

Supporting Information

Coplanar Donor-π-Acceptor Dyes Featuring a Furylethynyl Spacer for Dye-Sensitized Solar Cells

Luis A. Serrano ^{1,†}, Kwang-Won Park ^{2,†}, Sungwoo Ahn ², Alan A. Wiles ¹, Jongin Hong ^{2,*} and Graeme Cooke ^{1,*}

- ¹ WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom; llaassgg5@hotmail.com (L.A.S.); alan.wiles@glasgow.ac.uk (A.A.W.)
- ² Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea; bryan.kwangwon.park@gmail.com (K.W.P.); ahn2788@gmail.com (S.A.)
- * Correspondence: hongj@cau.ac.kr (J.H.); Graeme.Cooke@glasgow.ac.uk (G.C.); Tel.: +8228205869 (J.H.); +44143305500(G.C.)
- + Equal contribution to this work

Received: 14 February 2019; Accepted: 4 March 2019; Published: 12 March 2019

Figure S1. Optimized molecular geometries of the three dyes (LS-361, LS-362 and LS-365).

Table S1. Conjugative interaction energies (ΔE) between the π and π^* orbitals in LS-361, LS-362 and LS-365 from the second-order perturbation theory analysis of the Fock matrix within the NBO analysis.

Donor Orbital Acceptor Orbital	(a.u.)
(kcal/mol) (a.u.) ((
$\pi(C1=C2) \qquad \pi^*(C3=C4) \qquad 16.86 \qquad 0.30 \qquad (C1=C2) \qquad \pi^*(C3=C4) \qquad 16.86 \qquad 0.30 \qquad (C1=C2) \qquad$	0.066
$\frac{\text{LS-361}}{\pi(\text{C5=C6})} \pi^*(\text{C7=C8}) \qquad 23.31 \qquad 0.29 \qquad (1)$	0.075
$\pi(C1=C2)$ $\pi^*(C3=C4)$ 15.94 0.30 (0.065
LS-365 $\pi(C5=C6)$ $\pi^*(C7=C8)$ 22.38 0.30 (0.073
$\pi(C1=C2)$ $\pi^*(C3=C4)$ 16.18 0.30 (0.065
LS-362 $\pi(C5=C6)$ $\pi^*(C7=C8)$ 22.63 0.30 (0.074
$\pi(C1=C2)$ $\pi^*(C3=C4)$ 15.82 0.29 (0.064
$\pi(C5=C6) \qquad \pi^*(C7=C8) \qquad 25.26 \qquad 0.30 \qquad (C5=C6) \qquad \pi^*(C7=C8) \qquad 25.26 \qquad 0.30 \qquad (C5=C6) \qquad (C5=C6) \qquad 0.30 \qquad (C5=C6) \qquad (C5=C$	0.080

Table S2. The NBO population charge for electron donor, π -bridge and electron acceptor, which denoted as q^{donor} , q^{π -bridge and $q^{acceptor}$, respectively. Δq^{D-A} represents the charge variance between natural charges on the donor and acceptor groups.

Dye	q ^{donor}	$q^{\pi ext{-bridge}}$	q ^{acceptor}	Δq^{D-A}
LS-361	0.0797	0.1037	-0.1835	0.2632
LS-362	0.0492	0.1173	-0.1665	0.2157
LS-365	0.0387	0.1223	-0.1610	0.1997
Control	0.0836	0.0894	-0.1729	0.2565

Table S3. EIS fitting parameters estimated from the EIS spectra in Figure 4(c).

Dye	R_{tr} (Ω)	R_{rec} (Ω)	C_{μ} (mF)	$ au_e$ (ms)	η (%)
LS-361	11.26	75.91	0.05	3.56	87.08
LS-362	10.09	126.00	0.03	3.56	92.59
LS-365	14.75	85.08	0.03	2.52	85.22
Control	7.45	92.51	0.04	3.56	93.64