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Abstract: Triple-layered composite plates are created by joining three composite layers using shear
connectors. These layers, which are assumed to be always in contact and able to move relatively to
each other during deformation, could be the same or different in geometric dimensions and material.
They are applied in various engineering fields such as ship-building, aircraft wing manufacturing, etc.
However, there are only a few publications regarding the calculation of this kind of plate. This paper
proposes novel equations, which utilize Mindlin’s theory and finite element modelling to simulate
the forced vibration of triple-layered composite plates with layers connected by shear connectors
subjected to a moving load. Moreover, a Matlab computation program is introduced to verify the
reliability of the proposed equations, as well as the influence of some parameters, such as boundary
conditions, the rigidity of the shear connector, thickness-to-length ratio, and the moving load velocity
on the dynamic response of the composite plate.

Keywords: triple-layer composite plate; Mindlin’s theory; finite element model; moving load

1. Introduction

In recent years, composite layered systems have attracted a great of interest from many researchers
due to their optimized material configuration, such as their high strength-to-weight ratio and
stiffness-to-weight ratio. For a multi-layer composite beam, all of its layers are connected by shear
connectors, which play a very crucial role in the mechanical behavior of the beam. Newmark et al. [1]
proposed the governing differential equations for elastically connected steel-concrete beams, based
on the linear elastic Euler–Bernoulli beam theory. Various later works [2–4] improved the shear
effect of Newmark’s model by using Timoshenko composite beam theory. Silva et al. [5] and
Nguyen et al. [6,7] utilize the finite element method (FEM) to analyze the linear static properties
of multi-layered composite beams. Later on, Newmark’s model was developed for dynamic and
non-linear problems [8–12].
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In addition, for the Timoshenko beam theory (TBT), Chakrabarti et al. [13,14] introduced static
analysis of two-layer composite beams by using higher order beam theory (HBT). The dynamic
response of composite beams with shear connectors was computed using the finite element method
(FEM) and higher-order beam theory [15]. HBT has partially overcome the side effect of shear
correction factor. Additionally, Subramanian [16] used HBT and FEM for dynamic analysis of laminated
composite beams. Li et al. [17] studied the free vibration of axially loaded composite beams with
general boundary conditions using hyperbolic shear deformation theory. Vo and Thai [18] presented
the static behavior of composite beams using various refined shear deformation theories [19].

Most of the higher order theories, including Reddy’s higher order beam theory (RHBT) [20], tend
to ignore the transverse deformation of multi-layer beams. Manjunatha and Kant [21] proposed to use
C0 finite element [22,23] and a set of higher order theories for the analysis of composite and sandwich
beams. Kant’s theories incorporate the non-linear variation of displacement through beam thickness to
eliminate the use of shear correction coefficients. Yan et al. [24] developed a three-dimensional damage
plasticity based on the finite element model (FEM) to simulate the ultimate strength behavior of the
SCS sandwich structure under concentrated loads.

Carrena [25] worked on the assumption that the displacement field is expanded in terms of generic
functions, which is the unified formulation by Carrera (CUF) [26], to examine the static response of
beams with different cross sections, such as square, C-shaped and bridge-like sections. Based on the
mentioned approach, Cinefra et al. [27] employed MITC9 (Mixed Interpolated of Tensorial Components
using 9 nodes) shell elements to analyze the mechanical behavior of laminated composite plates and
shells. Muresan et al. [28] carried out research on the stability of the thin walled prismatic bars based
in the generalized beam theory (GBT), which is an efficient approach developed by Schardt [29].
Yu et al. [30] used the variational asymptotic beam section analysis (VABS) for mechanical behavior of
various cross sections, such as the elliptic and triangular sections.

The dynamic behaviors of plates under moving loads are also interesting problems in engineering
such as bridges and roads, space vehicles, submarines and mechanical engineering and so on. So many
scholars have studied on this aspect in past decades. Ouyang [31] briefly reviewed a variety of
moving-load problems and several analytical solution methods. Fryba [32] has summarized a variety
of engineering problems that analyzed the dynamics of structures under moving loads. Song et al. [33]
proposed a novel method to predict the dynamic behaviors of flat plate of arbitrary boundary
conditions subjected to moving loads, based on the Kirchhoff plate theory.

Although there are plenty of published works dealing with the non-linear, linear, static and
dynamic problems of composite and sandwich beams using shear connectors, to our knowledge, there
seems to be no analysis regarding the calculation of triple-layer composite plate with layers connected
by shear connectors subjected to moving load. In this paper, we combined the published theories on
multi-layered beams, Mindlin’s plate theory, and finite element modelling to simulate the oscillation of
triple-layer plates with layers connected by shear connectors subjected to moving loads. We also built
the mechanical properties and established equations describing the dynamic response of the plates.
Additionally, we studied the influence of geometric parameters, material, load, etc., on the dynamic
response of the referred plate under the influence of a moving load.

2. Triple-Layer Composite Plates with Shear Connectors

Consider the triple-layer plate under moving load as follows in Figure 1:
The plate includes three layers: top layer (t), bottom layer (b) and intermediate layer (c), which

can be made of the same or different materials. These layers can slide relative to each other but are not
allowed to disconnect during the deformation. Each layer is attached with the local coordinate oxyt,
oxyc and oxyb. The plate is divided into six components h1, h2, h3, h4, h5, h6, as in Figure 1. ut0, uc0 and
ub0 are the displacements along the x axis; vt0, vc0 and vb0 represent the displacements along the y axis
at the mid-plane of each layer. utc, ucb are the relative displacements between (t) layer and (c) layer
along x axis; vtc, vcb are the relative displacements between (t) layer and (c) layer along y axis
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Figure 1. Model of a triple-layer composite plate with a shear connector subjected to a moving load. 
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Figure 1. Model of a triple-layer composite plate with a shear connector subjected to a moving load.

3. Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with
Shear Connectors

3.1. Dynamic Equation for Plate Element

According to Mindlin’s plate theory, the displacements of the u, v, w of each layer are shown as:
uk = uk0(x, y) + zk ϕk(x, y)
vk = vk0(x, y) + zkψk(x, y)
wk = w(x, y)

(k = t, c, b) (1)

Relative displacements between layers in contact surfaces are:
+Relative displacement between t and c layers{

utc(x, y) = ut(x, y, h2)− uc(x, y,−h3)

vtc(x, y) = vt(x, y, h2)− vc(x, y,−h3)
(2)

+Relative displacement between c and b layers{
ucb(x, y) = uc(x, y, h4)− ub(x, y,−h5)

vcb(x, y) = vc(x, y, h4)− vb(x, y,−h5)
(3)

At the tangential plane between layers, we have:{
zt = h2; zc = −h3

zc = h4; zb = −h5
(4)

where h4 = h3 = hc
2 .

Then, we obtain:{
utc(x, y) = ut0(x, y)− uc0(x, y) + h2 ϕt(x, y) + h3 ϕc(x, y)
vtc(x, y) = vt0(x, y)− vc0(x, y) + h2ψt(x, y) + h3ψc(x, y)

(5)

{
ucb(x, y) = uc0(x, y)− ub0(x, y) + h4 ϕc(x, y) + h5 ϕb(x, y)
vcb(x, y) = vc0(x, y)− vb0(x, y) + h4ψc(x, y) + h5ψb(x, y)

(6)

Relation between the strains and displacements of the layers is shown as:



Materials 2019, 12, 598 4 of 19

+For the kth layer:

εkx = ∂uk
∂x = ∂uk0

∂x + zk
∂ϕk
∂x ;

εky = ∂vk
∂y = ∂vk0

∂y + zk
∂ψk
∂y ;

γkxy = ∂vk
∂x + ∂uk

∂y = ∂uk0
∂y + ∂vk0

∂x + zk

(
∂ϕk
∂y + ∂ψk

∂x

)
;

γkxz =
∂w0
∂x + ∂uk

∂zk
= ∂w0

∂x + ϕk;

γkyz =
∂w0
∂y + ∂vk

∂zk
= ∂w0

∂y + ψk;

(7)

Equation (7) is rewritten in the matrix form:

εk =


εkx
εky

γkxy

 = ε0
k + zkκk; γk =

{
γkyz
γkzx

}
(8)

where:

ε0
k =


ε0

kx
ε0

ky
γ0

kxy

 =


∂uk0
∂x

∂vk0
∂y(

∂uk0
∂y + ∂vk0

∂x

)
;κk =


κkx
κky
κkxy

 =


∂ϕk
∂x

∂ψk
∂y

∂ϕk
∂y + ∂ψk

∂x

;

γk =

{
γkxz
γkyz

}
=

{
∂w0
∂x + ϕk

∂w0
∂y + ψk

} (9)

Relation between the stress and strain of the kth layer is:

σk = Dkεk; τk =
5
6

Gkγk (10)

where: νk is the Poisson’s ratio of the kth layer and

Dk =
Ek

1− v2

 1 νk 0
νk 1 0
0 0 (1− νk)/2

; Gk =
Ek

2(1 + νk)

[
1 0
0 1

]
(11)

where Ek is the elasticity modulus of the kth layer.
We used an 8-node isoparametric element with 13 degrees of freedom (DOF) for each node.

The DOFs of the ith node
{

qi
e
}

and the plate element {qe} are defined as:

qi
e =

{
ut0i vt0i ϕti ψti uc0i vc0i ϕci ψci ub0i vb0i ϕbi ψbi w

}T
; i = 1÷ 8 (12)

qe =
{

q1
e q2

e q3
e q4

e q5
e q6

e q7
e q8

e

}T
(13)

uk0 =
8
∑

i=1
Ni(ξ, η)uk0i; vk0 =

8
∑

i=1
Ni(ξ, η)vk0i

ϕk =
8
∑

i=1
Ni(ξ, η)ϕki; ψk =

8
∑

i=1
Ni(ξ, η)ψki; w =

8
∑

i=1
Ni(ζ, η)wi

(k = t, c, b) (14)

where Ni (i = 1÷ 8) is specified in Appendix A.
Then, we have the strain of elements in the kth layer as:{

εk =
(
B0

k + zkB1
k
)
qe

γk = Skqe
(k = t, c, b) (15)
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where B0
ki, B1

ki, Sk are defined as:

B0
k =

[
B0

k1 B0
k2 B0

k3 B0
k4 B0

k5 B0
k6 B0

k7 B0
k8

]
;

B1
k =

[
B1

k1 B1
k2 B1

k3 B1
k4 B1

k5 B1
k6 B1

k7 B1
k8

]
;

Sk =
[

Sk1 Sk2 Sk3 Sk4 Sk5 Sk6 Sk7 Sk8

]
;

(16)

Note that B0
ki, B1

ki, Ski are shown in Appendix B
The elastic force of shear connectors per length unit is:
+For t and c layers

Ftc
e =

{
Feu

Fev

}
ct

= ktc

[
1 0
0 1

]{
utc

vtc

}
= Ktc

e qtc
e (17)

where:

qtc
e =

{
utc

vtc

}
=

[
ut0 + h2 ϕt − uc0 + h3 ϕc

vt0 + h2ψt − vc0 + h3ψc

]
= Ntcqe =

8

∑
i=1

(Ntc)iq
i
e (18)

in which:

(Ntc)i =

[
Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0 0
0 Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0

]
(19)

+For b and c layers

Fcb
e =

{
Feu

Fev

}
cb

= kcb

[
1 0
0 1

]{
ucb
vcb

}
= Kcb

e qcb
e (20)

where:

qcb
e =

{
ucb
vcb

}
=

[
uc0 + h4 ϕc − ub0 + h5 ϕb
vc0 + h4ψc − vb0 + h5ψb

]
= Ncbqe =

8

∑
i=1

(Ncb)iq
i
e (21)

in which:

(Ncb)i =

[
0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0 0
0 0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0

]
(22)

In the above equations, ktc; kcb are the shear rigidity coefficients of shear connectors per length unit.
We applied the principle of virtual work to the forces applied to the plate elements:

∑
k=t,c,b

∫
Vk

δuT
k ρkukdVk + ∑

k=t,c,b

∫
Vk

δεT
kσkdVk +

5
6 ∑

k=t,c,b

∫
Vk

δγT
k τkdVk + ∑

k=tc,cb

∫
Ak

δ
(

qk
e

)
T

Fk
e dAk

−δqT
e
∫
At

Nw p(t)dAt = 0
(23)

By substituting Equations (1), (15), (17) and (20) into Equation (23), we obtained the dynamic
equation of the plate element as follows:

Me
¨
qe + Keqe = Fe(t) (24)
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With

Ke(104x104) = ∑
k=t,c,b

∫
Ak

(
B0

k
)TDk0B0

kdAk + ∑
k=t,c,b

∫
Ak

(
B0

k
)TDk1B1

k dAk+

+ ∑
k=t,c,b

∫
Ak

(
B1

k
)TDk1B0

k dAk + ∑
k=t,c,b

∫
Ak

(
B1

k
)TDk2B1

k dAk +
5
6 ∑

k=t,c,b

∫
Ak

ST
k GkSkdAk

+
∫

Atc

NT
tcKe

tcNtcdAtc +
∫

Acb

NT
cbKe

cbNcbdAcb

(25)

in which

(Dk0; Dk1; Dk2) =

hk/2∫
−hk/2

(
1; zk; z2

k

)
Dk dzk; Hk =

hk/2∫
−hk/2

Gk dzk (k = t, c, b) (26)

Me(104x104) = ∑
k=t,c,b

∫
Ak

hk/2∫
−hk/2

LT
k ρkLkdzkdAk (27)

where Lk can be seen in Appendix C

Fe(t)(104x1) =
∫
At

p(t)NT
wdAt (28)

in which
Nw =

[
Nw1 Nw2 Nw3 Nw4 Nw5 Nw6 Nw7 Nw8

]
(29)

With
Nw j =

[
0 0 0 0 0 0 0 0 0 0 0 0 Nj

]
(30)

In the case of taking into account structural damping, we have the force vibration equation of the
plate element as follows:

Me
..
qe + Ce

.
qe + Keqe = Fe(t) (31)

in which Ce = αMe + βKe and α, β are the Rayleigh drag coefficients defined in [32].

3.2. Formulation of the Nodal Element Load Vector

In general cases, one considers the moving load as: particle m moves on a plate element with
a non-constant velocity v in a known trajectory; the load Q is applied on the moving particle in the
direction perpendicular to the plane of the plate element, as shown in Figure 1.

Let w(x,y,t) be the bending deflection of the plate under the moving load with mass m (kg). The
force applied on the moving load at position (x = ξ; y = η) is [32]:

R(x, y, t) = Q(t)−m
d2w(x, y, t)

dt2

∣∣∣∣∣ x = ξ; y = η
(32)

where: d2w(x,y,t)
dt2 , which is the absolute acceleration in the z direction at the position suffering moving

load, is shown via the displacement vector, velocity and acceleration of the node as:

d2w(x,y,t)
dt2 = Nml ..

qe + 2
( .

x ∂Nml

∂x +
.
y ∂Nml

∂y

) .
qe + . . .( .

x2 ∂2Nml

∂x2 +
.
y2 ∂2Nml

∂y2 + 2
.
x

.
y ∂2Nml

∂x∂y +
..
x ∂Nml

∂x +
..
y ∂Nml

∂y

)
qe

(33)
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Replace Equation (33) into Equation (32), we have:

R(x, y, t) = Q(t)−m

 Nml ..
qe + 2

( .
x ∂Nml

∂x +
.
y ∂Nml

∂y

) .
qe + . . .( .

x2 ∂2Nml

∂x2 +
.
y2 ∂2Nml

∂y2 + 2
.
x

.
y ∂2Nml

∂x∂y +
..
x ∂Nml

∂x +
..
y ∂Nml

∂y

)
qe

 (34)

Equivalent distributed force is specified according to the Delta-Dirac function as [32]:

p(x, y, t) = Q(t)δ(x− ξ)δ(y− η)−mNmlδ(x− ξ)δ(y− η)
..
qe + 2m

( .
x ∂Nml

∂x +
.
y ∂Nml

∂y

)
δ(x− ξ)δ(y− η)

.
qe + . . .

+m
( .

x2 ∂2Nml

∂x2 +
.
y2 ∂2Nml

∂y2 + 2
.
x

.
y ∂2Nml

∂x∂y +
..
x ∂Nml

∂x +
..
y ∂Nml

∂y

)
δ(x− ξ)δ(y− η)qe

(35)

The nodal force vector of the element is computed from the distributed force p(x,y,t) applied on
the element as following:

Fe(t) =
∫
At

(
Nml

)T
p(x, y, t)dAt =

∫
At

δ(x− ξ)δ(y− η)
(

Nml
)T

Q(t)dAt − . . .

−m
∫
A

δ(x− ξ)δ(y− η)
(

Nml
)T

Nml ”
qedAt

−2m
∫
At

δ(x− ξ)δ(y− η)
(

x ∂Nml

∂x + y ∂Nml

∂y

)(
Nml

)T
qedAt

−m
∫
At

δ(x− ξ)δ(y− η)

(
x2 ∂2 Nml

∂x2 + y2 ∂2 Nml

∂y2 + 2xy ∂2 Nml

∂x∂y +
”
x ∂Nml

∂x +
”
y ∂Nml

∂y

)
NTqedAt

(36)

where:
Pe(t) =

∫
At

δ(x− ξ)δ(y− η)
(

Nml
)T

Q(t)dAt (38)

Mml
e = m

∫
A

δ(x− ξ)δ(y− η)
(

Nml
)T

Nml ”
qedAt (39)

Cml
e = 2m

∫
At

δ(x− ξ)δ(y− η)

(
x

∂Nml

∂x
+ y

∂Nml

∂y

)(
Nml

)T
qedAt (40)

Kml
e = m

∫
At

δ(x− ξ)δ(y− η)

(
x2 ∂2 Nml

∂x2 + y2 ∂2 Nml

∂y2 + 2xy ∂2 Nml

∂x∂y +
”
x ∂Nml

∂x +
”
y ∂Nml

∂y

)(
Nml

)T
qedAt (41)

with Nml described in Appendix D.

3.3. Differential Equation of a Triple-Layer Plate under a Moving Load

By substituting Equation (37) into Equation (31), we obtained the dynamic equation of the plate
element as follows: (

Mp
e + Mml

e

) ..
qe +

(
Cp

e + Cml
e

) .
qe +

(
Kp

e + Kml
e

)
qe = Pe(t) (42)

They are linear differential equations, which have the coefficient depending on time. In order to
solve these equations, we used the Newmark-beta method [32].

4. Numerical Results

4.1. Accuracy Study

Example 1: in this example, the accuracy and efficiency of this approach for multi-layer plates are
confirmed by comparison with the exact three-dimensional elasticity solution. The composite plate
(0◦–90◦–0◦) was subjected to the sinusoidal loading P = P0sin(πx/a)sin(πy/b), the material properties



Materials 2019, 12, 598 8 of 19

are E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = ν13 = ν23 = 0.25. The non-dimensional displacement
was calculated as wc =

100h3E2
P0a4 w( a

2 ; b
2 ; 0). The numerical results with different meshes were compared

with analytical and semi-analytical solutions, as shown in Table 1. From these results, we have shown
a verification of the proposed method with six different meshes (from 10 × 10 to 20 × 20 meshes).

Table 1. Maximum deflections wc versus mesh density (a/h = 10).

Mesh 10 × 10 12 × 12 14 × 14 16 × 16 18 × 18 20 × 20

Present 0.7250 0.7312 0.7349 0.7528 0.7529 0.7529
[34] 0.7530
[35] 0.7530

Example 2: consider a 4-layer composite plate (0◦–90◦–0◦–90◦) with the thickness of h
(the thickness of each layer is h/4). The material properties and moving load parameters are the
same as in Example 1. The plate was fully simply supported. The authors used the calculation
program by considering the top layer and the bottom layer as two composite layers with fiber angles
of 0◦ and 90◦, respectively; the core layer becomes the 2-layer composite plate (90◦–0◦); and the
shear coefficient of the shear connectors was large enough. Then, the 3-layer composite plate with
shear connectors became a 4-layer composite plate. The non-dimensional displacement and the
non-dimensional stress (of the center point of the structure) were computed using the following
formulas: wc = 100h3E2

P0b3 w( a
2 ; b

2 ; 0); σx = h2

P0b2 σx(
a
2 ; b

2 ; 0). The numerical results compared with [36]
(based on analytical solution of layer wise theory), are presented in Table 2. From this example, we can
see that the result of this work is in agreement with the results of the layer wise theory.

Table 2. Maximum deflection wc and stress σx versus length-to-width ratio (a/h = 10).

a/b 1 2 3 4 6

wc
Present −0.7582 −1.4387 −1.5684 −1.6032 −1.6170

[36] −0.7541 −1.4451 −1.5720 −1.6060 −1.6256

σx
Present 0.5225 0.3178 0.1734 0.1100 0.0621

[36] 0.5211 0.3166 0.1704 0.1078 0.0600

Example 3: consider a three-layer (0◦–90◦–0◦) composite plate with a length of a = b; a thickness
of h = a/20; a modulus of elasticity of E1 = 144.84 GPa, E2 = 9.65 GPa, G12 = G13 = 4.136 GPa,
G23 = 3.447 GPa; a Poisson’s ratio of ν12 = ν13 = ν23 = 0.25; and a mass density of ρ = 1389.297 kg/m3.
The plate was subjected to a moving concentrated force of P0 = 100 N with a constant speed of
v0 = 40 m/s along the line segment y = b/2, as in reference [34]. The plate was simply supported at all
edges. We verified our established program on the triple-layer plate, each layer had the thickness of
1/3 plate thickness and the shear coefficient of the shear connectors was very high. In this case, the
triple-layer plate was considered as a three-layer composite, the result of this method (using the mesh
16 × 16) was compared with reference [34], as in Figure 2.
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Figure 2. Non-dimensional center deflection of the plate under a moving concentrated load.

The non-dimensional center deflection of the plate is defined as:

WC =
E1h3

P0a2 w(a/2, b/2, 0), T = t/t f , t f = a/v0 (43)

Example 4: consider a simple supported rectangular plate with the pinned-free-pinned-free
(SFSF—two short edges are pinned and two long edges are free) boundary condition with a length of a
= 1 m; a width of b = a/2; a thickness of h = a/100; a modulus of Elasticity of E = 206.8 GPa; a Poisson’s
ratio of ν = 0.29; a mass density of ρ = 7820 kg/m3 under a moving load with a mass of M = 2.3 kg
along y = b/2, as in reference [33]. We then verified our established program on the triple-layer plate
with three layers having the same material parameters. Each layer had the thickness of 1/3 plate
thickness and the shear coefficient of the shear connector was very large. In this case, the triple-layer
plate was considered as isotropic, and the result was compared with reference [33], as in Figure 3.Materials 2018, 11, x FOR PEER REVIEW  10 of 19 
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From Figures 2 and 3, we can recognize that deflections of center points in our work are similar to
references [33] and [34] in both shape and magnitude. This proves the reliability of our program.

4.2. Numerical Results of the Dynamic Analysis of Triple-Layer Composite Plates with Shear Connectors

Example 3: consider a triple-layer composite rectangular plate with following parameters: fixed
length a = 10 m; width b, thickness h = a/50; thickness of the middle layer hs; thickness of the other
two layers ha = hc; modulus of elasticity of the three layers Ec = 8 GPa, Et = Eb = 12 GPa; Poisson’s
ratios νc = 0.33; νt = νb = 0.2; and mass densities of three layers ρc = 700 kg/m3; ρt = ρb = 2300 kg/m3;
shear coefficients ktc = kcb = ks of the shear connector under moving load of mass M = 2.3 kg. Then, the
non-dimensional deflections along z direction of the plate center point are:

w = 10h0
3Ec

Mga2(1−ν2
c )

w
(

a
2 , b

2 , 0
)

; uc =
10h0

3Ec
Mga2(1−ν2

c )
uc

(
a
2 , b

2 ,− hc
2

)
; vc =

10h0
3Ec

Mga2(1−ν2
c )

vc

(
a
2 , b

2 ,− hc
2

)
;

v = Th0
3Ec

Mga2(1−ν2
c )

v
(

a
2 , b

2 , 0
)

; σx = 103h0
4

Mga2 σx

(
a
2 , b

2 , z
)

; σxy = 103h0
4

Mga2 σxy

(
a
2 , b

2 , z
)

;
(44)

with h0 = a/50 (m) and T = 2 (s).

4.2.1. Influence of the Modulus of Rigidity of Shear Connectors

We tested a fully simply supported (SSSS) square plate (b = a). The moving load moved
along y = b/2 with velocity v = 5 m/s. The thicknesses of the three layers was hc = h/2; ht =
hb = h/4. Shear moduli of the shear connector were ks = 102, 104, 106, 108, 1010, 1012, 1014, 1016

Pa. Non-dimensional deflection velocity and stress of the plate center point are shown in Figure 4,
maximum deflections and velocities of the plate center point are illustrated in Table 3. Nondimensional
stress of the plate center point when the load moves to there is shown in Figure 5.

Table 3. Maximum deflections and velocities of the plate center point versus time.

Maximum Values ks = 102 ks = 104 ks = 106 ks = 108 ks = 1010 ks = 1012 ks = 1014 ks = 1016

wmax 1.0581 1.0574 0.9951 0.2732 0.1240 0.1215 0.1215 0.1215
vmax 0.5680 0.5677 0.5380 0.1278 0.0656 0.0647 0.0647 0.0647Materials 2018, 11, x FOR PEER REVIEW  11 of 19 
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Figure 4. Dynamic deflections of the center point of the plate versus time for different shear moduli of
the shear connector. (a): Nondimensional deflection w versus time, (b): Nondimensional velocity v
versus time.
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Figure 5. Non-dimensional stress of the plate center point when the load moves to the plate center
point. (a): Nondimensional stress σx versus thickness, (b): Nondimensional stress σxy versus thickness.

From Figure 4 and Table 3, we can conclude that when the shear modulus of the shear connector
is increased from 102 to 1014 Pa, the deflection and velocity of the plate center point, and the stress
of the center point of the structure as a function of thickness in z-direction, decreased and decreased
significantly at ks = 1010 Pa (above 1010 Pa, the deflection was nearly constant). With ks in the interval
(102–106), the deflection reached its maximum. We can easily see the stress jumping at the contact
surfaces in Figure 5. When ks was small, the stress jumping was high. Therefore, depending on
different cases in practice, we can choose correspondingly the suitable shear modulus for reducing the
vibration of the plate.

4.2.2. Influence of the Ratio hc/ht

In the following experiment, we tested a fully simply supported (SSSS) square plate (b = a).
The shear modulus of the shear connector was ks = 50 MPa. The moving load travelled along y = b/2,
with velocity v = 5 m/s, hc/ht = 1, 2, 4, 6, 8, 10, 12, 14 considered (the plate thickness h = hb + hc + ht was
fixed). Non-dimensional deflection and the velocity of the plate center point are shown in Figure 6.
Maximum deflections and velocities of the plate center point are illustrated in Table 4.
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Table 4. Maximum deflections and velocities of the plate center point of the plate versus time for
different ratios hc/ht.

Maximum Values hc/ht = 1 hc/ht = 2 hc/ht = 4 hc/ht = 6 hc/ht = 8 hc/ht = 10 hc/ht = 12 hc/ht = 14

wmax 0.4449 0.3564 0.2545 0.2302 0.2014 0.1855 0.1826 0.1796
umax

c × 10−4 4.0349 4.6229 4.8121 4.9093 5.2788 5.7961 5.7851 6.2406
vmax

c × 10−4 8.3483 9.5245 9.8925 11.23073 11.5314 11.9324 12.7891 13.4772
vmax 0.2509 0.1934 0.1283 0.1162 0.1087 0.0985 0.1020 0.0998

From Figure 6 and Table 4, we can see that when the ratio hc/ht was increased from 8 to 14
(i.e., increasing the thickness of the middle layer since the plate thickness h is fixed), deflection and
velocity of the plate center point decreased significantly. This proved that the middle layer, which
had smaller elastic modulus than the other two layers, could absorb vibration better and thus reduce
deflection and velocity of the plate center point as a function of thickness in z-direction. Therefore,
we proposed that we do not have to use material with large modulus of elasticity to decrease the
vibration. Instead, we can use a triple-layer plate (with a shear connector) in which the middle layer
has a smaller elastic modulus with a specific thickness ratio. Here, we obtain an interesting property:
the vertical displacement w decreased when the ratio hc/ht increased, and in contrast, the horizontal
displacements uc and vc (at the contact surfaces) increased. This can be explained by the strain energy
focusing on the membrane direction.
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4.2.3. Influence of the Ratio a/h

Let us consider a fully simply supported (SSSS) square plate (b = a) with hc = h/2, ht = hb = h/4.
Shear modulus of the shear connector was ks = 50 MPa. The moving load travelled along y = b/2 with
velocity v = 5 m/s. a/h = 30, 40, 50, 60, 70, 80, 90, 100 used. Non-dimensional deflection and the velocity
of the plate center point are shown in Figure 7, maximum deflections and velocities of the plate center
point are illustrated are Table 5.
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Figure 7. Dynamic deflections of center point of the plate versus time for different ratios a/h. (a):
Nondimensional deflection w versus time, (b): Nondimensional velocity v versus time.

Table 5. Maximum deflections, velocities and stress of the plate center point versus time for different
ratios a/h.

Maximum Values a/h = 30 a/h = 40 a/h = 50 a/h = 60 a/h = 70 a/h = 80 a/h = 90 a/h = 100

wmax 0.1015 0.2069 0.3564 0.5964 0.8566 1.1515 1.6623 2.2777
vmax 0.0517 0.0977 0.1934 0.3280 0.4420 0.6170 0.8025 1.1552

From Figure 7 and Table 5, we can recognize that when the plate thickness was increased from
a/100 to a/30, deflection, velocity and stress of the plate center point decreased and decreased
significantly in the range of a/50 to a/30.

4.2.4. Influence of the Moving Load Velocity

Let us consider a fully simply supported (SSSS) square plate (b = a) with hc = h/2, ht = hb = h/4.
Shear modulus of the shear connector was ks = 50 MPa. The moving load travelled along y = b/2 with
velocities v = 5, 10, 15, 20, 25, 30, 35, 40 m/s. Non-dimensional deflection and the velocity of the plate
center point are shown in Figure 8, maximum deflections and velocities of the plate center point are
illustrated in Table 6.
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Figure 8. Dynamic deflections of the center point of the plate versus time for different velocities.
(a): Nondimensional deflection w versus time, (b): Nondimensional velocity v versus time.

Table 6. Maximum deflections, velocities and stress of the plate center point versus time for
different velocities.

Maximum Values v = 5 v = 10 v = 15 v = 20 v = 25 v = 30 v = 35 v = 40

wmax 0.3564 0.3904 0.3772 0.4734 0.5083 0.5132 0.5081 0.4940
vmax 0.0175 0.0409 0.0547 0.0801 0.1000 0.1046 0.1105 0.1282

From Figure 8 and Table 6, we can find that when the velocity of the moving load was increased
from 5 to 40 m/s, deflection, velocity of the plate center point as a function of thickness in z-direction
increased and slightly increased in the range of 5–15 m/s and 20–40 m/s.

4.2.5. Influence of Mass Density of the Core Layer

Let us consider a four edged simply supported (SSSS) square plate (b = a) with hc = h/2, ht = hb =
h/4. Shear modulus of the shear connector was ks = 50 MPa. The moving load travelled along y = b/2
with velocity v = 5 m/s. Mass densities of three layers ρt = ρb = 2300 kg/m3 and ρc = 700, 1000, 1500,
2000, 2300 kg/m3 were used. Non-dimensional deflection, velocity and stress of the plate center point
are shown in Figure 9, maximum deflections and velocities of the plate center point are illustrated in
Table 7.
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Table 7. Maximum deflections, velocities and stress of the plate center point versus time for different ρc.

Maximum Values ρc = 700
kg/m3

ρc = 1000
kg/m3

ρc = 1500
kg/m3

ρc = 2000
kg/m3

ρc = 2300
kg/m3

wmax 0.3564 0.3619 0.3711 0.3742 0.3707
vmax 0.1934 0.1950 0.2202 0.2131 0.2136

From Figure 9 and Table 7, we can find that when the mass density of the core-layer was increased
from 700 to 2300 kg, deflection and velocities of the plate center point as a function of thickness in
z-direction were almost not changed. Therefore, in order to reduce the mass of the plate we can
use a triple-layer plate with shear connectors, where the core layer has a smaller mass density than
other layers.

4.2.6. Influence of Modulus of Elasticity

Let us consider a fully simply supported (SSSS) square plate (b = a) with hc = h/2, ht = hb = h/4.
The shear modulus of the shear connector was ks = 50 MPa. The moving load travelled along y = b/2
with velocity v = 5m/s. A modulus of elasticity of three layers Et = Eb = 12 GPa and Ec = 8, 9, 10,
12 GPa, was used. Non-dimensional deflection and velocity of the plate center point is shown in
Figure 10, maximum deflections and velocities of the plate center point are illustrated in Table 8.
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(a): Nondimensional deflection w versus time, (b): Nondimensional velocity v versus time.

Table 8. Maximum deflections, velocities and stress of the plate center point versus time for different Ec.

Maximum Values Ec = 8 GPa Ec = 9 GPa Ec = 10 GPa Ec = 12 GPa

wmax 0.3564 0.3418 0.3418 0.3181
vmax 0.1934 0.1974 0.1763 0.1542

From Figure 10 and Table 8, we can find that when modulus of elasticity core-layer was increased
from 8 to 12 GPa, deflection, velocity of the plate center point and the stress of center point as a function
of thickness in z-direction were slightly decreased.

5. Conclusions

By using published theories of multi-layered beams, Mindlin’s plate theory and finite element
modelling, we simulated the forced vibration of a triple-layer plate with layers connected by shear
connectors subjected to a moving load. The influences of some structural parameters on the dynamic
response of the plate were also examined in the paper. We found that, in the regarded plate, the shear
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coefficient of the shear connector played a crucial role. Specifically, when the shear coefficient was
sufficiently large, the plate could be considered a sandwich plate. The flexibility of the shear coefficient
helped engineer a plate with the desired mechanical properties. From the results of numerical tests,
we proposed that to reduce plate vibration, the elastic modulus of the middle layer should be smaller
than the outside two layers, and the thickness of the middle layers should be 20–30 times larger than
the two outside layers.
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Appendix A

N1 = 0.25(1− ξ)(1− η)(−ξ − η − 1)
N2 = 0.5

(
1− ξ2)(1− η)

N3 = 0.25(1 + ξ)(1− η)(ξ − η − 1)
N4 = 0.5(1 + ξ)

(
1− η2)

N5 = 0.25(1 + ξ)(1 + η)(ξ + η − 1)
N6 = 0.5

(
1− ξ2)(1 + η)

N7 = 0.25(1− ξ)(1 + η)(−ξ + η − 1)
N8 = 0.5(1− ξ)

(
1− η2)

(ξ; η are natural coordinates)

Appendix B

B0
ti =


∂Ni
∂x 0 0 0 0 0 0 0 0 0 0 0 0
0 ∂Ni

∂y 0 0 0 0 0 0 0 0 0 0 0
∂Ni
∂y

∂Ni
∂x 0 0 0 0 0 0 0 0 0 0 0



B0
ci =

 0 0 0 0 ∂Ni
∂x 0 0 0 0 0 0 0 0

0 0 0 0 0 ∂Ni
∂y 0 0 0 0 0 0 0

0 0 0 0 ∂Ni
∂y

∂Ni
∂x 0 0 0 0 0 0 0



B0
bi =

 0 0 0 0 0 0 0 0 ∂Ni
∂x 0 0 0 0

0 0 0 0 0 0 0 0 0 ∂Ni
∂y 0 0 0

0 0 0 0 0 0 0 0 ∂Ni
∂y

∂Ni
∂x 0 0 0



B1
ti =

 0 0 ∂Ni
∂x 0 0 0 0 0 0 0 0 0 0

0 0 0 ∂Ni
∂y 0 0 0 0 0 0 0 0 0

0 0 ∂Ni
∂y

∂Ni
∂x 0 0 0 0 0 0 0 0 0



B1
ci =

0

0 0 0 0 0 0 ∂Ni
∂x 0 0 0 0 0 0

0 0 0 0 0 0 0 ∂Ni
∂y 0 0 0 0 0

0 0 0 0 0 0 ∂Ni
∂y

∂Ni
∂x 0 0 0 0 0


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B1
bi =

 0 0 0 0 0 0 0 0 0 0 ∂Ni
∂x 0 0

0 0 0 0 0 0 0 0 0 0 0 ∂Ni
∂y 0

0 0 0 0 0 0 0 0 0 0 ∂Ni
∂y

∂Ni
∂x 0


Sti =

[
0 0 0 Ni 0 0 0 0 0 0 0 0 ∂Ni

∂y

0 0 Ni 0 0 0 0 0 0 0 0 0 ∂Ni
∂x

]

Sci =

[
0 0 0 0 0 0 0 Ni 0 0 0 0 ∂Ni

∂y

0 0 0 0 0 0 Ni 0 0 0 0 0 ∂Ni
∂x

]

Sbi =

[
0 0 0 0 0 0 0 0 0 0 0 Ni

∂Ni
∂y

0 0 0 0 0 0 0 0 0 0 Ni 0 ∂Ni
∂x

]

Appendix C

Lt =

 1 0 zt 0 0 0 0 0 0 0 0 0 0
0 1 0zt 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1


Lc =

 0 0 0 0 1 0 zc 0 0 0 0 0 0
0 0 0 0 0 1 0 zc 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1


Lb =

 0 0 0 0 0 0 0 0 1 0 zb 0 0
0 0 0 0 0 0 0 0 0 1 0 zb 0
0 0 0 0 0 0 0 0 0 0 0 0 1


Appendix D

Nml
i =

[
0 0 0 0 0 0 0 0 0 0 0 0 Ni

]
(i = 1 : 8)

Nml =
[

Nml
1 Nml

2 Nml
3 Nml

4 Nml
5 Nml

6 Nml
7 Nml

8

]
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