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Abstract: Micro-supercapacitors have recently emerged as promising microscale power sources
for portable and wearable microelectronics. However, most reported planar micro-supercapacitors
suffer from low energy density and the complexity of fabrication, which calls for their further
development. In recent years, the fortification of graphene has enabled the dramatic improvement
of planar micro-supercapacitors by taking full advantage of in-plane interdigital architecture and
the unique features of graphene. The development of viable printing technologies has also provided
better means for manufacturing, bringing micro-supercapacitors closer to practical applications.
This review summarizes the latest advances in graphene-based planar micro-supercapacitors, with
specific emphasis placed on formulation of graphene-based inks and their fabrication routes onto
interdigital electrodes. Prospects and challenges in this field are also discussed towards the realization
of graphene-based planar micro-supercapacitors in the world of microelectronics.
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1. Introduction

The push towards internet of things (IoT) may become a key technological and economical driver
for global development in the near future. IoT allow for sensors and actuators (devices) to deploy
over a large area, connect into large databases and networks (internet), and autonomously operate
in correlation with computing systems [1]. The maturation of IoT will find importance, not only
in the retail market (wearable electronics), but also in manufacturing, infrastructure/environment
monitoring, healthcare, transportation, and so forth [1–3]. Monitoring of environmental pollutants, for
example, can be a tremendous task due to the scale and mobility of the environment. A network of
thousands of microsensors, which deploys over a large area and autonomously collect the data, can
effectively detect any environmental issues and provide the precise information in real time. A critical
requirement for these systems is power autonomy for independent and maintenance-free operation.
Currently, the available microscale power sources are mainly relying on microbatteries, which possess
low power density and limited lifetime [4]. Due to their low power density, a series of combined
microbatteries is usually required to provide sufficient energy to power the microsystem, making them
much larger than the device they are to power [5]. Replacing batteries at the end of their life is also a
major problem. Therefore, the search for alternative and sustainable microscale energy storage devices
has attracted enormous attention.

Unlike batteries, which store energy and produce electricity through chemical reactions [6,7],
supercapacitors store electrical energy directly via reversible adsorption–desorption of ions at the
electrode/electrolyte interface [8] or pseudo-capacititive redox reactions between electrodes and
electrolyte [9]. As a result, supercapacitors have a number of advantages including high power density,
fast charge/discharge rate, and long cycle life [10,11]. With these excellent properties, supercapacitors
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hold much promise as an efficient alternative for batteries in various applications. As conventional
supercapacitors are too large to be adapted into microelectronics, research have driven towards the
design and fabrication of miniaturized supercapacitors (micro-supercapacitors) as an effort to replace
microbatteries for powering microelectronics. The flexibility and performance of micro-supercapacitors
can be tuned by choosing suitable materials and designs [12,13]. Compared with the traditional
sandwich structure, micro-supercapacitors usually choose a planar design with in-plane interdigital
electrode finger arrays due to their numerous advantages in performance and fabrication [14]. In this
review, we mainly discuss the advances in micro-supercapacitors with planar architecture as they are
mostly suitable for powering portable and wearable microelectronics.

Since the discovery of graphene a decade ago, a great numbers of its potential uses have been
proposed [15–17]. Owing to its extraordinary high surface area of up to 2630 m2·g−1 and exceptional
carrier mobility of up to 2 × 105 cm2·V−1·cm−2 [18,19], graphene is one of the most promising
materials to store electrical charge to date [20,21]. In recent years, graphene has shown great potential
in energy storage devices, particularly in micro-supercapacitors [21,22]. The quantum capacitance
of graphene was reported to be ~21 µF·cm−2 (~550 F·g−1) [23], which is among the best electrode
materials for supercapacitors [10,24]. The macroscopic structure of graphene can be manipulated
from its original 2D sheets into new graphene architectures to enhance its electrochemical properties
(Figure 1). Various graphene nanostructures, such as wrinkled graphene [25], porous graphene [26],
graphene nanomeshes [27], honeycomb-like graphene [28], graphene hydrogels [29], and 3D porous
graphene [30], have been reported with improved electrochemical performance. In recent years,
significant interest has been devoted to the assembly of vertically oriented graphene [31,32], which
not only possesses exceptionally high surface area, but also provides accessible paths for the fast
adsorption and desorption of ions, leading to micro-supercapacitors with very high energy densities
and ultrafast response times [33,34]. Graphene is not only advantageous by itself, but also promising
for combining with other materials to boost their superior performance [35,36]. The use of graphene
has opened up many new features for micro-supercapacitor devices that did not exist before, such as
ultrathin, flexible, rollable, transparent, and beyond.
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Figure 1. Schematic illustration of some typical graphene macroscopic structures that are useful
for energy storage applications. Adapted with permission from Reference [21]. Copyright © 2016
Springer Nature.

To realize the commercial application of graphene-based micro-supercapacitors, it is necessary to
develop a facile, reliable, and cost-effective technique for scalable fabrication of graphene electrodes.
Among the available processing techniques, printing of graphene inks offers a simple and effective
route for production of interdigital electrodes that can be adapted into an industrially accessible
scale [37]. In this review, we aim to guide the readers through recent advances in graphene
inks for printing of planar micro-supercapacitors. First, we briefly discuss the fundamentals of
micro-supercapacitors, including materials, designs, and performance evaluation. Then, we review the
current formulation of graphene inks in correlation with the printing technologies for fabrication of
in-plane interdigital electrodes. Finally, we give an insight into the challenges and outlook of graphene
inks for the future development of micro-supercapacitors.
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2. Fundamentals of Micro-Supercapacitors

For supercapacitor devices, the capacitance (C), energy density (E), and power density (P) can be
calculated according to the following formulae:

C =
i

(−dV/dt)
(1)

E =
1
2

CV2 (2)

P =
E
t

(3)

where i is the applied current, dV/dt is the slope of the galvanostatic discharge curve (CC curve), V is
the operating voltage window, and t is the discharge time [38,39]. According to these equations, the
performance of supercapacitor devices can be theoretically improved by increasing the capacitance,
broadening the operating voltage, and reducing the discharge time. These parameters provide
fundamental guidance for choosing materials and designs of micro-supercapacitors.

2.1. Materials

The basic structure of micro-supercapacitors consists of four main components—a substrate,
current collectors, electrodes, and electrolytes (in many cases, this includes a separator). The energetic
performance of micro-supercapacitors is mainly dependent on the intrinsic electrochemical properties
of the electrode materials [24]. Based on the charge-storage mechanisms, electrode materials can be
classified into two categories—electric double-layer capacitive (EDLC) materials and pseudo-capacitive
materials. For EDLC materials, charges are electrostatically stored at the interface between electrode
and electrolyte [8]. Therefore, materials with high specific surface area and good electrical conductivity,
such as activated carbon [40], onion-like carbon [41], carbon nanotubes [42], and graphene [43,44],
are preferable for active electrode materials. On the other side, metal oxides (such as Co3O4, MoO3,
MnO2, NiO, and RuO2) [45–47] and conductive polymers (such as polythiophene, polyaniline, and
polypyrrole) [48,49] can provide a much higher intrinsic capacitance via reversible pseudo-capacitive
redox reactions between electrodes and electrolyte, leading to higher energy density [9]. Generally,
EDLC materials can offer fast charge/discharge rate with a long life-cycle of up to millions of times but
have relatively low energy density. Meanwhile, pseudo-capacitive materials can deliver more energy
but have a slow rate and limited lifetime. Both types of these materials, and their composites, have
been widely used as active electrode materials and gained significant achievements in the development
of micro-supercapacitors [49–51].

Another key factor affecting the performance of micro-supercapacitors is the electrolytes, which
provide ions for the charge-storage mechanisms and define the operating voltage window of the
devices [52,53]. Liquid electrolytes (aqueous, organic, or ionic) are widely used in supercapacitors with
conventional sandwich structure due to their high ionic conductivity [54]. However, liquid electrolytes
are not suitable for planar micro-supercapacitors because they are difficult to encapsulate and suffer
from leakage problem. Therefore, solid-state electrolytes have emerged as feasible alternatives for
the liquid derivatives [55]. Aqueous-based solid-state electrolytes can only be operated in a potential
window of less than 1 V due to water electrolysis [43], while ionic liquid-derived solid-state electrolytes
can operate in potential window of up to 2.5 V [56,57], providing higher energy density [58,59].
Solid-state electrolytes can, not only solve the leakage problem, but also offer greater reliability,
wider range of operating temperature, and extra features such as flexibility and stretchability for
micro-supercapacitor devices.

Other components, such as substrates and current collectors, may also affect the flexibility and
reliability of micro-supercapacitors, but the intrinsic capacitance and the amount of power it can deliver
are among the most important facets when considering the performance of micro-supercapacitors.
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2.2. Designs

The basic design of micro-supercapacitors can be divided into two categories: sandwich and
planar configuration (Figure 2). The structure of early-stage micro-supercapacitors was inspired from
thin-film microbatteries [60,61], where two thin-film electrodes are deposited on the current collectors
and sandwiched between the electrolyte (Figure 2a). The first demonstration of micro-supercapacitors
was reported by Lim and co-workers [61] in 2001, in which two ruthenium oxide (RuO2) thin
films were sandwiched between lithium phosphorousoxynitride (LiPON) solid electrolytes, and
exhibited a volumetric capacitance of ~380 µF·cm−3. This conventional sandwich structure is
preferable for cost-effective mass production, since it inherited the fabrication technologies from
thin-film microbatteries [12]. However, from the practical applications viewpoint, it suffers from
some significant drawbacks such as limited flexibility, possibility of short circuit, and undesirable
position dislocation of electrodes [13]. It is also challenging to accurately control the thickness of the
separator and electrolyte, which may increase ion transport resistance and lead to the degradation of
power [54]. On the other side, planar micro-supercapacitors with in-plane interdigital finger arrays
design have more advantages in flexibility, reliability, and fabrication (Figure 2b). The planar design
was implemented early by Sung et al. [62] in 2003 by filling the gap (~50 µm) between polypyrrole
(PPy) and poly-(3-phenylthiophene) (PPT) electrode arrays with liquid electrolytes, which resulted in
supercapacitor cells with capacitance of ~5.2 mF. Planar micro-supercapacitors can be constructed using
numerous fabrication techniques, from conventional printing to advanced micropatterning [13,37],
which help to drive the cost down for commercialization. The side-by-side electrode finger designs
allow for more flexible and reliable devices without the fear of short-circuit or electrode dislocation
under various application conditions. With the development of the micro-fabrication techniques,
the interspace between electrodes can be narrowed down to several hundred nanometers [63], smaller
than the thickness of the separator and electrolyte layer in the sandwich design [64,65]. As a result,
the ion diffusion paths can be effectively shortened, which reduces the charge/discharge time and
leads to higher power capacity. The thickness of planar micro-supercapacitors can be slenderized
by choosing thinner electrode materials and substrates [66], or can even be engineered down to
negligible by patterning directly on to the surface of the devices [67]. All these merits make planar
micro-supercapacitors promising candidates for on-chip integration and powering microelectronics.
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2.3. Performance Evaluation

For benchmarking of micro-supercapacitors, the traditional yardstick to evaluate their
performance is calculating their capacitance, energy, and power densities based on the weight and/or
volume of the devices. However, unlike conventional supercapacitors, the mass of the electrode
materials in micro-supercapacitors is almost negligible compared to the weight of the devices. As the
active electrode layers are too thin (micro/nanometer scales) and their thicknesses may not be
uniform throughout the devices, volumetric measurements may provide misleading information
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about their performance. Hence, neither gravimetric nor volumetric properties should be used to
evaluate the performance of micro-supercapacitors, especially for those with planar architecture.
In contrast to the weight and volume, the footprint area of the devices is actually the key concern for
micro-supercapacitors. Therefore, the proper way for reporting micro-supercapacitors performance
is to normalize its features (capacitance, energy, and power densities) by the footprint area of the
devices (per cm2). Kyeremateng and colleagues [68] have proposed a standardized metric for reporting
the performance of micro-supercapacitors. In sandwich configuration, the device consists of two
stacked electrodes, but the footprint area is confined by the surface of only one electrode. Therefore,
the areal capacitance of the cell Csandwich is only half of the individual capacitance of each single
electrode (Csandwich = C/2). In planar configuration, the footprint area includes the surface area of
both electrodes and the inactive gap between them. Even if the inactive gap is minimized, the surface
of each electrode will be less than half of the confined area. Therefore, the cell capacitance is less
than one-fourth of the areal capacitance of the individual electrode (Cplanar < C/4). Apart from
energetic performances, other characteristics such as the cyclability, flexibility, charge/discharge
rate, operating potential, and operating temperature are also important facets when comparing
planar micro-supercapacitors.

3. Graphene-Based Inks for Electrode Materials

Graphene can be obtained from a plethora of methods, which can be classified as either
“bottom-up” or “top-down” strategies [69]. The bottom-up approach is based on the epitaxial
growth of two-dimensional carbon layers by chemical vapor deposition, which is costly and unable to
upscale for industrial production [70]. Meanwhile, the top-down methods, including exfoliation of
graphite and reduction of graphene oxide, are widely used for the production of graphene due to its
cost-effectiveness and solution processability [71].

Solution processing offers a facile route for production of graphene and can be further adopted by
the current printing techniques used in the industry for the fabrication of interdigital electrodes [71,72].
There are three main requirements for printable graphene-based dispersions: (i) Homogeneous and
stable against precipitation, (ii) compatible fluidic properties (viscosity and surface tension) with the
printing devices, and (iii) ecofriendly and low boiling-point solvent for ease of processing. In the
following section, we will discuss the current formulation of graphene inks that are feasible for printing.

3.1. Pristine Graphene

Beside the bottom-up methods, which can produce graphene with “pristine” quality but limited
quantity, liquid-phase exfoliation of graphite is considered as the most effective route for large scale
production of pristine graphene. The principle of liquid-phase exfoliation is based on overcoming
the van der Waals attractions between stacked adjacent graphene layers by liquid immersion under
sonication force or high shear rate [73,74]. According to the dispersive London interactions [75],
the potential energy between adjacent layers is significantly reduced when immersed in a liquid
medium, leading to the idea of using solvents to extract graphene from its stacked form (graphite).
A recent study by Coleman and co-workers [76] indicated that graphene can be effectively exfoliated
from graphite using solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylformamide
(DMF), setting up the background for formulation of solvent-based pristine graphene inks.

In 2013, Li and co-workers [77] formulated high-concentration and stable graphene inks by
ultrasonication of graphite in DMF, which is compatible for inkjet printing. The inks were printed and
annealed at 400 ◦C for few hours, achieving graphene patterns with excellent electrical conductivity.
More recently, Majee and colleagues [78] employed a L5M Silverson mixer for shear exfoliation
of graphite in NMP, formulating a highly concentrated and stable graphene ink (3.2 mg/mL).
The graphene ink composed of 4-layer graphene flakes with uniformly lateral size of ~160 nm was
then inkjet-printed on a glass substrate and annealed at ~350 ◦C for 150 min, which resulted in
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near-transparent and conductive graphene circuits, which is applicable for printing of interdigital
electrodes for micro-supercapacitors.

However, the use of these solvents poses significant issues including the high cost, the high
annealing temperature, and the toxicity to both human and the environment [79,80]. Therefore,
research has been driven towards low boiling-point and environmentally benign solvents. Common
solvents such as acetone, ethanol, and isopropanol usually come up with unsuitable surface energy,
leading to poor graphene dispersions [37]. Hence, stabilizers are usually added to support the
exfoliation of graphene in these liquid mediums.

By using ethyl cellulose as a stabilizer, Secor et al. [81] developed a novel graphene ink by
liquid-phase exfoliation of graphite in ethanol, an environmentally benign solvent. The ink has a
viscosity of ~0.01 Pa s and a surface tension of ∼33 mN/m, compatible to inkjet printing. Gao and
colleagues [82] also reported a new route for formulation of ethyl cellulose-stabilized pristine graphene
ink by direct exfoliation from graphite using ultrasound-assisted supercritical CO2 (Figure 3). The ink
was printed using inkjet printing and resulted in graphene patterns with extremely high conductivity,
which is promising for fabrication of interdigital electrodes in planar micro-supercapacitors.
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In 2016, Arapov and co-workers [83] described an approach for the preparation of highly
concentrated graphene inks for screen-printing (Figure 4). The ink pastes were prepared by high-shear
mixing of expanded graphite in the presence of a polymeric binder, followed by mild heating to trigger
gelation of graphene/polymer dispersions, which resulted in colloidally stable and highly concentrated
graphene pastes (52 mg·mL−1) that showed excellent performance in screen printing. The printed
patterns with line resolutions of ~40 µm were dried at 100 ◦C for only 5 min and exhibited excellent
sheet resistances of 30 Ω/sq at 25 µm thickness. Hyun et al. [84] also formulated highly viscous
graphene inks by dispersing graphene with ethylcellulose in ethanol and terpineol. The resulted inks
showed shear viscosities of 1–10 cP and good performance in screen printing. These formulations have
not been used for screen printing of micro-supercapacitors, and the electrochemical performance of
the printed patterns still remains unknown. However, they have enormous potential in high-volume
roll-to-roll fabrication of interdigital electrodes for planar micro-supercapacitors.
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Water has long been established as the most preferred solvent due to its low boiling point
and non-toxic nature. As graphene cannot be dispersed in water alone due to its hydrophobicity,
surfactants are usually used to tailor their interfacial energy and stabilize the exfoliated graphene
flakes against aggregation [85–87]. By introducing sodium cholate into water, Lotya et al. [85] have
successfully produced aqueous graphene dispersions with high concentrations of up to 0.3 mg/mL.
The prepared dispersions are highly stable and can be easily casted into various substrates, making
them prospective for printing of interdigital electrodes for planar micro-supercapacitors. A range of
ionic [85,88], non-ionic [86,88], polymeric [89], and bio-surfactants [90] were reported to be effective
for preparation of aqueous graphene dispersions, which are ideal for formulation of pristine graphene
inks [37]. Further research should focus on construction of various graphene architectures in the
printed electrodes and investigation of their electrochemical performance.

3.2. Graphene Oxide

Graphene oxide (GO) is produced by the oxidative treatment of graphite via either Brodie [91],
Staudenmaier [92], Hummers [93], or some variation of these methods [94]. It contains a range of
oxygen-functional groups, which trigger its hydrophilicity and solution processability, and can be
reduced to form graphene-like materials [18]. In fact, the majority of studies on graphene and its
application are not based on pristine graphene, but rather the reduced graphene oxide (rGO) [37]. This
is because of the ease of production and the capability to render its functionalities.

The formulation of GO inks is simple and straightforward as GO can be easily dispersed in the
most preferable solvent, water. In 2011, Le et al. [95] demonstrated that the dispersions of GO in water
is stable and compatible to inkjet printing. The GO inks were inkjet-printed and thermally reduced
at 200 ◦C for 12 h under N2 atmosphere, forming conductive graphene electrodes with the spatial
resolution of ~50 µm. Likewise, Shin and co-workers used an inkjet printer for micropatterning of
aqueous GO inks with different concentrations onto poly(ethylene terephthalate) (PET) substrates. The
printed GO patterns were reduced in a chamber containing hydrazine and ammonia solution at 90 ◦C
for 1 h, which resulted in conductive graphene electrodes with excellent conductivity of ~65 Ω/sq.
These works paved a new avenue for the fabrication of graphene electrodes for micro-supercapacitors.

For 3D printing, the formulation of graphene inks is relatively different, as a printable ink solution
required a high viscosity and shear-thinning behavior. In 2017, Rocha and co-workers [96] formulated
printable GO inks in aqueous Pluronic F127, a thermoresponsive polymer, for 3D printing. As F127
formed hydrogels in water [97], a stable and concentrated graphene colloidal system could be achieved.
The formulated ink had a high viscosity and exhibited shear-thinning behavior, which was printed
through a micronozzle for fabrication of supercapacitor electrodes. The printed electrodes were



Materials 2019, 12, 978 8 of 21

lyophilized for 48 h and thermally reduced at 900 ◦C for 1 h under H2/Ar atmosphere, which showed
good electrochemical performance and achieved a capacitance of up to 140 F·g−1.

Interestingly, among all studies on the chemistry of GO, the largest portion is focused on its
reduction routes back to graphene [35,98]. As GO is not electrically conductive, it need to be reduced
to graphene by either thermal [99], chemical [100], or photothermal [101] routes to restore its electrical
conductivity before it can be used as electrodes for supercapacitor. Different reduction methods and
their performance in graphene-based planar micro-supercapacitors are summarized in Table 1.

Table 1. Summary of various graphene-based planar micro-supercapacitors derived from graphene oxide.

Reduction Method Substrate Electrolyte Specific
Capacitance Power Density Reference

Hydrazine at 60 ◦C PET film PVA/H3PO4 462 µF·cm−2 324 W·cm−3 [66]
Cu-based redox potential Polyimide (PI) PVA/H2SO4 0.95 mF·cm−2 [102]

Hydroiodic acid (HI) Plastic film PVA/H2SO4 41.8 F·cm−3 29.2 mW·cm−2 [103]
CH4 plasma at 700 ◦C Silicon wafer PVA/H3PO4 80.7 µF·cm−2 [104]

Laser writing Plastic film PVA/H2SO4 3.05 F·cm−3 30 W·cm−3 [105]
Laser writing GO film H2O 3.1 F·cm−3 1.7 W·cm−3 [106]

By nature, hydrated graphene oxide is simultaneously an electrical insulator and a good ionic
conductor, allowing it to serve as electrolyte and separator in energy devices. Hence, it is possible to
produce all-graphene micro-supercapacitors by employing rGO as electrodes and GO as electrolyte.
In 2011, Gao and co-workers [106] demonstrated the ability to fabricate graphene micro-supercapacitors
on hydrated GO films using laser irradiation, which can work without the use of external electrolytes
(Figure 5). In this work, free-standing GO films were made by vacuum filtration. By selective reduction
of GO films using a CO2 laser, conductive rGO arrays with porous structure were formed and served
as active electrodes, while the intact GO served as electrolyte. Micro-supercapacitor devices with
both sandwich and in-plane architecture were fabricated and showed comparable performance with
those using external electrolytes. This work is significant since it removed the need of additional
electrolyte and established a new approach for scalable fabrication of all-carbon, high-precision, and
lightweight micro-supercapacitors.
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3.3. Graphene Composites

Graphene is not only advantageous by itself but is also promising for combining with other
materials to boost their superior performance. Intensive research has been devoted to the design
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and synthesis of graphene hybrid complexes for enhancing their electrochemical properties [107,108].
By mixing graphene with carbon nanotubes [109], conductive polymer [110], or transition metal
oxides [51], the composite inks can take full advantage of the two materials to enhance their
electrochemical performance.

One of the most apparent challenges when processing graphene inks is the restacking of
graphene layers, which leads to lower active surface area and the degradation of power capacity.
Yang et al. [109] have successfully inhibited stacking of individual graphene sheets by introducing
one-dimensional carbon nanotubes (CNTs) into graphene dispersions to form 3D hierarchical porous
structure. The presence of CNTs as nanospacers effectively enlarged the space between graphene
sheets, increased the active area for charge storage, and enhanced the energetic performance of the
supercapacitor device. The ink was deposited onto a graphite substrate (1 cm2) to form the test
electrodes. A supercapacitor device was fabricated and exhibited specific capacitance of 326.5 F·g−1

with ultrahigh energy and power densities (21.7 Wh·kg−1 and 78.3 kW·kg−1, respectively).
Poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT:PSS) is an important

conductive polythiophene derivative and a favorable electrode material for supercapacitors. Liu and
colleagues [111] have successfully formulated graphene/PEDOT:PSS hybrid inks for direct printing of
high-performance micro-supercapacitors (Figure 6). The presence of PEDOT:PSS not only stabilized
graphene, but also enhanced its electrochemical properties. The printed micro-supercapacitor on a
paper substrate exhibited a superior areal capacitance of 5.4 mF·cm−2, which is among the highest
value achieved on graphene-based micro-supercapacitors.
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Figure 6. (a) Schematic illustration of the electrochemical exfoliation of graphene, (b) schematic
illustration of the direct printing of single and arrayed micro-supercapacitor devices, (c) cyclic
voltammetry curves of a printed micro-supercapacitor on a paper substrate, (d) the evolution of
areal capacitance versus scan rate. Reproduced with permission from Reference [111]. Copyright ©
2016 Wiley.

Polyaniline (PANi), a typical conducting polymer with pseudocapacitance, is commonly used as
electrode material for supercapacitors. In 2014, Xu et al. [110] formulated graphene/PANi inks for inkjet
printing of supercapacitor electrodes. The composite inks were prepared by SDBS surfactant assisted
sonication of graphite powder and polyaniline in water. The composite inks were inkjet-printed and
annealed at 80 ◦C for 2 h and exhibited excellent conductivity of 0.29 S·cm−1. A supercapacitor cell
was fabricated using the printed electrodes and yielded a maximum specific capacitance of 82 F·g−1,
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power density of 124 kW·kg−1, and energy density of 2.4 Wh·kg−1. By growing vertically aligned
pseudo-capacitive PANi nanorods on both sides of the GO surface and subsequent reduction in the
presence of PEDOT:PSS, Liu and co-workers [112] formulated highly concentrated, highly viscous,
and water-dispersible composite inks for extrusion printing (Figure 7). The printed all-solid-state
micro-supercapacitors exhibited outstanding areal capacitance of 153.6 mF·cm−2 and volumetric
capacitance of 19.2 F·cm−3. By adapting an asymmetric design, the printed micro-supercapacitor with
extended operating voltage window from 0.8 to 1.2 V achieved an improved energy density (from 3.36
to 4.83 mWh·cm−3) and power density (from 9.82 to 25.3 W·cm−3).
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extrusion printed patterns on various substrates. Reproduced with permission from Reference [112].
Copyright © 2018 Wiley.

There is still a scarcity of literature of graphene composite inks for printing of
micro-supercapacitors. In fact, numerous pseudocapacitive materials have been reported to have
higher capacitance when made of composites with graphene, including conductive polymers (such as
polyaniline, polypyrrole, and polythiophene) [48,49] and metal oxides (such as MnO2, MoO3, Co3O4,
NiO, and RuO2) [45–47]. However, most of these graphene complexes have only been realized by other
micro-fabrication techniques, not printing. Therefore, it still requires a great deal of effort to pioneer
graphene composites into printable ink dispersions for scalable fabrication of high-performance
graphene-based micro-supercapacitors.

4. Printing Techniques

Printing technologies have been widely employed for fabrication of microelectronics [113].
Compared with other microfabrication techniques that involve complicated processes and harsh
operation conditions [114], printing of graphene inks offers feasible routes for fabrication of interdigital
electrodes onto a myriad of substrates with low cost and high versatility. Until now, a number of
mass printing techniques have been developed for processing of graphene dispersions into electrodes
such as screen printing [65,115], inkjet printing [116,117], and 3D printing [118,119]. Several important
aspects of these techniques are summarized in Table 2 for better comparison.
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Table 2. The properties of different printing techniques. Inset: (a) Screen printing, reproduced with
permission from Reference [115]. Copyright © 2014 The Royal Society of Chemistry. (b) Inkjet printing,
reproduced with permission from Reference [117]. Copyright © 2018 The Royal Society of Chemistry.
(c) 3D printing, reproduced with permission from Reference [118]. Copyright © 2016 Wiley.
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Ink requirements High viscosity
Shear thinning

Low viscosity
High surface tension

Shear thinning
Quick solidification

Resolution ~10 µm ~2 µm ~10 µm

Versatility Mask required Maskless Maskless

Printing speed Ultrafast Fast Slow

4.1. Screen Printing

The screen-printing process is based on the penetration of ink pastes through the patterned
mask/stencil under pressing force of a squeegee [84]. Among the available printing techniques,
screen printing is considered as the most facile and cost-effective route for mass printing of planar
micro-supercapacitors [37,120]. In 2014, Liu and co-workers [121] used screen printing to fabricate
flexible all-solid-state micro-supercapacitors using N-doped reduced graphene oxide (rGO) as the
electrode material. Important physicochemical properties of the inks, such as viscosity, surface tension,
or shear-thinning behavior, were not reported. The formulated inks were successfully screen-printed
into interdigital electrodes with the active area of 0.396 cm2 and the thickness of 10 µm, which were
further coated with a layer of PVA-H3PO4 as solid-state electrolyte. The printed micro-supercapacitor
delivered a high specific areal capacitance of 3.4 mF·cm−2 with good rate capability and cycling
stability (Figure 8). More recently, Shi and colleagues [122] have developed an industrially applicable
screen-printing protocol for low-cost production of ultrahigh-voltage integrated micro-supercapacitors
with designable shapes, aesthetic versatility, outstanding flexibility, and superior modularization. The
inks for screen printing were prepared by mixing high-quality graphene, conducting carbon black,
and poly(vinyl chloride-co-vinyl acetate) binder (P-VC/VAc) in dimethyl mixed dibasic acid ester
(DBE) solvent. This formulation resulted in graphene inks with outstanding shear-thinning behavior,
allowing for extrusion of the ink through the stencil and quick solidification without shear force, with
ideal physicochemical properties for screen printing. A tandem pack of 130 micro-supercapacitor cells
combined was fabricated and delivered a remarkable voltage of more than 100 V, demonstrating the
robustness of the protocol and the printing technique.

The quality of the screen-printed patterns is mainly defined by the quality of ink pastes and the
resolution of the stencil [123]. An ideal ink paste should have high rest viscosity and shear-thinning
behavior [124,125]. The viscosity of a screen-printable ink can be varied from 0.05 to 5 Pa·s [72].
Therefore, it is required to formulate highly concentrated graphene dispersions to meet the viscosity
requirements. Owing to its simple operating principle, screen printing is faster in comparison to other
printing tools, making it an eminent candidate for mass production of interdigital electrodes with low
cost and high throughput [126].
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Screen printing also has several drawbacks. As the ink pastes for screen printing are highly
concentrated, it could be dried out during the printing process, negatively affecting the stencil and
the desired patterns. The direct contact between stencil and substrates also prevents the ability
for micro-supercapacitors to be printed directly onto the surface of microelectronics. It is also
challenging to produce stable and concentrated graphene dispersions without aggregation. To meet
the rheology requirements for a printable ink, future formulations should focus on either preparation
of highly concentrated graphene emulsions or gelation of graphene in polymeric matrixes. It is
no doubt that screen printing will be a strong candidate for high-volume roll-to-roll production
of micro-supercapacitors.

4.2. Inkjet Printing

Unlike screen printing, inkjet printing works without the need of a physical printing mask [127].
The basic principle of inkjet printing is the ejection of micro-sized ink droplets through a micro-nozzle
onto their accurate position on the substrate to form the desired patterns [128]. The micro-droplets
can be generated by either thermal or piezoelectric excitation [129]. For accurate positioning,
the ink droplets can be driven by electrostatic force (continuous mode) or selectively triggered
whenever the nozzle reach its appropriate position (drops-on-demand mode) [37,130] (Figure 9).
In 2017, Li et al. [131] developed a simple full-inkjet-printing technique for scalable fabrication
of graphene-based micro-supercapacitors. By solvent exchange technique, high-concentration
electrochemically exfoliated graphene (EEG) inks were formulated and efficiently used for inkjet
printing. Thick graphene patterns (with thickness up to ∼0.7 µm) were successfully printed in a scalable
and large manner, which could serve as both the electrodes and current collectors. An electrolyte
formulation of poly(4-styrenesulfonic acid), phosphoric acid, and ethylene glycol with suitable
rheology was then printed onto the as-printed graphene electrodes and gelled, which resulted in
fully printed solid-state graphene-based micro-supercapacitors (areal capacitance of 0.7 mF·cm−2).
This technique is significant since it removed unnecessary steps, provided a promising route for
scalable and fully automated fabrication of micro-supercapacitors.
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Inkjet printing of graphene inks has attracted enormous attention due to its high resolution and
versatility. The most simple and straightforward formulation of graphene inks is based on graphene
oxide (GO inks) due to its hydrophilic nature to form stable dispersion in water and solvents, as in
a report by Le et al. [95] in 2011. Several kinds of pristine graphene inks [78,81,82] and graphene
hybrid inks [110,132,133] have also been successfully integrated with inkjet printing and showed
great performance. The resolution of inkjet printing can reach ~2 µm without great difficulty [116].
The non-contact manner also opens up the opportunity to print micro-supercapacitors directly onto
the surface of the microdevices.

In recent years, research efforts have been emphasized on the modification of the fluidic
characteristic of graphene inks, since they are crucial factors for printable ink systems. Generally, ink
dispersion with low viscosity (0.004–0.03 Pa·s) and high surface tension (typically ~35 mN·m−1) are
required for the formation of ink droplets [130]. For the formulation of graphene inks, the lateral size
of graphene flakes and its stability in the dispersions are also the main concern as they can block the
pin hole of the nozzle from jetting droplets [127]. Inkjet printing of different types of graphene inks
should also take the homogeneity of the dispersions into consideration. This technique is ideal for
fabrication of ultrathin planar micro-supercapacitors since it allows for the deposition of a very thin
graphene patterns. As demonstrated by Secor et al. [81] in 2013, ultrathin graphene patterns can be
achieved with the thickness of less than 50 nm by a single printing pass. However, when fabricating
thicker devices, multiple printing passes may be required, decreasing the process throughput.

4.3. 3D Printing

3D printing is a new approach for advanced manufacturing in which materials are deposited
layer-by-layer to produce three dimensional objects [134]. The process of 3D printing usually involves
the extrusion of inks/filaments through a micro-nozzle, which is computationally controlled by a
three-axis motion stage [135]. When solidified, it forms three-dimensional objects with controlled
geometry and porosity (Figure 10). In recent years, 3D printing has emerged as a viable route for
fabrication of energy devices, particularly for the fabrication of planar micro-supercapacitors [136,137].
Among 3D-printing techniques, fused depositing modeling (FDM) is one the most commonly used
technique since it allows for the use of various kinds of materials. Zhang and colleagues [138] used melt
blending to homogeneously disperse rGO into polylactic acid (PLA), which was processed into 1.75 mm
diameter filament. By melt extrusion of the rGO/PLA filament, highly conductive and flexible circuits
were 3D-printed onto different substrates, well suited for fabrication of micro-supercapacitors. In recent
years, extrusion-based 3D printing, where viscous inks are selectively extruded through a nozzle,
has attracted enormous attention. In 2017, Rocha and co-workers [96] demonstrated a 3D-printing
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technique based on the continuous extrusion of colloidal inks at room temperature. GO and Cu/GO
composite inks were formulated in thermoresponsive polymer Pluronic F127 aqueous solutions.
As F127 formed hydrogels in water [97], it could carry any particle in the system, such as graphene.
The inks had high viscosity and shear-thinning behavior, which could be printed through the nozzle for
fabrication of supercapacitor electrodes. More recently, Liu et al. [112] demonstrated extrusion printing
of GO/PANi hybrid inks for the fabrication of high-performance micro-supercapacitors. As extrusion
printing required a stable, highly viscous, and homogeneous dispersion of active materials, PEDOT:PSS
was used in the formulation as a dispersing agent in order to meet the stability requirement of extrusion
printing. The composite ink had shear-thinning behavior and a higher viscosity of ~6.1 Pa·s at 1 s−1,
within the range of extrusion printing. Symmetric and asymmetric micro-supercapacitors were
successfully printed and exhibited remarkable performance.Materials 2019, 12, x FOR PEER REVIEW 14 of 21 
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In 3D printing, the quick solidification and shear-thinning behavior of the inks are critical factors
defining the quality of the printed objects [139,140]. Unfortunately, graphene dispersions in neat
solvents do not exhibit these properties [140,141]. Hence, formulations of graphene inks for 3D printing
usually require the implementation of viscosifiers and gelable fillers to tailor its printability [142–144].
However, these additives usually do not possess any interesting electronic properties, which
may negatively affect the energetic performance of the printed micro-supercapacitors [142,145].
The resolution of 3D printing is mainly dependent on the size of the nozzle and the fluidic properties
of the inks. The highest resolution achieved by 3D printing was ~10 µm, similar to those of screen
printing [65,119]. Research on 3D printing has drawn enormous attention, and it is clear that this
technique will find importance in the fabrication of planar micro-supercapacitors.

5. Conclusions and Outlook

In this review, we have highlighted the most recent works on the formulation of graphene inks
and the printing techniques used for fabrication of planar micro-supercapacitors. Printing technologies
offer promising solution for mass production of interdigital electrodes, bringing this miniaturized
power source closer to practical application.

It appears that a number of innovative approaches have been adopted for formulation of graphene
inks. However, research on graphene inks are still mainly focused on formulation of stable graphene
dispersions with printability and demonstration of simple conductive circuits, while less attention
has been paid to their electrochemical performance. With the increasing amount of research in this
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field, it is crucial to uniformly report their performance for more reliable comparison of different
micro-supercapacitors. As the key concern of these microdevices is their footprint area, reporting the
performance of micro-supercapacitors should focus on the real metric of the devices.

Although researchers have demonstrated printed micro-supercapacitors with good performance,
the cost and the environmental concerns still limit their practical realization. The production of
graphene oxide is not environmentally friendly, which involves harsh oxidation and reduction
processes. Most of the graphene composites for energy storage applications to date are also based on
graphene oxide, and, thus, raise the concern about their sustainability. Pristine graphene inks still suffer
from the high annealing temperature and the use of harsh solvents. Water-based pristine graphene
inks are preferable and more sustainable, but a third added component (surfactants or stabilizers)
is required for stabilizing graphene, which usually does not exhibit any interesting electrochemical
properties. Therefore, the combination of pristine graphene with other materials (conducting polymers
or metal oxides), which can both stabilize graphene and exhibit pseudocapacitance, can be a good
direction for future development.

Further research effort should also be devoted to remedy the printability of the devices and
enhance the printing resolution. More advances still need to be made in the engineering of compatible
graphene inks and the printing protocols for cost-effective fabrication, as the nanostructures of
graphene in the printed electrodes play an important role in the performance of micro-supercapacitors.
Further research should also be devoted to the investigation of various graphene nanostructures in the
formulation of new graphene inks and their electrochemical performance. Research in this field is still
at the nascent stage, but there is no doubt that the printing of graphene inks can be a promising key to
open the door for graphene-based planar micro-supercapacitors in the future.
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