

Supplementary Materials

Theoretical Study of As₂O₃ Adsorption Mechanisms on CaO surface

Yaming Fan ^{1,2,†}, Qiyu Weng ^{2,3,4,†}, Yuqun Zhuo ^{2,3,4,*}, Songtao Dong ¹, Pengbo Hu ^{2,3,4} and Duanle Li ^{2,3,4}

- ¹ Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China; fanymthu@163.com (Y.F.); dongst.ripp@sinopec.com (S.D.)
- ² Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; wqy17@mails.tsinghua.edu.cn (Q.W.); hupb18@mails.tsinghua.edu.cn (P.H.); liduanle@163.com (D.L.)
- ³ Tsinghua University-University of Waterloo Joint Research Center for Micro/Nano Energy and Environment Technology, Tsinghua University, Beijing 100084, China
- ⁴ Beijing Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline–alkaline and Desert Land, Tsinghua University, Beijing 100084, China
- * Correspondence: zhuoyq@mail.tsinghua.edu.cn
- * These authors contributed equally to this work

Optimization of slab model

CaO (001) is a typical surface in describing CaO [1,2] surface. The surface size (1×1, 2×2, 3×3, 4×4) and layers (2, 3, 4, 5 and 6) of the slab models were optimized to their physical and chemical properties. The physical property included the z_{layers} (layer thickness) and z_{Ca-O} (superficial average Ca-O distance). The chemical property included E_{ads} (adsorption energy of As⁰), which could reflect CaO's property of capturing As₂O₃.

The Δz_{layers} , Δz_{Ca-O} and E_{ads_mean} was defined as follows:

$$\Delta z_{layers} = |z_{layers}_{relaxed} - z_{layers}_{fixed}|$$
(1)

$$\Delta z_{Ca-O} = |z_{Ca-O_relaxed} - z_{Ca-O_fixed}|$$
(2)

$$\Delta E_{ads} = |E_{ads} - E_{ads_mean}| \tag{3}$$

The suffix of 'fixed' represented that the surface layer of slab models was fixed, while 'relaxed' represented the opposite. The suffix of 'mean' represented the mean adsorption energy.

surface size	${\it \Delta}$ Zlayers, Å	Δz Ca-O, Å	ΔE_{ads} , kJ/mol
1×1	7.9×10 ⁻²	7.0×10 ⁻⁵	62.2
2×2	7.9×10 ⁻²	6.0×10 ⁻⁵	10.3
3×3	7.8×10-2	6.0×10 ⁻⁵	4.5
4×4	7.7×10-2	6.0×10 ⁻⁵	5.8

 Table S1: Changes in physical and chemical properties of different surface size.

The *a*×*a*-surface (*a*=1, 2, 3 and 4) slab models (layer is fixed as 4 layers) were constructed and optimized. The changes in physical and chemical properties are shown in Table 2. Among the models, the 3×3-surface model has the second lowest Δz_{layers} (7.8×10⁻² Å), the lowest Δz_{Ca-O} (6.0×10⁻⁵ Å) and the lowest ΔE_{ads} (4.5 kJ/mol). The model surface size was therefore optimized as 3×3. The average adsorption energy E_{ads_mean} did not include the 1×1-surface model due to the obvious large difference (62.2 kJ/mol).

layers	$\varDelta z$ layers, Å	Δz ca-0, Å	ΔE_{ads} , kJ/mol
2	7.3×10-2	1.0×10-4	1.1
3	7.1×10-2	9.2×10-5	0.7
4	5.0×10-2	9.0×10-5	0.3
5	7.2×10 ⁻²	1.0×10^{-4}	0.9
6	7.3×10-2	1.0×10^{-4}	0.7

Table S2: Changes in physical and chemical properties of different layers.

The layer thickness was then optimized based on the 3×3-surface size. As shown in Table 3, the 4-layer model has demonstrated acceptable physical and chemistry properties (lowest Δz_{layers} , lowest Δz_{ca-O} , lowest ΔE_{ads}). As the consequent, the 4-layer 3×3-surface slab model was selected to simulate the adsorption of As₂O₃ on CaO surface in this study.

Initial adsorbate structures

Figure S1: Initial adsorbate structures.

Figure S2: Paths and structures of the physisorption and chemisorption reaction from chemisorption structure 1.

PDOS Analysis

PDOS (Partial Density of States) was calculated to describe the electronic structure changes of As₂O₃ and CaO slab model surface during adsorption. Both the PDOS of physisorption structures and chemisorption structures are selected for discussion here.

Figure S3: PDOS of As₂O₃ and CaO surface during physisorption and chemisorption (a. PDOS of As₂O₃ molecule; and b. PDOS of CaO surface).

Reference

- 1. Di Valentin, C.; Pacchioni, G.; Bernasconi, M. Ab initio molecular dynamics simulation of NO reactivity on the CaO (001) surface. *J. Phys. Chem. B* **2006**, *110*, 8357-8362.
- 2. Xin, G.; Zhao, P.; Zheng, C., Theoretical study of different speciation of mercury adsorption on CaO (001) surface. *Proc. Combust. Inst.* **2009**, *32*, 2693-2699.