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Abstract: As a software framework, Hierarchical Temporal Memory (HTM) has been developed to
perform the brain’s neocortical functions, such as spatial and temporal pooling. However, it should
be realized with hardware not software not only to mimic the neocortical function but also to
exploit its architectural benefit. To do so, we propose a new memristor-CMOS (Complementary
Metal-Oxide-Semiconductor) hybrid circuit of temporal-pooling here, which is composed of the
input-layer and output-layer neurons mimicking the neocortex. In the hybrid circuit, the input-layer
neurons have the proximal and basal/distal dendrites to combine sensory information with the
temporal/location information from the brain’s hippocampus. Using the same crossbar architecture,
the output-layer neurons can perform a prediction by integrating the temporal information on
the basal/distal dendrites. For training the proposed circuit, we used only simple Hebbian
learning, not the complicated backpropagation algorithm. Due to the simple hardware of Hebbian
learning, the proposed hybrid circuit can be very suitable to online learning. The proposed
memristor-CMOS hybrid circuit has been verified by the circuit simulation using the real memristor
model. The proposed circuit has been verified to predict both the ordinal and out-of-order sequences.
In addition, the proposed circuit has been tested with the external noise and memristance variation.

Keywords: memristor-CMOS hybrid circuit; temporal pooling; sensory and hippocampal responses;
cortical neurons; hierarchical temporal memory; neocortex

1. Introduction

The neocortex occupying most of the brain’s surface area has been believed to perform the most
human-like functions such as intelligence, cognition, etc. among all human organs. It is just 2.5-mm
thick and is composed of six layers [1–3]. All six neocortical layers have the same columnar architecture,
where the neocortical neurons are connected in both the vertical and horizontal directions to form various
feedback and feedforward paths to communicate with each other. Anatomical experiments have observed
the columnar architecture consistently through the entire neocortex [4,5]. This fact may hint that there is a
canonical neural circuitry that can describe various neocortical functions with one model [6].

In this paper, we try to develop a memristor-CMOS hybrid circuit that can emulate the neocortex’s
canonical neural circuitry by combining nanoscale memristor crossbars with CMOS peripheral circuits.
Memristors have been studied intensively for many years for their possible use of neuromorphic
hardware since the first experimental demonstration [7,8]. This is because the memristive behavior
seems very similar with the biological synaptic plasticity, where the synaptic connection can be
strengthened and weakened dynamically according to the sensory stimulus [9]. The ionic dynamics of
memristors can also be used in implementing the reservoir computing hardware, where the cognitive
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function can be processed simply by applying the time-domain signals to the memristor-based
reservoir [10]. Moreover, the memristor crossbars can be built in a 3-dimensional architecture by a
CMOS-compatible fabrication process, where the 3-dimensionality is very similar to the anatomical view
of the real biological neuron-synapse connections in the neocortex [11,12]. Also, the memristor crossbar can
perform a bitwise parallel operation which has been thought as one of the key aspects of energy-efficient
computing of the human brain’s cognition, compared to modern state-of-the-art computers [13,14].

As a software framework for modeling the neocortical function, Hierarchical Temporal Memory
(HTM) has been developed recently [15–20]. Figure 1a shows a functional block diagram of HTM that is
composed of the Spatial Pooler (SP) and Temporal Memory (TM). SP receives the sensory information
to learn the cortical representation. As a result, SP generates Sparse Distributed Representation
(SDR) [16]. SDR is a mathematical description for representing the cortical neurons that may be
activated or deactivated in response to the sensory information from the cochlea, retina, etc. Actually,
SP was proposed as a software algorithm in the HTM software framework [15–20]. To realize the
spatial pooling with hardware, we developed the spatial-pooling memristor crossbar circuit in a
previous work, where the circuit could convert the sensory information to the SDR that meant the
representation of cortical neurons [21].
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The temporal memory (TM) in Figure 1a puts together the “what” and “when/where” vectors 
that come from the spatial pooler and hippocampus model, respectively [22,23]. By combining the 
“what” with “when/where”, the temporal memory can perform both the spatial recognition and the 
temporal prediction. For the temporal prediction, the representation of temporal succession (“when”) 
should be segregated from the representation of the content (“what”), as shown in Figure 1a [24,25]. 
From the experimental observations, the hippocampus has been known to play a central role in 
encoding the information of ordinal sequences (“when”) [25,26], whereas the representation of the 
content (“what”) has been known to come from the neocortex, as indicated in Figure 1b. 

The representation of the temporal sequence (“when”) can be extended to the spatial sequence 
(“where”) [27,28]. For example, the order of the words during reading depends on where one is 
looking (“where”). However, the order of the words during listening can be interpreted as the 
temporal sequence (“when”’). Actually, every principal neuron in the hippocampus can work as 
either a “place cell” or “time cell” [29]. By doing so, the hippocampus can model both the temporal 
(“when”) and spatial (“where”) information with the same kinds of representation. Thus, we can 
think that the spatial sequence of location information is one case of the temporal sequence [26]. 

Though HTM has been developed as the software framework for performing the neocortex’s 
cognition, it should be realized with hardware not only to mimic the neocortex’s function but also to 

Figure 1. (a) The functional block diagram of Hierarchical Temporal Memory (HTM): The spatial
pooler receives the sensory information from various sensory organs and forms the Sparse Distributed
Representation (SDR) output representing the collective cortical neurons activated in response to
the sensory information. The temporal memory learns the sequence of items that are represented
by the SDR vectors by combining the sensory information with the temporal information. (b) The
cross-sectional view of the human brain: Here, the neocortex and hippocampus regions are shown for
processing the “what” and “when/where” information, respectively.

The temporal memory (TM) in Figure 1a puts together the “what” and “when/where” vectors that
come from the spatial pooler and hippocampus model, respectively [22,23]. By combining the “what”
with “when/where”, the temporal memory can perform both the spatial recognition and the temporal
prediction. For the temporal prediction, the representation of temporal succession (“when”) should be
segregated from the representation of the content (“what”), as shown in Figure 1a [24,25]. From the
experimental observations, the hippocampus has been known to play a central role in encoding the
information of ordinal sequences (“when”) [25,26], whereas the representation of the content (“what”)
has been known to come from the neocortex, as indicated in Figure 1b.

The representation of the temporal sequence (“when”) can be extended to the spatial sequence
(“where”) [27,28]. For example, the order of the words during reading depends on where one is
looking (“where”). However, the order of the words during listening can be interpreted as the
temporal sequence (“when”’). Actually, every principal neuron in the hippocampus can work as either
a “place cell” or “time cell” [29]. By doing so, the hippocampus can model both the temporal (“when”)
and spatial (“where”) information with the same kinds of representation. Thus, we can think that the
spatial sequence of location information is one case of the temporal sequence [26].

Though HTM has been developed as the software framework for performing the neocortex’s
cognition, it should be realized with hardware not only to mimic the neocortex’s function but also to
exploit its architectural benefit. One reason for this need of a hardware version is the demand of the
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edge-computing devices in the Internet of Things (IoT) era [30–32]. For the near-sensor processing
and computing of IoT devices, the speed and power benefit due to the bitwise parallel-processing
of memristor crossbars can be very important in terms of the possibility of real-time and on-chip
cognitive functions for various edge-computing applications [32]. Thus, the neocortex’s cognitive
function combined with the crossbar’s architectural merit can accelerate the transition from the HTM
software framework to its hardware emulator [30].

To implement HTM by hardware not software, in this paper, we propose a new memristor-CMOS
hybrid circuit for realizing the temporal-pooling function of the human brain, which is composed of
the input and output layers, to mimic the temporal prediction of neocortical neurons. In the hybrid
circuit, the input layer has proximal and basal/distal dendrites to combine the sensory information
with the temporal/location information. The output layer composed of the same circuitry with the
input layer can perform a prediction by integrating the temporal information through the basal/distal
dendrites. In this paper, the input and output layers realized with the memristor-CMOS hybrid circuit
are verified to perform the temporal recognition and prediction that are the same functions within the
human brain’s neocortex.

2. Proposed Methods

Memristor crossbars are thought to be very suitable in mimicking the anatomical and functional
architecture of neocortex. Memristive behaviors seem similar with the synaptic plasticity of biological
neurons. Moreover, the 3-D connectivity of crossbars can be useful in realizing the real neuronal
3-D architecture of the neocortex. Also, the crossbars can perform a bitwise parallel computation,
as the pyramidal neurons do in the neocortical layers. To develop the neocortex-mimicking memristor
crossbar, first, we need to understand the functional model of neocortical columns and layers [33,34].

Figure 2a shows the conceptual model of temporal memory composed of input-layer and output-layer
neurons [23]. From previous experimental observations, the HTM theory deduced a couple of rules to
describe the neocortex’s operation. First, it is assumed that the input-layer neurons receive the sensory
information though the single proximal dendrite [23]. The synapses connected to this proximal
dendrite are involved in only local signal-processing, as shown in Figure 2a. They do not communicate
with the neurons outside the local region. The proximal dendrite is more likely to form short-distance
vertical connections to receive the sensory information. On the contrary, the basal/distal dendrite is
responsible for long-distance horizontal communication [23]. The dendrite can receive information
from distantly located regions such as the hippocampus. One thing to note is that one neocortical
neuron is allowed to have only single proximal dendrite. However, the basal/distal can have multiple.
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Figure 2. (a) The conceptual model of temporal memory architecture: The red and blue lines represent
the proximal and basal/distal dendrites, respectively. (b) The schematic of a pyramidal neuron with a
single proximal dendrite and multiple basal/distal ones. The number of output axons can be multiple
too. Here, we showed 4 axons to constitute one mini-column with 4 cells. The pyramidal neurons are
known as the majority of neocortical neurons.
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Figure 2a also shows the output-layer neurons that are basically the same as the input-layer
ones. The proximal dendrite is for short-and-direct connections from the input-layer neurons.
The output-layer neurons can receive long-distance information horizontally through multiple
basal/distal dendrites for the temporal integration of “when” vectors. The two-layer model is
regarded as a general feature of the neocortex and can be used as an elemental unit in realizing
the memristor-based temporal-pooling crossbar [23].

Figure 2b shows the schematic of a pyramidal neuron that incorporates the axonal and dendritic
connections. The proximal dendrite receives the direct feed-forward inputs from the sensory organs.
The basal/distal dendrite can be driven by the long-distance signals from far away regions, such as
the hippocampus.

Figure 3 shows the conceptual schematic of the temporal-pooling memristor crossbar composed
of input-layer and output-layer neurons. The input-layer neurons receive sensory SDR and
temporal/location SDR from the spatial pooler and hippocampus model, respectively. The sensory
SDR vectors are connected with the proximal dendritic synapses. The basal/distal dendrites of the
input-layer neurons receive hippocampal responses that contain the temporal and location information.

The output-layer neuron in Figure 3 has the same circuitry as the input-layer neuron, as shown in
Figure 2b. The proximal connection of the output-layer neuron comes from the axonal output of an
input-layer neuron. The basal/distal dendrite can make the output-layer neuron a predicted state by
depolarizing its body. If the body is depolarized enough by the previous basal/distal dendritic inputs,
it can fire spikes sooner than the other output-layer neurons, if they are not in the predicted state. If the
output-layer neuron is not in the predicted state, it cannot fire spikes, even though it receives the same
feedforward input as the predicted-state neuron. Only the predicted-state neuron which is depolarized
already can fire spikes in response to the proximal dendritic input.
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Figure 3. The conceptual schematic of a temporal-pooling memristor crossbar composed of input-layer
and output-layer neurons: The input-layer neuron receives sensory SDR and temporal/location SDR
from the spatial pooler and hippocampus model, respectively. The sensory and temporal/location SDR
are generated from the spatial-pooling memristor crossbar that was developed in a previous work [21].
The output-layer neuron can perform a prediction by integrating the temporal information through
multiple basal/distal dendrites.

In Figure 4a, we propose a memristor-CMOS hybrid circuit that has the input and output layers
for the temporal-pooling of sequences such as words, sentences, etc. Here, the sensory SDR vectors
enter the proximal dendrites of m0, m1, m2, etc. The temporal/location SDR vectors are connected
to the basal/distal dendrites of m3, m4, m5, etc. One thing to note in Figure 4a is that each neuron
is allowed to have only a single proximal dendrite. However, for the basal/distal ones, the neuron
can have multiple dendrites, as explained in Figure 2. The sensory SDR and temporal/location SDR
are collectively received by the input-layer neurons. The column current of the sensory SDR “A” is
delivered to C0, where the column current is converted to a voltage and then compared with the
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threshold. The detailed schematic of C0 is shown in Figure 4b. Similarly, the column current of “B”’ is
delivered to C1. The temporal/location SDR vectors of “#1”, “#3”, and “#2” generate the row currents
which are delivered to C2, C3, and C4, respectively. A0, A1, and A2 are the AND gates that combine
the sensory information of “A”’ with the temporal/location SDRs of “#1”, “#3”, and “#2”, respectively.
The outputs of A0, A1, and A2 are represented with i0, i1, and i2, respectively. They enter the pulse-type
set-reset latches of L0, L1, and L2, respectively. The pulse-type set-reset latch is shown in Figure 4c.
L0 can be set if the SDR “A” and SDR “#1” are recognized at the same time. L1 is set for “A” and “#3”.
L2 is switched to the SET state for “A” and “#2”. Similarly, L3, L4, and L5 can respond to the input
SDR of “B#1”, “B#3”, and “B#2”, respectively. The set-reset latch in Figure 4c is reset by the delayed
version of the “EOW_P” pulse from the delay line τ. Here, “EOW_P” means the pulse indicating the
end of the word. “EOW_P” is generated when the word ends.Materials 2019, 12, x FOR PEER REVIEW 6 of 15 
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Figure 4. (a) The schematic of the proposed memristor-CMOS hybrid circuit for the temporal pooling
of sequences such as words, sentences, etc: The input layer is composed of the memristor crossbars
for sensory and temporal/location SDRs, the current-to-voltage converters, comparators, the AND
gates, etc. The output layer is composed of the memristor crossbars, converters, comparators, latches,
etc. (b) The schematic of the current–voltage converter and comparator and (c) the schematic of the
pulse-type set-reset latch.

As mentioned earlier, if the sensory SDR of letter “A” and the location SDR of “#3” are applied
to the input-layer neuron, Q1 is activated. Similarly, when the sensory SDR of “B” and the location
SDR of “#2” are recognized, Q5 becomes high. When “EOW_P” is activated, the two latches of L1

and L5 keep Q1 and Q5 high, respectively, until the reset. Assuming that the dendritic synapses of the
output neuron O0 are already put in the predicted state with “A#3” and “B#2”, m7 and m9 are already
programmed LRSs (Low Resistance States) as a result of crossbar training. Here, the solid and open
circles represent LRS and HRS (High Resistance State), respectively. At end-of-word, if the row current
of k0 is larger than the output-layer neuron’s threshold, O0 becomes high. Actually, we can think that
the k0 current represents the integration of temporal responses to the sensory/location SDRs of “A#3” and
“B#2” because “A#3” and “B#2’ were already recognized at the previous time. Similarly, if “A#2” and “B#1”
are recognized one by one, the row current k1 becomes larger than the threshold and can activate O1.
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Figure 5a shows a current–voltage relationship of the measured memristor that was obtained by
a Keithley-4200 (Semiconductor Characterization System, Tektronix, Inc., Beaverton, OR, USA) [35].
The measured memristor’s film is a Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [35]. Here, the LRS
and HRS were measured as 10 kΩ and 1 MΩ, respectively. The black line in Figure 5a represents
the behavioral model of memristors [35]. The measured data are represented with the red line.
The behavioral model described by Verilog-A was used in the circuit simulation of the hybrid
circuits of memristors and CMOS in this paper. Here, the circuit simulation was performed using
CADENCE SPECTRE (Cadence Design Systems, Inc., San Jose, CA, USA) and SAMSUNG 0.13-µm
circuit simulation parameters [36]. The mathematical equations of the Verilog-A model of memristors
were explained in a previous publication in detail [35].
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Figure 5. (a) The current–voltage relationships of memristors for the measurement and Verilog-A
model: The black line represents the Verilog-A model of memristors used in the circuit simulation
in this paper [35]. The red line is for the measurement [35]. The details of the measurement and the
Verilog-A model were explained well in a previous publication [35]. (b) The waveforms of the proposed
memristor-CMOS hybrid circuit for temporal pooling shown in Figure 4.

Figure 5b shows the waveforms of Figure 4 obtained from the CADENCE (Cadence Design
Systems, Inc., San Jose, CA, USA) circuit simulation with the memristor’s Verilog-A model in Figure 5a
and the SAMSUNG 0.13-µm SPICE parameters. First, we assumed the sensory SDR of letter “A” and
the location SDR of “#3” are generated by the spatial pooler. As a result, the IN0 and IN5 pulses are
high, while the others are low in Figure 5b. By doing so, Q1 becomes high. Second, if the spatial pooler
generates the sensory SDR of letter “B” and the location SDR “#2”, Q5 becomes high. At end-of-word,
the pulse of “EOW_P” is enabled and the output neuron O0 becomes active. Here, the output neuron is
already put in the predicted state by the previous signals of Q1 and Q5. After the output neuron O0 fires a
pulse, O0 returns to low, as the typical integrate-and-fire neuron acts. To do so, the “EOW_P” pulse goes
through the delay line τ and its delayed pulse resets the set-reset latches. The integrate-and-fire operation
is realized very simply using the digital CMOS gates and the memristor crossbar, as shown in Figure 4a–c.

3. Results

In this paper, we tested the proposed memristor-CMOS hybrid circuit of temporal pooling in
Figure 4a with an EMNIST (Extension of Modified National Institute of Standards and Technology)
data-set of handwritten letters [37]. For training the memristor crossbar to recognize EMNIST
handwritten letters, we applied the simple Hebbian learning to 26 EMNIST letters from “a” to “z”.
The operational steps of simple Hebbian learning of memristor crossbars is shown in Figure 6. Here,
first, we initialized the memristor crossbar. Second, we calculated the amount of overlap between the
input vector and the crossbar’s column or row. If the crossbar’s column or row has an overlap larger
than the threshold, the column or row is activated. In this case, the permanence values of matched
and unmatched memristor cells belonging to the activated column or row are increased and decreased
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according to the predetermined parameter ∆, respectively. If the permanence value becomes larger than
1 or less than 0, the memristor corresponding to the permanence is strengthened or weakened according
to the memristor programing circuit. Here, we used the typical VDD/2 scheme for programming
memristors. One thing to note is that the memristor programming based on Hebbian learning does not
need the complicated backpropagation calculation [21]. By doing so, the proposed memristor-CMOS
hybrid circuit can be very suitable to online learning because the hardware complexity of Hebbian
learning is much simpler than that of a backpropagation-based system.
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Figure 6. The operational steps of simple Hebbian learning of memristor crossbars: initialization,
overlap computation, activation and deactivation by thresholding, and permanence updating and
memristor programming. Here the memristor programming based on Hebbian learning does not need
the complicated backpropagation calculation.

In this test, the 26 EMNIST letters have 60,000 training vectors. Each image is composed of
20 × 20 gray pixels. To estimate the recognition rate, we tested 10,000 execution vectors of an EMNIST
letter. The first row in Figure 7 shows 4 images of EMNIST letters. They are “c”, “o”, “m”, and “e”,
respectively. EMNIST vectors are randomized first and then applied to the spatial-pooling memristor
crossbar proposed in a previous work [21]. The second row in Figure 7 shows the randomized version
of the EMNIST vectors. It should be noted that the memristor-CMOS hybrid circuit does not need to
use the complicated random number generation circuit. Once we decided the randomization function,
we applied the same function to all the test vectors without changing it for every vector [21]. Thus,
we did not use the random number generator circuit in a previous work [21].
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Figure 7. The first row shows the EMNIST handwritten letters of “c”, “o”, “m”, and “e”, respectively.
The second row shows randomized images of EMIST handwritten letters. The third row are the SDRs
that are obtained from the spatial-pooing memristor crossbar for the randomized images of “c”, “o”,
“m”, and “e”. The fourth row shows 100 EMNIST input vectors. Each EMNIST vector is composed of
20 × 20 pixels. The fifth row shows 100 SDRs with 16 × 16 bits which are obtained from 100 EMNIST
input vectors with 20 × 20 pixels. Among the 16 × 16 bits, only 2% of the bits become active to maintain
the sparsity ratio around 2% by spatial-pooling for EMNIST vectors [21].



Materials 2019, 12, 875 8 of 14

If we perform the spatial pooing with 256 columns, we can obtain 16 × 16 SDRs from 20 × 20
EMNIST input vectors. The third row in Figure 7 shows the SDRs that are obtained from the
spatial-pooing memristor crossbar for the randomized images of “c”, “o”, “m”, and “e”, respectively.
The fourth row in Figure 7 shows the pixel map of 100 EMNIST test vectors. The average sparsity
of the EMNIST test vectors is as high as 55.8%; that means 55.8% of the pixels can be white. On the
contrary, the SDRs from the spatial-pooling crossbar have a sparsity as low as 2%. The fifth row shows
100 SDRs with 16 × 16 bits. Among the 16 × 16 bits of each SDR, only 2% of the bits become active
by the spatial-pooling of the 20 × 20-pixel EMNIST vector. This low sparsity of SDRs is very useful
in cognitive computations such as union, pattern matching, etc. [38]. In addition, the small number
of active bits can reduce the number of LRS cells in a memristor crossbar. By doing so, the power
consumption and sneak-leakage problem can be improved much in the spatial-pooling crossbar [39].

To test the temporal-pooling memristor-CMOS hybrid circuit in Figure 4a, we put together
EMNIST handwritten letters to form arbitrary words. Figure 8 shows the recognition rate of the
proposed temporal-pooling circuit for the 40 words tested in this paper. The recognition rate of words
is estimated as high as 95.6%, 99.1%, and 99.3% for 256-bit SDRs, 1024-bit SDRs, and 4096-bit SDRs,
respectively. One thing to note is that the recognition rate of words is much better than the recognition
rate of EMNIST letters. This is because the temporal-pooling circuit interprets both sensory and
temporal/location information together, as indicated in Figure 2. Combining the sensory SDRs with
the location SDRs makes the recognition of words better than the recognition of letters. Figure 8 also
shows the recognition rate of sentences as high as the rate of words. The recognition rate of sentences
is simulated 96.5%, 99.3%, and 99.7% for 256-bit SDRs, 1024-bit SDRs, and 4096-bit SDRs, respectively.
Here, the number of sentences tested in Figure 8 is 10.
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Figure 8. The recognition rate of words and sentences with varying the number of bits per SDR.

Figure 9 shows the recognition rate by varying the amount of noise added to SDRs. The noise is
added by randomly flipping a fraction of the active bits to inactive, and vice versa so that the sparsity
can be maintained constant. As shown in Figure 4a, the temporal-pooling circuit receives both the
sensory and location SDRs from the spatial pooler. Here, the red circles represent the recognition rate
for the noise added to the sensory SDRs. The black boxes are for the noise added to the location SDRs.
From this figure, the noise added to the location SDRs seems more critical in terms of recognition rate.
If a noise as large as 40% is added to the location SDRs, the recognition rate becomes as low as 45.3%.
However, the rate can be as high as 92.5% for the same amount of noise added to the sensory SDRs.
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Figure 9. The recognition rate of words by varying the amount of noise added to location SDRs and
sensory SDRs: The red circles represent the recognition rate for the noise added to the sensory SDRs.
The black boxes are for the noise added to the location SDRs.

In Figure 10, we assumed the statistical distribution of LRS and HRS with the memristance
variation = 10%, as shown in the inset figure. Here, the main figure shows the recognition rate by
varying the amount variation in memristance from 0% to 15%. Here, the median values of HRS
and LRS are assumed as 1 MΩ and 10 KΩ, respectively. Though the variation is as large as 15%,
the recognition rate is still as high as 85.9%. The loss of recognition rate for the variation = 15% is only
as small as 13.2% compared to the variation = 0%.
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Figure 10. The recognition rate of words by increasing the percentage variation in memristance from
0% to 15%: The inset figure shows the statistical distribution of LRS and HRS for the memristance
variation = 10%.

Figure 11 shows the prediction rate of sentences by increasing the number of words sensed in the
tested sentence. Here, we tested two cases of sequences which are ordinal and out-of-order sequences,
respectively. First, let us explain the ordinal sequence. Assume that we try to recognize two sequences
of “‘A-B-C-D-E” and “A-B-C-E-D”. Here, the first three SDRs are “A-B-C” which are the same for
both sequences. Also, the fourth and fifth SDRs are different each other. If the first SDR of “A” comes
to the memristor crossbar, it cannot distinguish the two sequences. Similarly, for the second SDR
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of “B”, the crossbar circuit also cannot make a judgement between “A-B-C-D-E” and “A-B-C-E-D”.
However, if the fourth SDR is given to the crossbar, it can predict if the fifth SDR will be “E” or “D”
according to the fourth SDR information. This is called the ordinal prediction in Figure 11, where the
temporal-pooling circuit can predict the ordinal sequence of SDRs. Figure 11 shows the prediction rate
of ordinal sentences. The prediction rate starts from zero. This means the crossbar can predict nothing
at the starting time of prediction. If the first SDR is given, the crossbar starts to predict the rest words
of the tested sentence. As the crossbar receives more words from the spatial pooler, the prediction
becomes more accurate, as shown in Figure 11. When the crossbar receives the final SDR at the end
of sentence (period symbol), the prediction rate in Figure 11 becomes equal to the recognition rate of
sentences in Figure 8.
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We also tested the prediction for out-of-order sequences in Figure 11. In the out-of-order prediction,
the sequence of SDRs are out of order. In spite of the out-of-order sequence, the crossbar can accumulate
the information of the sensed words over time. By doing so, the temporal-pooling circuit can guess
what word should come next. This out-of-order prediction is exactly the same case as the crossword
puzzle problem. In solving the crossword puzzle, we predict the word by accumulating the information
of letters in the out-of-order sequence over time. When the temporal-pooling circuit is given only
half words in the tested sentence, Figure 11 indicates that the crossbar can predict the ordinal and
out-of-order sentences as accurate as 79.8% and 54.2%, respectively.

4. Discussion

In this section, we compare the proposed memristor-CMOS hybrid circuit with the previous
sequential memristor crossbar [40] in terms of the memristor crossbar area, power consumption,
and prediction of the ordinal and out-of-order sequences. The previous sequential memristor crossbar
was designed not to consider the concept of location SDR in the crossbar, unlike the proposed
temporal-pooling hybrid circuit in this paper [40]. Thus, the previous sequential scheme can recognize
only the ordinal not the out-of-order sequence [40]. This is a very big disadvantage of the previous
sequential scheme. For the power consumption, we had to program memristor cells of the serial chain
one by one in the previous sequential crossbar to recognize the ordinal sequences [40]. This results
in a large amount of programming power consumption in the previous scheme. On the contrary,
the proposed temporal-pooling hybrid circuit does not demand the memristor programming in
recognizing both the ordinal and out-of-order sequences. By doing so, the power consumption of the
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proposed temporal-pooling circuit can be almost as small as 1/29 of the previous scheme, as indicated
in Table 1. One more thing to note is the CMOS peripheral circuit in Figure 4a consumes only a
negligible amount of the power than the memristor crossbar. Actually, most of the power is consumed
in the LRS cells in the crossbar. Thus, minimizing the number of LRS cells in the memristor crossbar
is very critical not only for alleviating the sneak leakage problem but also for reducing the power
consumption [21]. Comparing the memristor crossbar’s area between the previous and proposed
schemes indicates the number of memristors of the proposed temporal-pooling hybrid circuit is
estimated almost the same with that of the previous scheme, as shown in Table 1.

Table 1. A comparison of the memristor crossbar area, power consumption, and prediction of the
ordinal and out-of-order sequences.

Scheme The Previous Sequential
Memristor Crossbar [40]

The Proposed Memristor-CMOS
Hybrid Circuit of Temporal Pooling

The number of memristors
(Memristor crossbar area) 17556 17027

The amount of power consumption
(LRS = 1 MΩ, HRS = 100 MΩ) 151.5 µW 5.24 µW

Prediction of ordinal sequences O O

Prediction of out-of-order sequences X O

Finally, we discuss here the practical applications of Hebbian-based HTM algorithm. Actually,
if we compare the Hebbian-based HTM algorithm with the previous deep-learning ones such
Convolutional Neural Networks, etc. for recognizing the benchmark image data-set, the deep learning
outperforms the Hebbian-based HTM [21]. However, according to Numenta Inc. that developed
HTM algorithm, the biologically inspired HTM can work best with data that meets the following
characteristics: streaming data rather than batch data files, data with time-based patterns, many
individual data sources where hand crafting separate models is impractical, subtle patterns that cannot
always be seen by humans, and data for which simple techniques such as thresholds yield substantial
false positives and false negatives [41]. This means that the Hebbian-based HTM algorithm can be
more suitable to the area of Human-like sensory information such as the streaming data composed of
anomaly patterns, as we showed in the case of the out-of-order prediction in Figure 11. On the contrary,
for a static image data-set such as MNIST, CIFAR, etc., the conventional deep learning techniques can
be better than HTM [21]. The real practical applications of the Hebbian-based HTM algorithm were
explained in detail in previous publications [41,42]. In addition, the experimental results of memristor
crossbars with Hebbian learning were shown in previous publications [43,44], where memristor’s
conductance was trained by the Hebbian algorithm for various neuromorphic applications.

5. Conclusions

As a software framework, Hierarchical Temporal Memory (HTM) has been developed to perform
the brain’s neocortical functions such as spatial and temporal pooling in software. However, it should
be realized with hardware not software not only to mimic the neocortex’s function but also to exploit
its architectural benefit. To do so, in this paper, we proposed the memristor-CMOS hybrid circuit to
realize the temporal-pooling function of human brain, which is composed of the input and output
layers to mimic the neocortical neurons. In the hybrid circuit, the input layer has proximal and
basal/distal dendrites to combine the sensory information with the temporal/location information
caused from the brain’s hippocampus. Using the same crossbar architecture, the output layer can
perform predictions by integrating the temporal information through the basal/distal dendrites.
For training the memristor-CMOS hybrid circuit, we used only simple Hebbian learning, not the
complicated backpropagation algorithm. Due to the simple hardware of Hebbian learning, the hybrid
circuit can be thought very suitable to online learning.
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The proposed memristor HTM circuit was verified by the circuit simulation using memristor’s
Verilog-A model obtained from the measurement. The proposed crossbar circuit was tested to recognize
words and sentences that are composed of EMNIST data-set of handwritten letters. The recognition
rate for sentences was estimated as high as 96.5% for 256-bit Sparse Distributed Representation
(SDR). In addition, the proposed circuit was tested with the external noise and memristance variation.
The proposed temporal-pooling circuit also was verified to perform both the ordinal and out-of-order
predictions. When the proposed circuit was given only half words in the tested sentence, it could
predict the ordinal and out-of-order sequences with the accuracy of 79.8% and 54.2%, respectively.
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