

Supplementary Materials

ZnCr₂O₄ Inclusions in ZnO Matrix Investigated by Probe-Corrected STEM-EELS

Wei Zhan ¹, Andrey Yurievich Kosinskiy ¹, Lasse Vines ¹, Klaus Magnus Johansen ¹, Patricia Almeida Carvalho ² and Øystein Prytz ^{1,*}

- ¹ Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway; zhanwei2009@163.com (W.Z.); andrey.kosinskiy@ntnu.no (A.Y.K.); lasse.vines@fys.uio.no (L.V.); k.m.h.johansen@fys.uio.no (K.M.J.)
- ² SINTEF Materials and Chemistry, NO-0314 Oslo, Norway; patricia.carvalho@sintef.no
- * Correspondence: oystein.prytz@fys.uio.no

1. Unit Cell Parameters of ZnO and ZnCr2O4

Table S1. Unit cell parameter of ZnO from XRD experiment and literature. $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$.

Parameter	XRD (Å)	Literature (Å) ^[1]
a = b	3.2505(4)	3.2555(2)
С	5.2059(6)	5.2152(3)

Table S2. Unit cell parameter of ZnCr₂O₄ from XRD experiment and literature. $\alpha = \beta = \gamma = 90^{\circ}$.

Parameter	XRD (Å)	Literature (Å) ^[2]
a = b = c	8.3293(9)	8.32765(8)

2. Atomic-Resolution Images of ZnO and ZnCr2O4

ZnO was directly observed by simultaneous high-resolution HAADF and ABF imaging in two low-index zone axes. It is evident from the [0001] orientation in Figure S1a-b that all the columns form a two-dimensional hexagonal structure, and each column contains both Zn and O. According to STEM images viewed from the [1010] direction in Figure S1c-d, four Zn columns form a rectangle structure. In addition, we also imaged ZnCr₂O₄ with atomic resolution in two low-index zone axes. As can be seen from the [100] projection in Figure S1e-f, four CrO₂ atomic columns form a square in the HAADF and ABF images. For every two squares, there is one Zn column sitting in the square center. In the [111] zone axis as illustrated in Figure S1g-h, one central and six vertex Zn₂CrO₂ atomic columns form a hexagonal unit structure. A CrO₂ column exists between the two closest Zn₂CrO₂ columns. The Zn₂CrO₂ and CrO₂ columns display remarkably different contrast. Not unexpected, in the HAADF image, Zn₂CrO₂ column is much brighter than CrO₂ column. The Zn₂CrO₂ column is significantly darker than CrO₂ column in the ABF image.

Figure S1. (a) HAADF and (b) ABF images of ZnO viewed from the [0001] orientation. (c) HAADF and (d) ABF imaging of ZnO observed from the [1010] direction. (e) HAADF and (f) ABF images of ZnCr₂O₄ viewed from the [100] orientation. (g) HAADF and (h) ABF imaging of ZnCr₂O₄ observed from the [111] direction. The insets show the model and simulated image. The green, cyan, and red balls represent Zn, Cr, and O, respectively.

3. ZnO/ZnCr₂O₄ Interfaces

The red arrow in Figure S2 points at the interface area shown in Figure 5 (main text) and Figure S3.

Figure S2. HAADF image of ZnCr₂O₄ nanoparticle in ZnO matrix. The red arrow indicates the interface area as analyzed in Figure 5 (main text) and Figure S3.

Figure S3a displays an ABF image of the ZnO $[2\overline{1}\overline{1}3]/ZnCr_2O_4$ $[1\overline{1}0]$ interface, which was observed simultaneously with the HAADF image in Figure 5a (main text).

Figure S3. (a) ABF image of ZnO $[2\overline{1}\overline{1}3]/ZnCr_2O_4$ $[1\overline{1}0]$ interface, observed simultaneously with the HAADF image in Figure 5a (main text). The insets show the projected atomic models and simulated images. Close-ups of the experimental HAADF and simulated images as well as models of (b) ZnCr_2O_4 and (c) ZnO. The green, cyan and red balls represent Zn, Cr and O, respectively.

The interface region in Figure 6 (main text) and Figure S5 is displayed by the red arrow in Figure S4.

Figure S4. HAADF image of ZnCr₂O₄ nanoparticle in ZnO matrix. The red arrow shows the interface region as investigated in Figure 6 (main text) and Figure S5.

Figure S5a illustrates ABF image of the ZnO $[1\overline{2}10]/ZnCr_2O_4$ [112] interface, which was recorded simultaneously with the HAADF image in Figure 6a (main text).

Figure S5. (a) ABF image of ZnO $[1\bar{2}10]/ZnCr_2O_4$ [112] interface, taken simultaneously with the HAADF image in Figure 6a (main text). The insets show the projected atomic models and simulated images. Close-ups of the experimental HAADF and simulated images as well as models of (b) ZnO and (c) ZnCr_2O_4. The green, cyan and red balls represent Zn, Cr and O, respectively.

- Francis, S., R. Saravanan, and L.J. Berchmans, *Phase analysis in Zn_{1-x} Cr_xO through charge density*. Phase Transitions, 2013. 86(6): p. 620-632.
- Moureen, C.K., et al., Crystal structures of spin-Jahn–Teller-ordered MgCr₂O₄ and ZnCr₂O₄. Journal of Physics: Condensed Matter, 2013. 25(32): p. 326001.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).