SEM image of the as-received evaporant source after 0.05 Å/s film deposition.

Materials **2019**, 12, 571 6 of 12

Deposited film EDS elemental analysis:

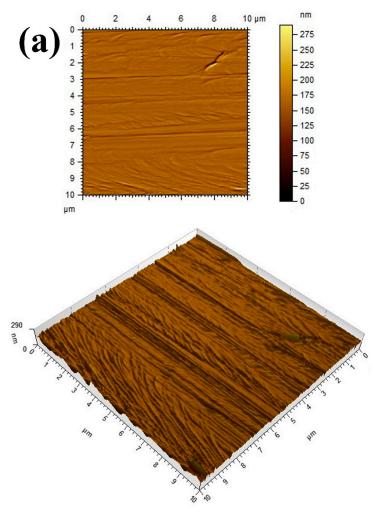

Figure S2. (a) SEM image and its elemental maps of the characterized 150 nm deposited SS film at 0.05 Å/s on Cu substrate.

Figure S2. (b) EDS x-ray spectrum of the elements.

Materials **2019**, 12, 571 7 of 12

Surface topography analysis of SS films on SS 316L substrates:

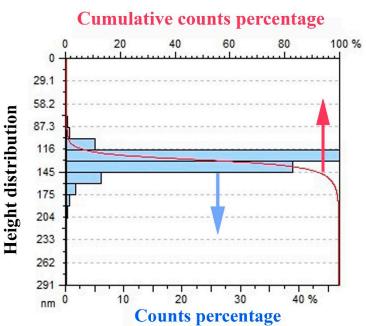


Figure S3. (a) AFM images and analysis of the uncoated substrate.

Materials **2019**, 12, 571 8 of 12

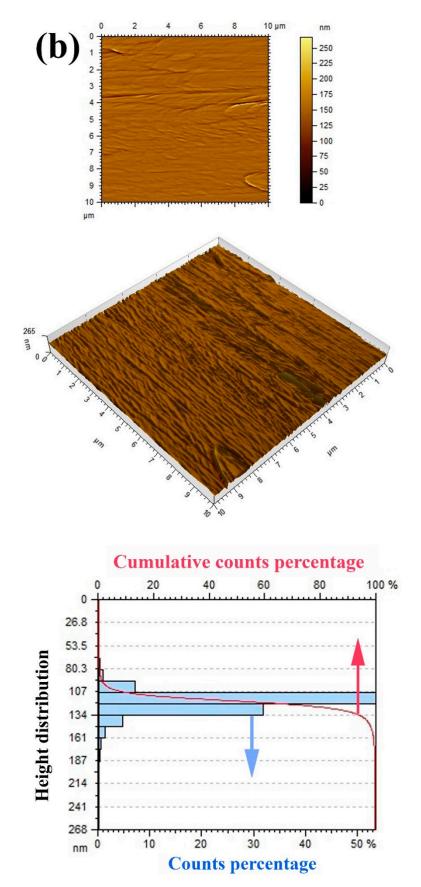


Figure S3. (b) AFM images and analysis of the 50 nm coated substrate.

Materials **2019**, 12, 571 9 of 12

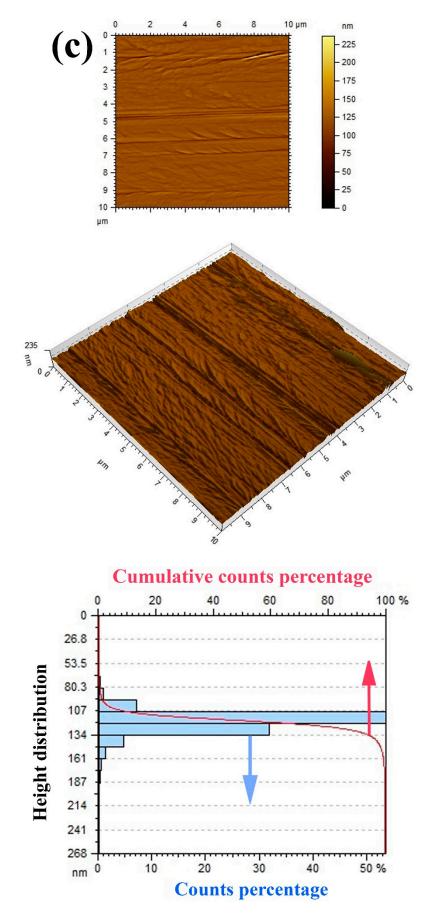


Figure S3. (c) AFM images and analysis of the 100 nm coated substrate.

Materials **2019**, 12, 571

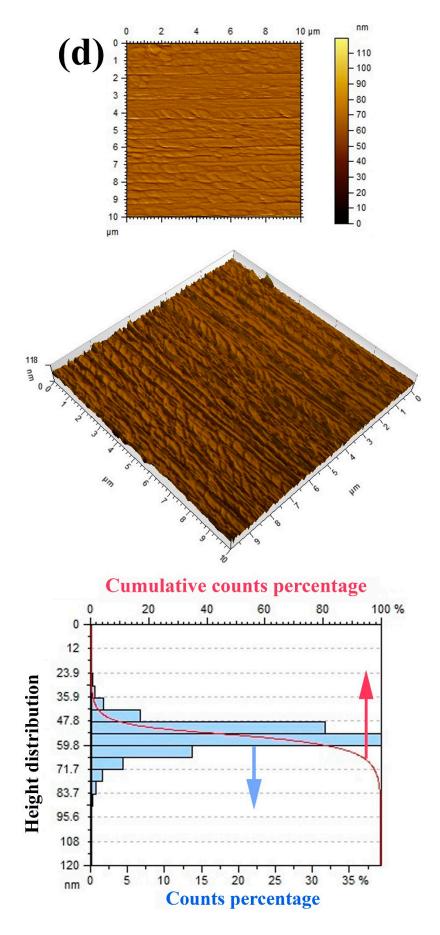


Figure S3. (d) AFM images and analysis of the 150 nm coated substrate.

Materials **2019**, 12, 571

 Table S1. Contact angle measurements data.

DIW	DIW pH	Stainless steel	Highest CA	Lowest CA	ACA
temperature (°C)	value	substrate surface information	(degree)	(degree)	(degree)
20	4	Uncoated	126.5	122.5	124.9
30	4	Uncoated	120.6	119.4	119.8
40	4	Uncoated	106.5	106.2	106.3
50	4	Uncoated	110.3	110.1	110.2
60	4	Uncoated	112.7	112.1	112.3
20	7	Uncoated	132.8	130.9	131.7
30	7	Uncoated	122.5	119.5	120.6
40	7	Uncoated	115.8	115.6	115.7
50	7	Uncoated	115.2	114.5	114.8
60	7	Uncoated	115.3	114.8	115.1
20	9	Uncoated	117.8	116.7	117.4
30	9	Uncoated	115.7	114.8	115.3
40	9	Uncoated	108.3	108.0	108.1
50	9	Uncoated	112.7	112.1	112.3
60	9	Uncoated	107.4	106.8	107.1
20	4	50 nm SS film	121.0	117.8	119.5
30	4	50 nm SS film	110.8	110.4	110.6
40	4	50 nm SS film	104.2	103.8	104.0
50	4	50 nm SS film	110.1	108.7	109.3
60	4	50 nm SS film	110.7	110.2	110.4
20	7	50 nm SS film	131.3	130.1	130.9
30	7	50 nm SS film	116.7	114.8	115.8
40	7	50 nm SS film	105.1	104.9	105.0
50	7	50 nm SS film	104.6	104.1	103.0
60	7	50 nm SS film	101.3	100.8	101.1
20	9	50 nm SS film	109.6	108.7	109.2
30	9	50 nm SS film	106.6	106.4	106.5
40	9	50 nm SS film	108.7	107.4	108.1
50	9	50 nm SS film	100.6	99.0	99.7
60	9	50 nm SS film	105.0	104.9	104.9
20	4	100 nm SS film	117.4	115.8	116.7
30	4	100 nm SS film	104.0	103.5	103.8
40	4	100 nm SS film	103.8	103.3	103.5
50	4	100 nm SS film	99.0	98.1	98.5
60	4	100 nm SS film	102.1	101.3	101.7
20	7	100 nm SS film	128.3	128.1	128.2
30	7	100 nm SS film	109.6	108.8	109.3
40	7	100 nm SS film	103.4	102.8	103.0
50	7	100 nm SS film	103.4	102.7	103.0
60	7	100 nm SS film	100.6	99.0	99.9
20	9	100 nm SS film	103.3	103.0	103.2
30	9	100 nm SS film	103.4	103.0	103.2
40	9	100 nm SS film	106.2	105.2	105.7
	9	100 nm SS film			98.8
50	9	100 nm SS film	99.7	98.1	98.1
60 20		150 nm SS film	98.4	97.5 110.6	
30	$rac{4}{4}$	150 nm SS film	111.0 99.8	110.6 98.1	110.9 99.0
		150 nm SS film			
40 50	4		102.8	102.0	102.5
50	4	150 nm SS film	94.4	92.1	93.1
60	4	150 nm SS film	88.7	88.4	88.5
20	7	150 nm SS film	122.6	121.0	122.0
30	7	150 nm SS film	106.7	106.4	106.6
40	7	150 nm SS film	102.9	102.5	102.7
50	7	150 nm SS film	95.8	95.1	95.5

Materials **2019**, 12, 571

60	7	150 nm SS film	95.5	94.7	95.2
20	9	150 nm SS film	95.0	94.2	94.5
30	9	150 nm SS film	101.3	100.9	101.0
40	9	150 nm SS film	103.4	102.9	103.2
50	9	150 nm SS film	97.5	96.2	97.0
60	9	150 nm SS film	97.4	96.7	97.0

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).