

1

3 Finite Element model updating combined with

4 Multi-Response Optimization for Hyperelastic

5 Materials Characterization

- 6 Saúl Íñiguez-Macedo ¹, Rubén Lostado-Lorza ^{1,*} Rubén Escribano-García ² and María Ángeles
 7 Martínez-Calvo ¹.
- 8 ¹ Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, La Rioja, Spain;
 9 saul.iniguez@unirioja.es (S.I.M)
- 10 ² IK4-LORTEK, 20240 Ordizia, Guipuzcoa, Spain; ruben.escribanogarcia@gmail.com
- 11 * Correspondence: ruben.lostado@unirioja.es; Tel.: +34-941-299-527
- 12 Received: date; Accepted: date; Published: date
- 13
- 14
- 15

16 S1. Standardized tests

17 S1.1. Tensile test

18 19

Figure S1. (a) Specimens ready for testing. (b) Specimen subjected to the tensile test.

- 20 S1.2. Plane Stress test
- 21

26 S1.3. Compression test

27

- Figure S3. (a) Specimen glued to two parallel planes according to Method B. (b) Development of the compression test according to Method B in the tensile testing machine.
- 31 S1.4. Volumetric compression test
- 32

- 33 34 35
- **Figure S4.** (a) Specimens ready for testing in the volumetric compression test and the cylindrical chamber with the plate. (b) Cylindrical chamber, the plate, the cylindrical pusher and the clamp.

37 S1.5. Shear test

Figure S5. (a) Specimens ready for testing in the Shear test. Detail of the four steel plates and the four rubber parallelepipeds mounted on the testing machine.

41

38 39

40

43 S2. Finite Element Models Proposed

44 S2.1. Tensile test parameterized FE model

45

47 Figure S6. (a) Type 2 test specimen according to ISO 37:2017 [9]. (b) 3D FE model proposed with the
48 symmetry condition imposed to facilitate its convergence. (c) Boundary conditions corresponding to
49 the pneumatic fixing system of the jaws.

50

51 S2.2. Planar stress test parameterized FE model

Figure S7. (a) Specimen mounted on the accessory designed to conduct the plane stress test. (b)
 Proposed parameterized symmetric FE model. (c) Displacement and symmetry conditions applied to
 the proposed FE model. (d) Detail of the specimen holder within the designed accessory.

57 S2.3. Compression test of the parameterized FE model

Figure S8. (a) Specimen mounted on the steel sheets designed for the compression test. (b) A quarter of the FE Parameterized symmetric proposed FE model.

S2.4. Volumetric compression test parameterized FE model

Figure S9. (a) Specimen prepared for mounting on the cylindrical chamber. (b) Cylindrical chamber and specimens for testing. (c) The proposed parameterized symmetric FE model.

71 **S3.** Experimental Results

- 72 S3.1. NBR Material
- 73 74

Compression Volumetric Compression Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 0 8000 -6000 -4000 -2000 Ś Force [N] -500 Force -1000-1500Displacement [mm] Displacement [mm] -2 -1 -0.4 -0.2 -3 0 -0.8 -0.6 -0 (a) (b) **Planar Tension** Shear Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 500 1000 1500 2000 2500 400 600 800 1000 Force [N] Force [N] 200 Displacement [mm] Displacement [mm] C C 10 40 5 15 ò . 20 . 60 0 (c) (d) Tensile Sample 1 Sample 2 Sample 3 80 100 Force [N] 60 40 20 Displacement [mm] 0 200 100 0 . 300 (e)

75 76

77

78

79

Figure S10. (a) Compression test for the NBR material; (b) Volumetric Compression test for the NBR material; (c) Shear test for the NBR material; (d) Planar Tension test for the NBR material, and (e) Tensile test for the NBR material.

81 S3.2. PUR Material

85

Figure S11. (a) Compression test for the PUR material; (b) Volumetric Compression test for the PUR material; (c) Shear test for the PUR material; (d) Planar Tension test for the PUR material, and (e) Tensile test for the PUR material.

Figure S12. (a) Compression test for the EVA material; (b) Volumetric Compression test for the EVA
 material; (c) Shear test for the EVA material; (d) Planar Tension test for the EVA material, and (e)
 Tensile test for the EVA material.

96 S3.4.SBR Material

98

Figure S13. (a) Compression test for the SBR material; (b) Volumetric Compression test for the SBR
 material; (c) Shear test for the SBR material; (d) Planar Tension test for the SBR material, and (e)
 Tensile test for the SBR material.

103

99

105 S4. Design matrix and experiments

- 106 S4.1. NBR Material
- 107 108

Table S1. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Mooney-Rivlin model of the NBR material used in the Shear test.

			Output		
Sample	C10 (x)	C01 (x)	C11 (x)	Displacement (mm)	Force (N)
1	-0.25	0.35	0.125	0.00	0.000
2	-0.25	0.35	0.125	0.50	12.117
3	-0.25	0.35	0.125	1.00	24.695
4	-0.25	0.35	0.125	1.50	38.228
5	-0.25	0.35	0.125	2.00	53.264
6	-0.25	0.35	0.125	2.50	70.419
7	-0.25	0.35	0.125	3.00	90.374
8	-0.25	0.35	0.125	3.50	113.829
9	-0.25	0.35	0.125	4.00	141.470
10	-0.25	0.35	0.125	4.50	173.949
11	-0.25	0.35	0.125	5.00	211.880
				•••	
2623	1.25	1.00	0.500	9.00	7288.559
2624	1.25	1.00	0.500	9.50	7975.014
2625	1.25	1.00	0.500	10.00	8703.273

109 110 Table S2. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Mooney-Rivlin model of the NBR material used in the Volumetric Compression test.

		Іпри	ts		Output
C a un 1 a	C10	C01	C11	Displacement	Force
Sample	(x)	(x)	(x)	(mm)	(N)
1	-0.25	0.35	0.125	0.00	0.000
2	-0.25	0.35	0.125	-0.03	-325.281
3	-0.25	0.35	0.125	-0.06	-651.241
4	-0.25	0.35	0.125	-0.09	-977.877
5	-0.25	0.35	0.125	-0.12	-1305.190
6	-0.25	0.35	0.125	-0.15	-1633.190
7	-0.25	0.35	0.125	-0.18	-1961.870
8	-0.25	0.35	0.125	-0.21	-2291.230
9	-0.25	0.35	0.125	-0.24	-2621.280
10	-0.25	0.35	0.125	-0.27	-2952.030
11	-0.25	0.35	0.125	-0.30	-3283.460
•••					
2623	1.25	1.00	0.500	-0.54	-134101.000
2624	1.25	1.00	0.500	-0.57	-141699.000
2625	1.25	1.00	0.500	-0.60	-149314.000

Table S3. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Mooney-Rivlin model of the NBR material used in the Compression test.

		Іпри	ets		Output
C	C10	C01	C11	Displacement	Force
Sample	(x)	(x)	(x)	(mm)	(N)
1	-0.25	0.35	0.125	0.000	0.000
2	-0.25	0.35	0.125	-0.195	-12.333
3	-0.25	0.35	0.125	-0.390	-27.024
4	-0.25	0.35	0.125	-0.585	-44.620
5	-0.25	0.35	0.125	-0.780	-65.800
6	-0.25	0.35	0.125	-0.975	-91.351
7	-0.25	0.35	0.125	-1.170	-122.190
8	-0.25	0.35	0.125	-1.365	-159.394
9	-0.25	0.35	0.125	-1.560	-204.234
10	-0.25	0.35	0.125	-1.755	-258.219
11	-0.25	0.35	0.125	-1.950	-323.140
2623	1.25	1.00	0.500	-3.510	-11696.200
2624	1.25	1.00	0.500	-3.705	-13446.200
2625	1.25	1.00	0.500	-3.900	-15478.300

114

Table S4. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Mooney-Rivlin model of the NBR material used in the Tensile test.

			Output		
Samula	C10	C01	C11	Displacement	Force
Sumple	(x)	(x)	(x)	(mm)	(N)
1	-0.25	0.35	0.125	0	0.000
2	-0.25	0.35	0.125	20	1.317
3	-0.25	0.35	0.125	40	3.873
4	-0.25	0.35	0.125	60	8.745
5	-0.25	0.35	0.125	80	15.937
6	-0.25	0.35	0.125	100	25.338
7	-0.25	0.35	0.125	120	36.852
8	-0.25	0.35	0.125	140	50.402
9	-0.25	0.35	0.125	160	65.915
10	-0.25	0.35	0.125	180	83.320
11	-0.25	0.35	0.125	200	102.542
2623	1.25	1.00	0.500	360	1693.519
2624	1.25	1.00	0.500	380	1856.357
2625	1.25	1.00	0.500	400	2025.644

Table S5. Design matrix and experiments obtained with a 5k DoE for the hyper-elasticMooney-Rivlin model of the NBR material used in the Planar Tension test.

			Output		
Sample	C10	C01	C11	Displacement	Force (N)
1	(x)	(X)	(1)	(1111)	
1	-0.25	0.35	0.125	0.00	0.000
2	-0.25	0.35	0.125	2.50	38.682
3	-0.25	0.35	0.125	5.00	76.905
4	-0.25	0.35	0.125	7.50	127.032
5	-0.25	0.35	0.125	10.00	196.563
6	-0.25	0.35	0.125	12.50	287.190
7	-0.25	0.35	0.125	15.00	399.426
8	-0.25	0.35	0.125	17.50	533.686
9	-0.25	0.35	0.125	20.00	690.317
10	-0.25	0.35	0.125	22.50	868.825
11	-0.25	0.35	0.125	25.00	1067.408
2623	1.25	1.00	0.500	45.00	21331.368
2624	1.25	1.00	0.500	47.50	23336.122
2625	1.25	1.00	0.500	50.00	25362.509

120 *S4.2. PUR Material*

Table S6. Design matrix and experiments obtained with a 5k DoE the hyper-elastic Ogden model of the PUR material used in the Shear test.

		Inputs		Output
6	K1	K2	Displacement	Force
Sumple	(x)	(x)	(mm)	(N)
1	0.0	-0.50	0.00	0.000
2	0.0	-0.50	0.50	30.074
3	0.0	-0.50	1.00	60.111
4	0.0	-0.50	1.50	90.074
5	0.0	-0.50	2.00	119.923
6	0.0	-0.50	2.50	149.614
7	0.0	-0.50	3.00	179.101
8	0.0	-0.50	3.50	208.333
9	0.0	-0.50	4.00	237.252
10	0.0	-0.50	4.50	265.799
11	0.0	-0.50	5.00	293.908
523	0.5	0.0625	9.00	946.066
524	0.5	0.0625	9.50	1020.619
525	0.5	0.0625	10.00	1098.280

123	Table S7. Design matrix and experiments obtained with a 5k DoE the hyper-elastic Ogden model of
124	the PUR material used in the Volumetric Compression test.

	-	Inputs		Output
C	K1	K2	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.0	-0.50	0.00	0.000
2	0.0	-0.50	-0.03	-813.201
3	0.0	-0.50	-0.06	-1628.100
4	0.0	-0.50	-0.09	-2444.690
5	0.0	-0.50	-0.12	-3262.976
6	0.0	-0.50	-0.15	-4082.964
7	0.0	-0.50	-0.18	-4904.660
8	0.0	-0.50	-0.21	-5728.064
9	0.0	-0.50	-0.24	-6553.186
10	0.0	-0.50	-0.27	-7380.034
11	0.0	-0.50	-0.30	-8208.603
523	0.5	0.25	-0.54	-29795.848
524	0.5	0.25	-0.57	-31484.312
525	0.5	0.25	-0.60	-33176.336

			1	
	-	Inputs		Output
Samulo	K1	K2	Displacement	Force
Sumple	(x)	(x)	(mm)	(N)
1	0.0	-0.50	0.000	0.000
2	0.0	-0.50	-0.195	-29.510
3	0.0	-0.50	-0.390	-61.337
4	0.0	-0.50	-0.585	-95.602
5	0.0	-0.50	-0.780	-132.479
6	0.0	-0.50	-0.975	-172.164
7	0.0	-0.50	-1.170	-214.874
8	0.0	-0.50	-1.365	-260.856
9	0.0	-0.50	-1.560	-310.397
10	0.0	-0.50	-1.755	-363.829
11	0.0	-0.50	-1.950	-421.540
523	0.5	0.25	-3.510	-652.503
524	0.5	0.25	-3.705	-710.302
525	0.5	0.25	-3.900	-772.318

Table S8. Design matrix and experiments obtained with a 5k DoE the hyper-elastic Ogden model ofthe PUR material used in the Compression test.

Table S9. Design matrix and experiments obtained with a 5k DoE the hyper-elastic Ogden model ofthe PUR material used in the Tensile test.

		Inputs		Output
C	K1	K2	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.0	-0.50	0	0.000
2	0.0	-0.50	20	2.987
3	0.0	-0.50	40	3.651
4	0.0	-0.50	60	3.850
5	0.0	-0.50	80	3.924
6	0.0	-0.50	100	3.957
7	0.0	-0.50	120	3.974
8	0.0	-0.50	140	3.983
9	0.0	-0.50	160	3.988
10	0.0	-0.50	180	3.991
11	0.0	-0.50	200	3.993
523	0.5	-0.125	360	291.280
524	0.5	-0.125	380	318.681
525	0.5	-0.125	400	347.177

Table S10. Design matrix and experiments obtained with a 5k DoE the hyper-elastic Ogden mod	el of
the PUR material used in the Planar Tension test.	

		Inputs		Output
C	K1	K2	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.0	-0.50	0.00	0
2	0.0	-0.50	2.50	94.471
3	0.0	-0.50	5.00	167.033
4	0.0	-0.50	7.50	224.882
5	0.0	-0.50	10.00	272.226
6	0.0	-0.50	12.50	311.708
7	0.0	-0.50	15.00	345.031
8	0.0	-0.50	17.50	373.317
9	0.0	-0.50	20.00	397.313
10	0.0	-0.50	22.50	414.668
11	0.0	-0.50	25.00	426.365
523	0.5	0.0625	45.00	2081.657
524	0.5	0.0625	47.50	2235.548
525	0.5	0.0625	50.00	2394.748

134 S4.3. SBR Material

 Table S11. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Gent model of the SBR material used in the Shear test.

		Inputs		Output
Samula.	Ε	Inv	Displacement	Force
Sumple	(x)	(x)	(mm)	(N)
1	0.6	63.0	0.00	0.000
2	0.6	63.0	0.50	12.051
3	0.6	63.0	1.00	24.112
4	0.6	63.0	1.50	36.194
5	0.6	63.0	2.00	48.307
6	0.6	63.0	2.50	60.461
7	0.6	63.0	3.00	72.665
8	0.6	63.0	3.50	84.925
9	0.6	63.0	4.00	97.250
10	0.6	63.0	4.50	109.645
11	0.6	63.0	5.00	122.117
523	3.7	79.5	9.00	1375.126
524	3.7	79.5	9.50	1455.766
525	3.7	79.5	10.00	1536.961

137	Table S12. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Gent model
138	of the SBR material used in the Volumetric Compression test.

		Inputs		Output
C a multo	Ε	Inv	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.6	63.0	0.00	0.000
2	0.6	63.0	-0.03	-325.280
3	0.6	63.0	-0.06	-651.240
4	0.6	63.0	-0.09	-977.875
5	0.6	63.0	-0.12	-1305.190
6	0.6	63.0	-0.15	-1633.184
7	0.6	63.0	-0.18	-1961.862
8	0.6	63.0	-0.21	-2291.223
9	0.6	63.0	-0.24	-2621.271
10	0.6	63.0	-0.27	-2952.011
11	0.6	63.0	-0.30	-3283.435
523	3.7	79.5	-0.54	-36753.288
524	3.7	79.5	-0.57	-38835.905
525	3.7	79.5	-0.60	-40923.022

Table S13. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Gent model of the SBR material used in the Compression test.

		Inputs		Output
C	Ε	Inv	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.6	63.0	0.000	0.000
2	0.6	63.0	-0.195	-11.611
3	0.6	63.0	-0.390	-23.709
4	0.6	63.0	-0.585	-36.304
5	0.6	63.0	-0.780	-49.419
6	0.6	63.0	-0.975	-63.075
7	0.6	63.0	-1.170	-77.300
8	0.6	63.0	-1.365	-92.124
9	0.6	63.0	-1.560	-107.587
10	0.6	63.0	-1.755	-123.738
11	0.6	63.0	-1.950	-140.637
523	3.7	79.5	-3.510	-1943.177
524	3.7	79.5	-3.705	-2122.925
525	3.7	79.5	-3.900	-2323.115

142 143

Table S14. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Gent modelof the SBR material used in the Tensile test.

		Inputs		Output
Sample	Ε	Inv	Displacement	Force
Sumple	(x)	(x)	(mm)	(N)
1	0.6	63.0	0	0.000
2	0.6	63.0	20	1.729
3	0.6	63.0	40	2.965
4	0.6	63.0	60	4.112
5	0.6	63.0	80	5.282
6	0.6	63.0	100	6.530
7	0.6	63.0	120	7.891
8	0.6	63.0	140	9.401
9	0.6	63.0	160	11.100
10	0.6	63.0	180	13.036
11	0.6	63.0	200	15.274
523	3.7	79.5	360	288.649
524	3.7	79.5	380	354.913
525	3.7	79.5	400	510.715

Table S15. Design matrix and experiments obtained with a 5k DoE for the hyper-elastic Gent model

 of the SBR material used in the Planar Tension test.

		Inputs		Output
C	Ε	Inv	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.6	63.0	0.00	0.000
2	0.6	63.0	2.50	38.367
3	0.6	63.0	5.00	68.960
4	0.6	63.0	7.50	94.539
5	0.6	63.0	10.00	116.749
6	0.6	63.0	12.50	136.654
7	0.6	63.0	15.00	154.962
8	0.6	63.0	17.50	172.163
9	0.6	63.0	20.00	188.600
10	0.6	63.0	22.50	204.523
11	0.6	63.0	25.00	220.119
523	3.7	79.5	45.00	2083.990
524	3.7	79.5	47.50	2179.894
525	3.7	79.5	50.00	2277.445

148 *S4.4. EVA Material*

149 150

Table S16. Design matrix and experiments obtained with a 3k DoE for the hyper-elasticArruda-Boyce model of the EVA material used in the Shear test.

	Inputs			
Samula	Nkt	Chain	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.26	2.0	0.00	0.000
2	0.26	2.0	0.50	24.332
3	0.26	2.0	1.00	48.792
4	0.26	2.0	1.50	73.511
5	0.26	2.0	2.00	98.624
6	0.26	2.0	2.50	124.269
7	0.26	2.0	3.00	150.593
8	0.26	2.0	3.50	177.753
9	0.26	2.0	4.00	205.918
10	0.26	2.0	4.50	235.267
187	0.90	25.0	9.00	1023.925
188	0.90	25.0	9.50	1083.246
189	0.90	25.0	10.00	1142.861

151 152

Table S17. Design matrix and experiments obtained with a 3k DoE for the hyper-elasticArruda-Boyce model of the EVA material used in the Volumetric Compression test.

	Inputs				
Samula	Nkt	Chain	Displacement	Force	
Sample	(x)	(x)	(mm)	(N)	
1	0.26	2.0	0.00	0.000	
2	0.26	2.0	-0.03	-422.927	
3	0.26	2.0	-0.06	-846.737	
4	0.26	2.0	-0.09	-1271.426	
5	0.26	2.0	-0.12	-1696.997	
6	0.26	2.0	-0.15	-2123.453	
7	0.26	2.0	-0.18	-2550.796	
8	0.26	2.0	-0.21	-2979.030	
9	0.26	2.0	-0.24	-3408.156	
10	0.26	2.0	-0.27	-3838.179	
11	0.26	2.0	-0.30	-4269.097	
187	0.90	25.0	-0.54	-26820.067	
188	0.90	25.0	-0.57	-28340.198	
189	0.90	25.0	-0.60	-29862.945	

Table S18. Design matrix and experiments obtained with a 3k DoE for the hyper-elasticArruda-Boyce model of the EVA material used in the Compression test.

	-	Inputs		Output
Sample	Nkt (x)	Chain (x)	Displacement (mm)	Force (N)
1	0.26	2.0	0.000	0.000
2	0.26	2.0	-0.195	-23.452
3	0.26	2.0	-0.390	-47.937
4	0.26	2.0	-0.585	-73.535
5	0.26	2.0	-0.780	-100.354
6	0.26	2.0	-0.975	-128.520
7	0.26	2.0	-1.170	-158.181
8	0.26	2.0	-1.365	-189.515
9	0.26	2.0	-1.560	-222.735
10	0.26	2.0	-1.755	-258.107
11	0.26	2.0	-1.950	-295.949
187	0.90	25.0	-3.510	-1448.051
188	0.90	25.0	-3.705	-1581.354
189	0.90	25.0	-3.900	-1729.455

Table S19. Design matrix and experiments obtained with a 3k DoE for the hyper-elasticArruda-Boyce model of the EVA material used in the Tensile test.

	1	nputs		Output
Camula	Nkt	Chain	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.26	2.0	0	0.000
2	0.26	2.0	20	3.786
3	0.26	2.0	40	8.093
4	0.26	2.0	60	14.827
5	0.26	2.0	80	26.400
6	0.26	2.0	100	48.206
7	0.26	2.0	120	90.647
8	0.26	2.0	140	171.542
9	0.26	2.0	160	317.378
10	0.26	2.0	180	559.306
11	0.26	2.0	200	920.480
187	0.90	25.0	360	158.135
188	0.90	25.0	380	180.585
189	0.90	25.0	400	207.152

Table S20. Design matrix and experiments obtained with a 3k DoE for the hyper-elasticArruda-Boyce model of the EVA material used in the Planar Tension test.

	1	Inputs		Output
Camula	Nkt	Chain	Displacement	Force
Sample	(x)	(x)	(mm)	(N)
1	0.26	2.0	0.00	0.000
2	0.26	2.0	2.50	77.970
3	0.26	2.0	5.00	142.607
4	0.26	2.0	7.50	200.861
5	0.26	2.0	10.00	257.125
6	0.26	2.0	12.50	314.693
7	0.26	2.0	15.00	376.396
8	0.26	2.0	17.50	444.990
9	0.26	2.0	20.00	523.425
10	0.26	2.0	22.50	615.058
11	0.26	2.0	25.00	723.855
187	0.90	25.0	45.00	1517.838
188	0.90	25.0	47.50	1583.657
189	0.90	25.0	50.00	1650.160

161 S5. Modeling the *EF* for the materials studied according to the standardized tests

S5.1 Gent hyper-elastic model for NBR.

$$EF_{shear} = 131.63192 + 573.60191 \cdot E - 727.3464 \cdot E^{2} + 274.78272 \cdot E^{3} - 31.8021$$
$$\cdot E^{4} - 0.09809 \cdot E^{2} \cdot I_{1} + 0.0144 \cdot E^{3} \cdot I_{1} + 0.00179 \cdot E \cdot I_{1}^{2} - 1e^{-5} \cdot E$$
$$\cdot I_{1}^{3}$$

$$EF_{comVol} = 1691.91316 - 4218.6483 \cdot E + 4467.51432 \cdot E^2 - 1221.19525 \cdot E^3 + 120.3148 \cdot E^4 - 4e^{-5} \cdot E \cdot I_1$$

$$\begin{split} EF_{comp} &= 162.59816 + 506.39271 \cdot E - 745.52302 \cdot E^2 + 306.56328 \cdot E^3 \\ &\quad - 37.36569 \cdot E^4 - 0.07396 \cdot E^2 \cdot I_1 + 0.01082 \cdot E^3 \cdot I_1 + 0.00135 \cdot E \\ &\quad \cdot I_1^2 \end{split} \\ EF_{trac} &= -0.04142 + 42.93096 \cdot E - 52.92906 \cdot E^2 + 23.18558 \cdot E^3 - 2.98271 \cdot E^4 \\ &\quad + 0.3083 \cdot I_1 - 0.21959 \cdot E^2 \cdot I_1 + 0.03988 \cdot E^3 \cdot I_1 - 0.00331 \cdot {I_1}^2 \\ &\quad + 0.00336 \cdot E \cdot {I_1}^2 - 0.00042 \cdot E^2 \cdot {I_1}^2 \end{split}$$

$$EF_{tens} = 570.06975 - 148.80814 \cdot E + 0.16335 \cdot I_1 + 0.10503 \cdot E \cdot I_1 - 0.00346 \cdot {I_1}^2 - 0.00101 \cdot E \cdot {I_1}^2 + 3e^{-5} \cdot {I_1}^3$$

169 S5.2 Gent hyper-elastic model for EVA.

$$EF_{shear} = 573.42844 - 384.8863 \cdot E + 239.92652 \cdot E^{2} - 100.16773 \cdot E^{3} + 14.66798 \cdot E^{4} + 0.06727 \cdot E \cdot I_{1} - 0.0274 \cdot E^{2} \cdot I_{1} - 0.00018 \cdot I_{1}^{2} + 5e^{-5} \cdot E^{2} \cdot I_{1}^{2}$$

$$EF_{comVol} = 707.60358 - 1888.22615 \cdot E + 2264.06588 \cdot E^2 - 618.88252 \cdot E^3 + 60.97365 \cdot E^4$$

$$EF_{comp} = -84.84631 + 197.34822 \cdot E - 0.00027 \cdot E^{3} - 0.99611 \cdot I_{1} - 0.10962 \cdot E$$
$$\cdot I_{1} - 2e^{-5} \cdot E^{2} \cdot I_{1} + 0.0211 \cdot I_{1}^{2} + 0.00113 \cdot E \cdot I_{1}^{2} - 2e^{-4} \cdot I_{1}^{3}$$

$$EF_{trac} = 8.39199 + 5.45142 \cdot E - 10.56627 \cdot E^{2} + 3.88764 \cdot E^{3} - 0.40133 \cdot E^{4} + 0.03933 \cdot E \cdot I_{1} - 0.01962 \cdot E^{2} \cdot I_{1} + 0.00245 \cdot E^{3} \cdot I_{1} - 0.00011 \cdot {I_{1}}^{2}$$

$$EF_{tens} = 562.03356 - 266.68752 \cdot E + 121.89898 \cdot E^{2} - 50.84421 \cdot E^{3} + 7.40561$$
$$\cdot E^{4} + 0.0892 \cdot E \cdot I_{1} + 0.04214 \cdot E^{2} \cdot I_{1} - 0.01916 \cdot E^{3} \cdot I_{1} - 0.00153 \cdot E$$
$$\cdot I_{1}^{2} + 0.00039 \cdot E^{2} \cdot I_{1}^{2}$$

$$EF_{shear} = 952.07301 - 167.72434 \cdot E + 0.29917 \cdot E^{2} - 0.0081 \cdot E^{3} + 0.00019 \cdot E^{4} + 0.19236 \cdot I_{1} + 0.12239 \cdot E \cdot I_{1} - 0.00033 \cdot E^{2} \cdot I_{1} - 0.00406 \cdot {I_{1}}^{2} - 0.00117 \cdot E \cdot {I_{1}}^{2} + 4e^{-5} \cdot {I_{1}}^{3}$$

$$EF_{comVol} = -131.47184 - 379.4103 \cdot E + 1998.31163 \cdot E^2 - 546.23856 \cdot E^3 + 53.8166 \cdot E^4 - 4e^{-5} \cdot E \cdot I_1$$

$$EF_{comp} = 768.25364 - 211.78034 \cdot E + 13.88159 \cdot E^{2} - 4.97277 \cdot E^{3} + 0.64769 \cdot E^{4} + 0.99605 \cdot I_{1} + 0.10973 \cdot E \cdot I_{1} - 2e^{-5} \cdot E^{3} \cdot I_{1} - 0.0211 \cdot {I_{1}}^{2} - 0.00113 \cdot E \cdot {I_{1}}^{2} + 2e^{-4} \cdot {I_{1}}^{3}$$

$$EF_{trac} = 44.14595 - 26.35027 \cdot E + 6.04914 \cdot E^{2} - 0.93071 \cdot E^{3} + 0.29402 \cdot E^{4} + 0.20345 \cdot E \cdot I_{1} - 0.09803 \cdot E^{2} \cdot I_{1} - 5e^{-4} \cdot I_{1}^{2} + 0.00025 \cdot E^{2} \cdot I_{1}^{2}$$

$$EF_{tens} = 1150.10935 - 128.73997 \cdot E + 0.10502 \cdot I_1 + 0.06796 \cdot E \cdot I_1 - 0.00222$$
$$\cdot I_1^2 - 0.00065 \cdot E \cdot I_1^2 + 2e^{-5} \cdot I_1^3$$

- 184 S5.4 Gent hyper-elastic model for SBR

$$EF_{shear} = 245.33787 + 315.03982 \cdot E - 440.56609 \cdot E^{2} + 159.41681 \cdot E^{3} - 17.48769 \cdot E^{4} + 0.1115 \cdot E \cdot I_{1} - 0.07149 \cdot E^{2} \cdot I_{1} + 0.0083 \cdot E^{3} \cdot I_{1} - 0.00028 \cdot I_{1}^{2} + 7e^{-5} \cdot E^{2} \cdot I_{1}^{2}$$

$$\begin{split} EF_{comVol} = & 1092.51337 - 2967.75314 \cdot E + 3663.00216 \cdot E^2 - 1001.28181 \cdot E^3 \\ & + 98.64845 \cdot E^4 - 4e^{-5} \cdot E \cdot I_1 \end{split}$$

$$EF_{comp} = 499.8732 - 768.75451 \cdot E + 420.72193 \cdot E^2 - 76.30303 \cdot E^3 + 4.75934$$
$$\cdot E^4 - 0.06616 \cdot E^2 \cdot I_1 + 0.0102 \cdot E^3 \cdot I_1 + 0.00107 \cdot E \cdot {I_1}^2$$

$$\begin{split} EF_{trac} &= 13.46596 - 31.84001 \cdot E + 41.66887 \cdot E^2 - 12.0611 \cdot E^3 + 1.22107 \cdot E^4 \\ &+ 0.39297 \cdot I_1 - 0.82184 \cdot E \cdot I_1 + 0.11071 \cdot E^2 \cdot I_1 - 0.00888 \cdot E^3 \cdot I_1 \\ &- 0.00172 \cdot I_1^2 + 0.00588 \cdot E \cdot I_1^2 - 0.00028 \cdot E^2 \cdot I_1^2 - 2e^{-5} \cdot E \cdot I_1^3 \end{split}$$

$$EF_{tens} = 602.16882 - 317.01575 \cdot E + 173.83253 \cdot E^2 - 72.20933 \cdot E^3 + 10.43612$$
$$\cdot E^4 + 0.0892 \cdot E \cdot I_1 + 0.04214 \cdot E^2 \cdot I_1 - 0.01916 \cdot E^3 \cdot I_1 - 0.00153 \cdot E$$
$$\cdot I_1^2 + 0.00039 \cdot E^2 \cdot I_1^2$$

194 S5.5 Ogden hyper-elastic model for NBR.

$$EF_{shear} = 367.42734 - 5152.96075 \cdot k_1^2 + 7890.83881 \cdot k_1^3 + 463.85768 \cdot k_2 + 6119.73291 \cdot k_1 \cdot k_2 - 28912.28113 \cdot k_1^2 \cdot k_2 + 26531.08548 \cdot k_1^3 \cdot k_2 + 6907.1563 \cdot k_1 \cdot k_2^2 - 13594.22433 \cdot k_1^2 \cdot k_2^2$$

$$\begin{split} EF_{comVol} &= \ 2581.62332 - 37573.18872 \cdot k_1 + 170279.87916 \cdot {k_1}^2 - 241796.12966 \\ &\cdot {k_1}^3 + 127131.93523 \cdot {k_1}^4 + 15621.60234 \cdot k_2 - 195859.04111 \cdot k_1 \\ &\cdot k_2 + 432669.69466 \cdot {k_1}^2 \cdot k_2 - 262089.57722 \cdot {k_1}^3 \cdot k_2 \\ &+ 28541.94027 \cdot {k_2}^2 - 197711.69582 \cdot {k_1} \cdot {k_2}^2 + 290587.69511 \cdot {k_1}^2 \\ &\cdot {k_2}^2 \end{split}$$

$$EF_{comp} = 366.68459 - 5078.88291 \cdot k_1^2 + 7328.67562 \cdot k_1^3 + 690.89965 \cdot k_2 + 8733.43345 \cdot k_1 \cdot k_2 - 36736.94016 \cdot k_1^2 \cdot k_2 + 23907.53842 \cdot k_1^3 \cdot k_2 + 17779.24803 \cdot k_1 \cdot k_2^2 - 38272.40791 \cdot k_1^2 \cdot k_2^2$$

$$EF_{trac} = 28.5913 - 39.96472 \cdot k_1 - 1108.94844 \cdot k_1^2 + 4691.16536 \cdot k_1^3 - 4660.30136 \cdot k_1^4 + 7.36883 \cdot k_2 + 90.62453 \cdot k_1 \cdot k_2 - 726.94527 \cdot k_1^2 \cdot k_2 + 946.88324 \cdot k_1^3 \cdot k_2$$

$$EF_{tens} = 573.2217 - 852.02857 \cdot k_1 + 931.70282 \cdot k_1^2 - 1982.04384 \cdot k_1^3 + 1462.31866 \cdot k_1^4 + 405.23114 \cdot k_2 - 537.63144 \cdot k_1 \cdot k_2 + 2806.32998 \cdot k_1^2 \cdot k_2 - 2434.71154 \cdot k_1^3 \cdot k_2 - 688.13911 \cdot k_1 \cdot k_2^2 + 2500.09091 \cdot k_1^2 \cdot k_2^2$$

201 S5.6 Ogden hyper-elastic model for EVA.

$$\begin{split} EF_{shear} &= 500.26043 - 522.16823 \cdot k_1 - 448.26096 \cdot {k_1}^2 + 428.51384 \cdot k_2 \\ &+ 1473.1078 \cdot k_1 \cdot k_2 - 5850.38214 \cdot {k_1}^3 \cdot k_2 + 1789.74701 \cdot {k_1} \cdot {k_2}^2 \end{split}$$

$$\begin{split} EF_{comVol} &= \ 1616.69292 - 20415.08222 \cdot k_1 + 94735.17245 \cdot {k_1}^2 - 134648.98076 \\ &\cdot {k_1}^3 + 71812.79252 \cdot {k_1}^4 + 11290.79012 \cdot k_2 - 109322.1388 \cdot {k_1} \cdot {k_2} \\ &+ 241085.77243 \cdot {k_1}^2 \cdot {k_2} - 143625.56931 \cdot {k_1}^3 \cdot {k_2} + 26557.57604 \\ &\cdot {k_2}^2 - 110796.86661 \cdot {k_1} \cdot {k_2}^2 + 164143.50291 \cdot {k_1}^2 \cdot {k_2}^2 \\ &+ 11366.58535 \cdot {k_2}^3 \end{split}$$

$$EF_{comp} = -49.94918 + 327.64699 \cdot k_{1} + 1854.38526 \cdot k_{1}^{2} - 2647.32065 \cdot k_{1}^{3} + 1392.55523 \cdot k_{1}^{4} - 455.54137 \cdot k_{2} - 2154.13915 \cdot k_{1} \cdot k_{2} + 4693.37501 \cdot k_{1}^{2} \cdot k_{2} - 2901.87881 \cdot k_{1}^{3} \cdot k_{2} + 315.00427 \cdot k_{2}^{2} - 2148.82615 \cdot k_{1} \cdot k_{2}^{2} + 3050.43338 \cdot k_{1}^{2} \cdot k_{2}^{2}$$

$$EF_{trac} = 11.61421 - 323.2176 \cdot k_1^2 + 967.3286 \cdot k_1^3 - 763.38933 \cdot k_1^4 + 66.26786$$
$$\cdot k_1 \cdot k_2 - 324.0273 \cdot k_1^2 \cdot k_2 + 337.80496 \cdot k_1^3 \cdot k_2 - 19.25412 \cdot k_2^2$$
$$+ 19.65498 \cdot k_1 \cdot k_2^2 - 19.7614 \cdot k_2^3$$

$$EF_{tens} = 509.74359 - 1227.96208 \cdot k_{1} + 3648.21224 \cdot k_{1}^{2} - 8322.9179 \cdot k_{1}^{3} + 6379.72333 \cdot k_{1}^{4} + 165.31536 \cdot k_{2} - 2404.17253 \cdot k_{1} \cdot k_{2} + 11705.84823 \cdot k_{1}^{2} \cdot k_{2} - 11653.71925 \cdot k_{1}^{3} \cdot k_{2} - 979.87191 \cdot k_{2}^{2} - 2817.5445 \cdot k_{1} \cdot k_{2}^{2} + 9306.58759 \cdot k_{1}^{2} \cdot k_{2}^{2} - 1127.70583 \cdot k_{2}^{3}$$

207 S5.7 Ogden hyper-elastic model for PUR.

$$EF_{shear} = 955.53103 - 824.92775 \cdot k_{1} + 135.92408 \cdot k_{1}^{2} - 286.42552 \cdot k_{1}^{3} + 212.07954 \cdot k_{1}^{4} + 466.62242 \cdot k_{2} + 96.85461 \cdot k_{1} \cdot k_{2} - 130.62892 \cdot k_{1}^{2} \cdot k_{2} + 23.53591 \cdot k_{1}^{3} \cdot k_{2} + 2.73597 \cdot k_{2}^{2} + 77.41648 \cdot k_{1} \cdot k_{2}^{2} - 112.54282 \cdot k_{1}^{2} \cdot k_{2}^{2}$$

$$EF_{comVol} = 1614.5898 - 24195.9722 \cdot k_{1} + 124627.01377 \cdot k_{1}^{2} - 176908.8083 \cdot k_{1}^{3} + 92525.36384 \cdot k_{1}^{4} + 9233.29106 \cdot k_{2} - 143176.71591 \cdot k_{1} \cdot k_{2} + 316490.4907 \cdot k_{1}^{2} \cdot k_{2} - 192876.43444 \cdot k_{1}^{3} \cdot k_{2} + 20879.0566 \cdot k_{2}^{2} - 144318.69996 \cdot k_{1} \cdot k_{2}^{2} + 211486.9605 \cdot k_{1}^{2} \cdot k_{2}^{2}$$

$$EF_{comp} = 781.24808 - 1097.85589 \cdot k_1 + 1549.97414 \cdot k_1^2 - 3172.75346 \cdot k_1^3$$

$$\begin{array}{l}+2263.64834\cdot {k_{1}}^{4}+718.03261\cdot {k_{2}}-1127.8068\cdot {k_{1}}\cdot {k_{2}}\\+5448.10541\cdot {k_{1}}^{2}\cdot {k_{2}}-4734.37263\cdot {k_{1}}^{3}\cdot {k_{2}}-1293.98871\cdot {k_{1}}\cdot {k_{2}}^{2}\\+4668.65913\cdot {k_{1}}^{2}\cdot {k_{2}}^{2}\end{array}$$

$$EF_{trac} = 41.98032 - 27.79486 \cdot k_{1} - 1014.51265 \cdot k_{1}^{2} + 3444.69074 \cdot k_{1}^{3} - 2978.76489 \cdot k_{1}^{4} + 6.74623 \cdot k_{2} + 88.20951 \cdot k_{1} \cdot k_{2} - 444.93251 \cdot k_{1}^{2} \cdot k_{2} + 439.18303 \cdot k_{1}^{3} \cdot k_{2}$$

$$EF_{tens} = 1151.96645 - 620.98687 \cdot k_{1} + 65.71428 \cdot k_{1}^{2} - 158.74504 \cdot k_{1}^{3} + 125.63622 \cdot k_{1}^{4} + 356.77436 \cdot k_{2} + 56.62993 \cdot k_{1} \cdot k_{2} - 91.02943 \cdot k_{1}^{2} \cdot k_{2} + 36.80589 \cdot k_{1}^{3} \cdot k_{2} + 37.37657 \cdot k_{1} \cdot k_{2}^{2} - 57.92156 \cdot k_{1}^{2} \cdot k_{2}^{2}$$
213

$$EF_{shear} = 393.17542 - 4029.63965 \cdot k_1^2 + 5646.97637 \cdot k_1^3 + 404.53928 \cdot k_2 + 4315.4355 \cdot k_1 \cdot k_2 - 18475.87259 \cdot k_1^2 \cdot k_2 + 15758.0234 \cdot k_1^3 \cdot k_2 + 4396.72026 \cdot k_1 \cdot k_2^2 - 7812.45505 \cdot k_1^2 \cdot k_2^2$$

$$\begin{split} EF_{comVol} &= \ 2283.41882 - 33448.05129 \cdot k_1 + 156201.88741 \cdot {k_1}^2 - 221786.80128 \\ &\cdot {k_1}^3 + 116460.29343 \cdot {k_1}^4 + 13651.63632 \cdot {k_2} - 179613.37212 \cdot {k_1} \\ &\cdot {k_2} + 396843.46861 \cdot {k_1}^2 \cdot {k_2} - 240746.29362 \cdot {k_1}^3 \cdot {k_2} \\ &+ 26178.93387 \cdot {k_2}^2 - 181246.87704 \cdot {k_1} \cdot {k_2}^2 + 266195.371 \cdot {k_1}^2 \\ &\cdot {k_2}^2 \end{split}$$

$$EF_{comp} = 379.29256 - 2475.54838 \cdot k_{1} + 4535.18305 \cdot k_{1}^{2} - 2294.96025 \cdot k_{1}^{4} + 1654.31068 \cdot k_{2} - 8636.14369 \cdot k_{1} \cdot k_{2} + 7076.52587 \cdot k_{1}^{2} \cdot k_{2} + 2097.40454 \cdot k_{2}^{2} - 4798.09832 \cdot k_{1} \cdot k_{2}^{2}$$

$$EF_{trac} = 15.26002 - 279.76921 \cdot k_{1} + 1926.94633 \cdot k_{1}^{2} - 4137.57559 \cdot k_{1}^{3} + 3194.13256 \cdot k_{1}^{4} + 7.12619 \cdot k_{2} - 83.52135 \cdot k_{1} \cdot k_{2} + 165.49685 \cdot k_{1}^{2} \cdot k_{2} - 149.96712 \cdot k_{1}^{3} \cdot k_{2} + 42.69854 \cdot k_{1} \cdot k_{2}^{2} - 92.17532 \cdot k_{1}^{2} \cdot k_{2}^{2}$$

$$EF_{tens} = 549.61218 - 903.07119 \cdot k_{1} + 1870.26214 \cdot k_{1}^{2} - 4987.2196 \cdot k_{1}^{3} + 3921.60778 \cdot k_{1}^{4} + 405.05656 \cdot k_{2} - 652.1197 \cdot k_{1} \cdot k_{2} + 6073.58795 \cdot k_{1}^{2} \cdot k_{2} - 8972.76722 \cdot k_{1}^{3} \cdot k_{2} - 572.35034 \cdot k_{1} \cdot k_{2}^{2} + 3938.94766 \cdot k_{1}^{2} \cdot k_{2}^{2}$$

223 S5.9 Mooney-Rivlin hyper-elastic model for NBR.

224

$$\begin{split} EF_{shear} &= 183.52116 - 693.53046 \cdot C_{10} + 1400.42875 \cdot C_{10}{}^2 - 278.43835 \cdot C_{10}{}^4 \\ &- 640.16174 \cdot C_{01} + 3456.7162 \cdot C_{10} \cdot C_{01} - 2482.67744 \cdot C_{10}{}^2 \cdot C_{01} \\ &+ 609.80965 \cdot C_{10}{}^3 \cdot C_{01} + 1443.64739 \cdot C_{01}{}^2 - 2414.77072 \cdot C_{10} \cdot C_{01}{}^2 \\ &+ 802.19476 \cdot C_{10}{}^2 \cdot C_{01}{}^2 + 570.90191 \cdot C_{10} \cdot C_{01}{}^3 - 429.79401 \cdot C_{01}{}^4 \\ &+ 2053.13932 \cdot C_{10} \cdot C_{11} - 882.06251 \cdot C_{10}{}^2 \cdot C_{11} + 1163.36567 \cdot C_{01} \\ &\cdot C_{11} - 1288.34095 \cdot C_{10} \cdot C_{01} \cdot C_{11} + 911.5076 \cdot C_{11}{}^2 - 3050.22947 \\ &\cdot C_{10} \cdot C_{11}{}^2 + 1662.59232 \cdot C_{10}{}^2 \cdot C_{11}{}^2 - 1734.73345 \cdot C_{01} \cdot C_{11}{}^2 \\ &+ 1520.55779 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^2 + 559.5721 \cdot C_{01}{}^2 \cdot C_{11}{}^2 \end{split}$$

225

$$\begin{split} EF_{comVol} &= -1670.36632 + 12736.21437 \cdot C_{10} + 7602.62765 \cdot C_{10}^{2} - 6175.18798 \\ &\cdot C_{10}^{3} + 1711.70271 \cdot C_{10}^{4} + 14977.88218 \cdot C_{01} + 6784.19505 \cdot C_{10} \\ &\cdot C_{01} - 8314.5558 \cdot C_{10}^{2} \cdot C_{01} + 3142.55075 \cdot C_{10}^{3} \cdot C_{01} + 1639.17496 \\ &\cdot C_{01}^{2} - 2722.01456 \cdot C_{10} \cdot C_{01}^{2} + 1535.43174 \cdot C_{10}^{2} \cdot C_{01}^{2} \\ &- 2502.70944 \cdot C_{01}^{3} + 1707.68537 \cdot C_{01}^{4} \end{split}$$

226

$$EF_{comp} = 103.20989 + 879.48322 \cdot C_{10}^{2} - 214.64751 \cdot C_{10}^{3} - 253.99821 \cdot C_{01}$$

$$\begin{array}{l} + 2910.10452 \cdot C_{10} \cdot C_{01} - 1551.76327 \cdot C_{10}{}^{2} \cdot C_{01} + 245.33878 \cdot C_{10}{}^{3} \\ \cdot C_{01} + 1903.78218 \cdot C_{01}{}^{2} - 2151.15598 \cdot C_{10} \cdot C_{01}{}^{2} + 580.48796 \cdot C_{10}{}^{2} \\ \cdot C_{01}{}^{2} - 700.25323 \cdot C_{01}{}^{3} + 471.55589 \cdot C_{10} \cdot C_{01}{}^{3} - 698.90049 \cdot C_{11} \\ + 2372.54385 \cdot C_{10} \cdot C_{11} - 760.1869 \cdot C_{10}{}^{2} \cdot C_{11} + 4184.24278 \cdot C_{01} \\ \cdot C_{11} - 4217.4931 \cdot C_{10} \cdot C_{01} \cdot C_{11} + 924.87521 \cdot C_{10}{}^{2} \cdot C_{01} \cdot C_{11} \\ - 3026.17171 \cdot C_{01}{}^{2} \cdot C_{11} + 1482.38309 \cdot C_{10} \cdot C_{01}{}^{2} \cdot C_{11} + 619.29957 \\ \cdot C_{01}{}^{3} \cdot C_{11} + 1525.29295 \cdot C_{11}{}^{2} - 1444.2328 \cdot C_{10} \cdot C_{11}{}^{2} - 3155.93335 \\ \cdot C_{01} \cdot C_{11}{}^{2} + 1841.99624 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^{2} + 1312.51796 \cdot C_{01}{}^{2} \cdot C_{11}{}^{2} \end{array}$$

$$\begin{split} EF_{trac} = & 19.3254 - 36.88252 \cdot C_{10} + 22.88505 \cdot C_{10}{}^{2} + 45.20189 \cdot C_{10}{}^{3} - 21.76448 \\ & \cdot C_{10}{}^{4} - 25.85826 \cdot C_{01} + 66.5464 \cdot C_{10} \cdot C_{01} - 23.43407 \cdot C_{10}{}^{2} \cdot C_{01} \\ & + 13.52604 \cdot C_{01}{}^{2} - 12.79691 \cdot C_{10} \cdot C_{01}{}^{2} - 46.10194 \cdot C_{11} + 733.56847 \\ & \cdot C_{10} \cdot C_{11} - 256.65739 \cdot C_{10}{}^{2} \cdot C_{11} + 305.5666 \cdot C_{01} \cdot C_{11} - 310.44061 \\ & \cdot C_{10} \cdot C_{01} \cdot C_{11} + 79.32516 \cdot C_{10}{}^{2} \cdot C_{01} \cdot C_{11} - 53.26243 \cdot C_{01}{}^{2} \cdot C_{11} \\ & + 48.06354 \cdot C_{10} \cdot C_{01}{}^{2} \cdot C_{11} + 1561.50985 \cdot C_{11}{}^{2} - 1585.0807 \cdot C_{10} \\ & \cdot C_{11}{}^{2} + 289.82983 \cdot C_{10}{}^{2} \cdot C_{11}{}^{2} - 507.29949 \cdot C_{01} \cdot C_{11}{}^{2} + 206.29549 \\ & \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^{2} - 2327.54218 \cdot C_{11}{}^{3} + 1199.70524 \cdot C_{10} \cdot C_{11}{}^{3} \\ & + 357.56136 \cdot C_{01} \cdot C_{11}{}^{3} + 1177.73578 \cdot C_{11}{}^{4} \end{split}$$

$$\begin{split} EF_{tens} &= 832.38853 - 2928.96076 \cdot C_{10} + 3625.24508 \cdot {C_{10}}^2 - 1474.22101 \cdot {C_{10}}^3 \\ &+ 222.8628 \cdot {C_{10}}^4 - 2756.07978 \cdot {C_{01}} + 7012.25395 \cdot {C_{10}} \cdot {C_{01}} \\ &- 4311.33566 \cdot {C_{10}}^2 \cdot {C_{01}} + 834.43158 \cdot {C_{10}}^3 \cdot {C_{01}} + 3232.13812 \cdot {C_{01}}^2 \\ &- 4100.53672 \cdot {C_{10}} \cdot {C_{01}}^2 + 1221.59319 \cdot {C_{10}}^2 \cdot {C_{01}}^2 - 1261.07643 \\ &\cdot {C_{01}}^3 + 794.24004 \cdot {C_{10}} \cdot {C_{01}}^3 + 175.17826 \cdot {C_{01}}^4 - 2182.45536 \cdot {C_{11}} \\ &+ 5775.64572 \cdot {C_{10}} \cdot {C_{11}} - 3444.18044 \cdot {C_{10}}^2 \cdot {C_{11}} + 638.65362 \cdot {C_{10}}^3 \\ &\cdot {C_{11}} + 5064.22906 \cdot {C_{01}} \cdot {C_{11}} - 6767.25387 \cdot {C_{10}} \cdot {C_{11}} + 1750.19183 \\ &\cdot {C_{10}} \cdot {C_{01}}^2 \cdot {C_{11}} + 383.5516 \cdot {C_{01}}^3 \cdot {C_{11}} + 2132.25963 \cdot {C_{11}}^2 \\ &- 2701.53369 \cdot {C_{10}} \cdot {C_{11}}^2 + 751.67271 \cdot {C_{10}}^2 \cdot {C_{11}}^2 - 2051.35937 \cdot {C_{01}} \\ &\cdot {C_{11}}^2 + 1714.98241 \cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}}^2 \end{split}$$

229 S5.10 Mooney-Rivlin hyper-elastic model for EVA.

$$\begin{split} EF_{shear} &= 595.96368 - 2178.67359 \cdot C_{10} + 2865.80232 \cdot C_{10}{}^{2} - 883.96588 \cdot C_{10}{}^{3} \\ &- 2098.17268 \cdot C_{01} + 5966.93267 \cdot C_{10} \cdot C_{01} - 3807.74099 \cdot C_{10}{}^{2} \cdot C_{01} \\ &+ 775.44103 \cdot C_{10}{}^{3} \cdot C_{01} + 2701.24867 \cdot C_{01}{}^{2} - 3650.48531 \cdot C_{10} \cdot C_{01}{}^{2} \\ &+ 1120.27509 \cdot C_{10}{}^{2} \cdot C_{01}{}^{2} - 831.78589 \cdot C_{01}{}^{3} + 716.71532 \cdot C_{10} \cdot C_{01}{}^{3} \\ &- 1379.9238 \cdot C_{11} + 4679.20347 \cdot C_{10} \cdot C_{11} - 2862.35422 \cdot C_{10}{}^{2} \cdot C_{11} \\ &+ 472.44967 \cdot C_{10}{}^{3} \cdot C_{11} + 4200.79571 \cdot C_{01} \cdot C_{11} - 5431.76083 \cdot C_{10} \\ &\cdot C_{01} \cdot C_{11} + 1635.15355 \cdot C_{10}{}^{2} \cdot C_{01} \cdot C_{11} - 1954.13109 \cdot C_{01}{}^{2} \cdot C_{11} \\ &+ 1355.94807 \cdot C_{10} \cdot C_{01}{}^{2} \cdot C_{11} + 1658.44324 \cdot C_{11}{}^{2} - 3098.96029 \cdot C_{10} \\ &\cdot C_{11}{}^{2} + 1264.53916 \cdot C_{10}{}^{2} \cdot C_{11}{}^{2} - 2686.18451 \cdot C_{01} \cdot C_{11}{}^{2} \\ &+ 1886.83392 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^{2} + 996.8374 \cdot C_{01}{}^{2} \cdot C_{11}{}^{2} \end{split}$$

231

$$\begin{split} EF_{comVol} &= -996.34559 + 7952.81782 \cdot C_{10} + 3852.90706 \cdot C_{10}{}^2 - 3129.4986 \cdot C_{10}{}^3 \\ &+ 867.46646 \cdot C_{10}{}^4 + 9088.86153 \cdot C_{01} + 3438.14364 \cdot C_{10} \cdot C_{01} \\ &- 4213.70757 \cdot C_{10}{}^2 \cdot C_{01} + 1592.60195 \cdot C_{10}{}^3 \cdot C_{01} + 830.72076 \cdot C_{01}{}^2 \\ &- 1379.48519 \cdot C_{10} \cdot C_{01}{}^2 + 778.13975 \cdot C_{10}{}^2 \cdot C_{01}{}^2 - 1268.35574 \cdot C_{01}{}^3 \\ &+ 865.44065 \cdot C_{01}{}^4 \end{split}$$

$$EF_{comp} = -104.02636 + 1163.7845 \cdot C_{10} - 11.39835 \cdot C_{10}^{2} + 8.05562 \cdot C_{10}^{3}$$

$$\begin{array}{l} -2.05642 \cdot {C_{10}}^{4} +1451.80406 \cdot {C_{01}} -19.85195 \cdot {C_{10}} \cdot {C_{01}} +17.24875 \\ \cdot {C_{10}}^{2} \cdot {C_{01}} -5.46286 \cdot {C_{10}}^{3} \cdot {C_{01}} -28.52999 \cdot {C_{01}}^{2} +22.90205 \cdot {C_{10}} \\ \cdot {C_{01}}^{2} -6.84659 \cdot {C_{10}}^{2} \cdot {C_{01}}^{2} +21.90531 \cdot {C_{01}}^{3} -6.66201 \cdot {C_{10}} \cdot {C_{01}}^{3} \\ -6.37661 \cdot {C_{01}}^{4} +912.21997 \cdot {C_{11}} +65.09823 \cdot {C_{10}} \cdot {C_{11}} -26.84801 \\ \cdot {C_{10}}^{2} \cdot {C_{11}} +5.79171 \cdot {C_{10}}^{3} \cdot {C_{11}} +87.65009 \cdot {C_{01}} \cdot {C_{11}} -68.45968 \cdot {C_{10}} \\ \cdot {C_{01}} \cdot {C_{11}} +18.16545 \cdot {C_{10}}^{2} \cdot {C_{01}} \cdot {C_{11}} -11.94747 \cdot {C_{01}}^{2} \cdot {C_{11}} +87.5069 \\ \cdot {C_{10}} \cdot {C_{01}}^{2} \cdot {C_{11}} -8.82394 \cdot {C_{01}}^{3} \cdot {C_{11}} -235.18325 \cdot {C_{11}}^{2} -24.86589 \\ \cdot {C_{10}} \cdot {C_{11}}^{2} -61.00259 \cdot {C_{01}} \cdot {C_{11}}^{2} +33.89034 \cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}}^{2} \\ +18.62427 \cdot {C_{01}}^{2} \cdot {C_{11}}^{2} +451.50186 \cdot {C_{11}}^{3} -314.84447 \cdot {C_{11}}^{4} \end{array}$$

$$\begin{split} EF_{trac} = & 10.7161 - 38.18766 \cdot C_{10} + 59.85163 \cdot C_{10}{}^2 - 18.26953 \cdot C_{10}{}^3 - 22.45239 \\ & \cdot C_{01} + 74.93665 \cdot C_{10} \cdot C_{01} - 49.18618 \cdot C_{10}{}^2 \cdot C_{01} + 10.25661 \cdot C_{10}{}^3 \\ & \cdot C_{01} + 13.19616 \cdot C_{01}{}^2 - 20.98564 \cdot C_{10} \cdot C_{01}{}^2 + 7.3664 \cdot C_{10}{}^2 \cdot C_{01}{}^2 \\ & - 65.34749 \cdot C_{11} + 264.52875 \cdot C_{10} \cdot C_{11} - 148.04887 \cdot C_{10}{}^2 \cdot C_{11} \\ & + 25.48434 \cdot C_{10}{}^3 \cdot C_{11} + 149.48438 \cdot C_{01} \cdot C_{11} - 172.99774 \cdot C_{10} \cdot C_{01} \\ & \cdot C_{11} + 49.97172 \cdot C_{10}{}^2 \cdot C_{01} \cdot C_{11} - 20.98999 \cdot C_{01}{}^2 \cdot C_{11} + 19.88664 \\ & \cdot C_{10} \cdot C_{01}{}^2 \cdot C_{11} + 267.14785 \cdot C_{11}{}^2 - 385.7986 \cdot C_{10} \cdot C_{11}{}^2 + 102.37209 \\ & \cdot C_{10}{}^2 \cdot C_{11}{}^2 - 223.90305 \cdot C_{01} \cdot C_{11}{}^2 + 116.73425 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^2 \\ & - 195.32117 \cdot C_{11}{}^3 + 191.30201 \cdot C_{10} \cdot C_{11}{}^3 + 124.47905 \cdot C_{01} \cdot C_{11}{}^3 \end{split}$$

$$\begin{split} EF_{tens} &= \ 702.044 - 2544.31158 \cdot C_{10} + 3304.55875 \cdot C_{10}{}^2 - 1327.07049 \cdot C_{10}{}^3 \\ &+ 186.42887 \cdot C_{10}{}^4 - 2409.58568 \cdot C_{01} + 6417.23337 \cdot C_{10} \cdot C_{01} \\ &- 4024.92722 \cdot C_{10}{}^2 \cdot C_{01} + 799.34989 \cdot C_{10}{}^3 \cdot C_{01} + 2973.3778 \cdot C_{01}{}^2 \\ &- 3767.64131 \cdot C_{10} \cdot C_{01}{}^2 + 1144.90762 \cdot C_{10}{}^2 \cdot C_{01}{}^2 - 1160.06987 \\ &\cdot C_{01}{}^3 + 708.41455 \cdot C_{10} \cdot C_{01}{}^3 + 166.62487 \cdot C_{01}{}^4 - 1873.72258 \cdot C_{11} \\ &+ 5446.58523 \cdot C_{10} \cdot C_{11} - 3295.48509 \cdot C_{10}{}^2 \cdot C_{11} + 583.87953 \cdot C_{10}{}^3 \\ &\cdot C_{11} + 4936.99716 \cdot C_{01} \cdot C_{11} - 6444.54512 \cdot C_{10} \cdot C_{01} \cdot C_{11} \\ &+ 1977.7766 \cdot C_{10}{}^2 \cdot C_{01} \cdot C_{11} - 2593.77736 \cdot C_{01}{}^2 \cdot C_{11} + 1672.55113 \\ &\cdot C_{10} \cdot C_{01}{}^2 \cdot C_{11} + 379.73004 \cdot C_{01}{}^3 \cdot C_{11} + 2093.93193 \cdot C_{11}{}^2 \\ &- 3007.62806 \cdot C_{10} \cdot C_{11}{}^2 + 974.08201 \cdot C_{10}{}^2 \cdot C_{11}{}^2 - 2596.41312 \cdot C_{01} \\ &\cdot C_{11}{}^2 + 1935.16706 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^2 + 563.60358 \cdot C_{01}{}^2 \cdot C_{11}{}^2 \end{split}$$

235 S5.11 Mooney-Rivlin hyper-elastic model for PUR.

$$\begin{split} EF_{shear} &= \ 1208.56785 - 2358.43336 \cdot C_{10} + 1635.10817 \cdot {C_{10}}^2 - 676.81596 \cdot {C_{10}}^3 \\ &+ 314.08539 \cdot {C_{10}}^4 - 2276.18241 \cdot {C_{01}} + 2875.10359 \cdot {C_{10}} \cdot {C_{01}} \\ &- 304.12894 \cdot {C_{10}}^3 \cdot {C_{01}} + 1665.21675 \cdot {C_{01}}^2 - 441.46439 \cdot {C_{10}}^2 \cdot {C_{01}}^2 \\ &- 1069.51707 \cdot {C_{01}}^3 - 253.59778 \cdot {C_{10}} \cdot {C_{01}}^3 + 599.00937 \cdot {C_{01}}^4 \\ &- 2577.35671 \cdot {C_{11}} + 4354.26408 \cdot {C_{10}} \cdot {C_{11}} - 1367.01744 \cdot {C_{10}}^2 \cdot {C_{11}} \\ &+ 4472.63173 \cdot {C_{01}} \cdot {C_{11}} - 4575.43531 \cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}} + 1140.19828 \\ &\cdot {C_{10}}^2 \cdot {C_{01}} \cdot {C_{11}} - 2271.6789 \cdot {C_{01}}^2 \cdot {C_{11}} + 1207.39338 \cdot {C_{10}} \cdot {C_{01}}^2 \cdot {C_{11}} \\ &+ 807.622 \cdot {C_{01}}^3 \cdot {C_{11}} + 1914.79821 \cdot {C_{11}}^2 - 927.45139 \cdot {C_{10}}^2 \cdot {C_{11}}^2 \\ &- 1354.59148 \cdot {C_{01}}^2 \cdot {C_{11}}^2 \end{split}$$

$$EF_{comVol} = -1635.4183 + 14742.42083 \cdot C_{10} + 3400.57868 \cdot C_{10}^{2} - 2762.10398$$

$$\cdot C_{10}^{3} + 765.63003 \cdot C_{10}^{4} + 15745.10924 \cdot C_{01} + 3034.48267 \cdot C_{10} \cdot C_{01}$$

$$- 3719.00015 \cdot C_{10}^{2} \cdot C_{01} + 1405.62769 \cdot C_{10}^{3} \cdot C_{01} + 733.17345 \cdot C_{01}^{2}$$

$$- 1217.5158 \cdot C_{10} \cdot C_{01}^{2} + 686.77408 \cdot C_{10}^{2} \cdot C_{01}^{2} - 1119.41507 \cdot C_{01}^{3}$$

$$+ 763.81804 \cdot C_{01}^{4}$$

$$\begin{split} EF_{comp} &= \ 1121.17055 - 3849.54392 \cdot C_{10} + 4643.0158 \cdot C_{10}^{2} - 1817.95654 \cdot C_{10}^{3} \\ &+ 263.56871 \cdot C_{10}^{4} - 4826.17938 \cdot C_{01} + 11945.94396 \cdot C_{10} \cdot C_{01} \\ &- 7077.95078 \cdot C_{10}^{2} \cdot C_{01} + 1274.30966 \cdot C_{10}^{3} \cdot C_{01} + 7247.11944 \\ &\cdot C_{01}^{2} - 9000.94792 \cdot C_{10} \cdot C_{01}^{2} + 2666.41478 \cdot C_{10}^{2} \cdot C_{01}^{2} \\ &- 3460.55385 \cdot C_{01}^{3} + 2113.84232 \cdot C_{10} \cdot C_{01}^{3} + 557.68092 \cdot C_{01}^{4} \\ &- 2062.00744 \cdot C_{11} + 4922.97392 \cdot C_{10} \cdot C_{11} - 2500.83808 \cdot C_{10}^{2} \cdot C_{11} \\ &+ 393.52228 \cdot C_{10}^{3} \cdot C_{11} + 6447.0182 \cdot C_{01} \cdot C_{11} - 7624.06867 \cdot C_{10} \\ &\cdot C_{01} \cdot C_{11} + 2037.43226 \cdot C_{10}^{2} \cdot C_{01} \cdot C_{11} - 4226.83673 \cdot C_{01}^{2} \cdot C_{11} \\ &+ 2743.92478 \cdot C_{10} \cdot C_{01}^{2} \cdot C_{11} + 849.54197 \cdot C_{01}^{3} \cdot C_{11} + 1450.3687 \\ &\cdot C_{11}^{2} - 1151.90474 \cdot C_{10} \cdot C_{11}^{2} - 1559.48067 \cdot C_{01} \cdot C_{11}^{2} + 1050.34018 \\ &\cdot C_{10} \cdot C_{01} \cdot C_{11}^{2} \end{split}$$

$$\begin{split} EF_{trac} &= 40.48927 - 70.25492 \cdot C_{10} + 78.80384 \cdot C_{10}{}^{3} - 31.1337 \cdot C_{10}{}^{4} - 21.23926 \\ &\cdot C_{01} + 51.18467 \cdot C_{10}{}^{2} \cdot C_{01} - 21.10467 \cdot C_{10}{}^{3} \cdot C_{01} + 28.81611 \cdot C_{10} \\ &\cdot C_{01}{}^{2} - 23.23655 \cdot C_{10}{}^{2} \cdot C_{01}{}^{2} - 413.06956 \cdot C_{11} + 1119.06742 \cdot C_{10} \\ &\cdot C_{11} - 350.86279 \cdot C_{10}{}^{2} \cdot C_{11} + 342.83133 \cdot C_{01} \cdot C_{11} - 254.57283 \cdot C_{10} \\ &\cdot C_{01} \cdot C_{11} + 38.96202 \cdot C_{10}{}^{2} \cdot C_{01} \cdot C_{11} - 40.1304 \cdot C_{01}{}^{2} \cdot C_{11} + 28.53367 \\ &\cdot C_{10} \cdot C_{01}{}^{2} \cdot C_{11} + 3036.21102 \cdot C_{11}{}^{2} - 2645.75059 \cdot C_{10} \cdot C_{11}{}^{2} \\ &+ 442.12347 \cdot C_{10}{}^{2} \cdot C_{11}{}^{2} - 637.70026 \cdot C_{01} \cdot C_{11}{}^{2} + 208.43968 \cdot C_{10} \\ &\cdot C_{01} \cdot C_{11}{}^{2} - 4802.05427 \cdot C_{11}{}^{3} + 2087.10966 \cdot C_{10} \cdot C_{11}{}^{3} + 470.4058 \\ &\cdot C_{01} \cdot C_{11}{}^{3} + 2640.16143 \cdot C_{11}{}^{4} \end{split}$$

$$\begin{split} EF_{tens} &= 1072.40184 - 1572.19641 \cdot {C_{10}}^2 + 1065.74331 \cdot {C_{10}}^3 - 198.00613 \cdot {C_{10}}^4 \\ &\quad - 3233.77545 \cdot {C_{10}} \cdot {C_{01}} + 3227.42206 \cdot {C_{10}}^2 \cdot {C_{01}} - 703.05089 \cdot {C_{10}}^3 \\ &\quad \cdot {C_{01}} - 1400.7919 \cdot {C_{01}}^2 + 3068.38116 \cdot {C_{10}} \cdot {C_{01}}^2 - 1049.83467 \cdot {C_{10}}^2 \\ &\quad \cdot {C_{01}}^2 + 903.53428 \cdot {C_{01}}^3 - 689.34375 \cdot {C_{10}} \cdot {C_{01}}^3 - 152.18398 \cdot {C_{01}}^4 \\ &\quad - 379.1367 \cdot {C_{11}} - 1914.17042 \cdot {C_{10}} \cdot {C_{11}} + 2451.43561 \cdot {C_{10}}^2 \cdot {C_{11}} \\ &\quad - 560.60634 \cdot {C_{10}}^3 \cdot {C_{11}} - 1559.48796 \cdot {C_{01}} \cdot {C_{11}} + 4926.4631 \cdot {C_{10}} \\ &\quad \cdot {C_{01}} \cdot {C_{11}} - 2023.50996 \cdot {C_{10}}^2 \cdot {C_{01}} \cdot {C_{11}} + 1662.69914 \cdot {C_{01}}^2 \cdot {C_{11}} \\ &\quad - 1701.87461 \cdot {C_{10}} \cdot {C_{01}}^2 \cdot {C_{11}} - 341.45735 \cdot {C_{01}}^3 \cdot {C_{11}} + 1146.07752 \\ &\quad \cdot {C_{10}} \cdot {C_{11}}^2 - 656.19947 \cdot {C_{10}}^2 \cdot {C_{11}}^2 + 694.24232 \cdot {C_{01}} \cdot {C_{11}}^2 \\ &\quad - 1041.67299 \cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}}^2 \end{split}$$

242 S5.12 Mooney-Rivlin hyper-elastic model for SBR.

$$\begin{split} EF_{shear} &= 369.23988 - 1239.47992 \cdot C_{10} + 1900.3982 \cdot C_{10}{}^2 - 576.89576 \cdot C_{10}{}^3 \\ &\quad - 1231.95871 \cdot C_{01} + 4044.94005 \cdot C_{10} \cdot C_{01} - 2689.86999 \cdot C_{10}{}^2 \cdot C_{01} \\ &\quad + 595.3994 \cdot C_{10}{}^3 \cdot C_{01} + 1656.7623 \cdot C_{01}{}^2 - 2393.14325 \cdot C_{10} \cdot C_{01}{}^2 \\ &\quad + 766.62795 \cdot C_{10}{}^2 \cdot C_{01}{}^2 + 433.67074 \cdot C_{10} \cdot C_{01}{}^3 - 370.03922 \cdot C_{01}{}^4 \\ &\quad - 631.02847 \cdot C_{11} + 2658.51259 \cdot C_{10} \cdot C_{11} - 1235.27385 \cdot C_{10}{}^2 \cdot C_{11} \\ &\quad + 2549.84281 \cdot C_{01} \cdot C_{11} - 3003.08718 \cdot C_{10} \cdot C_{01} \cdot C_{11} + 824.04635 \\ &\quad \cdot C_{10}{}^2 \cdot C_{01} \cdot C_{11} - 1173.8078 \cdot C_{01}{}^2 \cdot C_{11} + 616.97518 \cdot C_{10} \cdot C_{01}{}^2 \cdot C_{11} \\ &\quad + 999.23686 \cdot C_{11}{}^2 - 2276.86829 \cdot C_{10} \cdot C_{11}{}^2 + 1041.23121 \cdot C_{10}{}^2 \cdot C_{11}{}^2 \\ &\quad - 2258.3776 \cdot C_{01} \cdot C_{11}{}^2 + 1432.59858 \cdot C_{10} \cdot C_{01} \cdot C_{11}{}^2 + 1134.06838 \\ &\quad \cdot C_{01}{}^2 \cdot C_{11}{}^2 \end{split}$$

244

$$EF_{comVol} = -1664.28672 + 13389.87436 \cdot C_{10} + 6233.52066 \cdot C_{10}^{2} - 5063.14069$$

$$\cdot C_{10}^{3} + 1403.45434 \cdot C_{10}^{4} + 15227.85926 \cdot C_{01} + 5562.46787 \cdot C_{10}$$

$$\cdot C_{01} - 6817.23689 \cdot C_{10}^{2} \cdot C_{01} + 2576.62838 \cdot C_{10}^{3} \cdot C_{01} + 1343.98254$$

$$\cdot C_{01}^{2} - 2231.82042 \cdot C_{10} \cdot C_{01}^{2} + 1258.92303 \cdot C_{10}^{2} \cdot C_{01}^{2}$$

$$- 2052.00598 \cdot C_{01}^{3} + 1400.15555 \cdot C_{01}^{4}$$

245

$$EF_{comp} = -41.84491 + 618.05442 \cdot C_{10} + 358.88382 \cdot C_{10}^{2} - 68.63083 \cdot C_{10}^{3}$$

$$\begin{array}{r} + \ 655.08806 \cdot C_{01} + 1189.7664 \cdot C_{10} \cdot C_{01} - 566.94943 \cdot C_{10}{}^2 \cdot C_{01} \\ + \ 75.1354 \cdot C_{10}{}^3 \cdot C_{01} + 840.34603 \cdot C_{01}{}^2 - 823.685 \cdot C_{10} \cdot C_{01}{}^2 \\ + \ 201.54243 \cdot C_{10}{}^2 \cdot C_{01}{}^2 - 303.47064 \cdot C_{01}{}^3 + 174.29645 \cdot C_{10} \cdot C_{01}{}^3 \\ - \ 627.5097 \cdot C_{11} + 2164.3238 \cdot C_{10} \cdot C_{11} - 748.40826 \cdot C_{10}{}^2 \cdot C_{11} \\ + \ 3177.94743 \cdot C_{01} \cdot C_{11} - 2643.51063 \cdot C_{10} \cdot C_{01} \cdot C_{11} + 534.89504 \\ \cdot \ C_{10}{}^2 \cdot C_{01} \cdot C_{11} - 1965.44476 \cdot C_{01}{}^2 \cdot C_{11} + 784.36061 \cdot C_{10} \cdot C_{01}{}^2 \cdot C_{11} \\ + \ 374.67661 \cdot C_{01}{}^3 \cdot C_{11} + 3174.11625 \cdot C_{11}{}^2 - 3002.56543 \cdot C_{10} \cdot C_{11}{}^2 \\ + \ 549.32786 \cdot C_{10}{}^2 \cdot C_{11}{}^2 - 4382.7177 \cdot C_{01} \cdot C_{11}{}^2 + 1642.45221 \cdot C_{10} \\ \cdot \ C_{01} \cdot C_{11}{}^2 + 1235.40478 \cdot C_{01}{}^2 \cdot C_{11}{}^2 - 2295.59015 \cdot C_{11}{}^3 \\ + \ 1379.58005 \cdot C_{10} \cdot C_{11}{}^3 + 2009.55928 \cdot C_{01} \cdot C_{11}{}^3 \end{array}$$

$$\begin{split} EF_{trac} &= \ 0.37636 + 23.65289 \cdot C_{10} + 21.79452 \cdot {C_{10}}^2 - 2.38894 \cdot {C_{10}}^4 - 12.34415 \\ &\cdot C_{01} + 45.66054 \cdot C_{10} \cdot {C_{01}} - 16.06698 \cdot {C_{10}}^2 \cdot C_{01} + 12.70574 \cdot {C_{01}}^2 \\ &- 12.25116 \cdot {C_{10}} \cdot {C_{01}}^2 + 306.12097 \cdot {C_{11}} + 245.21048 \cdot {C_{10}} \cdot {C_{11}} \\ &- 113.32477 \cdot {C_{10}}^2 \cdot {C_{11}} + 18.64686 \cdot {C_{10}}^3 \cdot {C_{11}} + 222.06786 \cdot {C_{01}} \cdot {C_{11}} \\ &- 216.96653 \cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}} + 61.60931 \cdot {C_{10}}^2 \cdot {C_{01}} \cdot {C_{11}} - 52.95916 \\ &\cdot {C_{01}}^2 \cdot {C_{11}} + 48.38727 \cdot {C_{10}} \cdot {C_{01}}^2 \cdot {C_{11}} + 162.41135 \cdot {C_{11}}^2 - 358.33089 \\ &\cdot {C_{10}} \cdot {C_{11}}^2 + 52.0841 \cdot {C_{10}}^2 \cdot {C_{11}}^2 - 358.67911 \cdot {C_{01}} \cdot {C_{11}}^2 + 102.56671 \\ &\cdot {C_{10}} \cdot {C_{01}} \cdot {C_{11}}^2 + 256.41066 \cdot {C_{10}} \cdot {C_{11}}^3 + 298.01128 \cdot {C_{01}} \cdot {C_{11}}^3 \\ &- 201.4063 \cdot {C_{11}}^4 \end{split}$$

$$\begin{split} EF_{tens} &= 678.99302 - 2201.94287 \cdot C_{10} + 2714.32629 \cdot C_{10}^2 - 995.29534 \cdot C_{10}^3 \\ &+ 124.75272 \cdot C_{10}^4 - 2054.46431 \cdot C_{01} + 5163.21263 \cdot C_{10} \cdot C_{01} \\ &- 2975.23671 \cdot C_{10}^2 \cdot C_{01} + 548.11557 \cdot C_{10}^3 \cdot C_{01} + 2276.08348 \cdot C_{01}^2 \\ &- 2667.91349 \cdot C_{10} \cdot C_{01}^2 + 745.33481 \cdot C_{10}^2 \cdot C_{01}^2 - 628.30578 \cdot C_{01}^3 \\ &+ 420.77853 \cdot C_{10} \cdot C_{01}^3 - 1704.54052 \cdot C_{11} + 5146.82451 \cdot C_{10} \cdot C_{11} \\ &- 3114.62815 \cdot C_{10}^2 \cdot C_{11} + 545.30936 \cdot C_{10}^3 \cdot C_{11} + 4560.05716 \cdot C_{01} \\ &\cdot C_{11} - 5961.08725 \cdot C_{10} \cdot C_{01} \cdot C_{11} + 1811.49183 \cdot C_{10}^2 \cdot C_{01} \cdot C_{11} \\ &- 2336.74279 \cdot C_{01}^2 \cdot C_{11} + 1530.42535 \cdot C_{10} \cdot C_{01}^2 \cdot C_{11} + 315.74613 \\ &\cdot C_{01}^3 \cdot C_{11} + 1977.03494 \cdot C_{11}^2 - 2966.17265 \cdot C_{10} \cdot C_{11}^2 + 1007.68127 \\ &\cdot C_{10}^2 \cdot C_{11}^2 - 2442.26545 \cdot C_{01} \cdot C_{11}^2 + 1873.6857 \cdot C_{10} \cdot C_{01} \cdot C_{11}^2 \\ &+ 517.87698 \cdot C_{01}^2 \cdot C_{11}^2 \end{split}$$

$$EF_{comVol} = -1919.42829 + 7508.96782 \cdot Nkt + 456.54146 \cdot Nkt^2 - 0.08931 \cdot Nkt$$
$$\cdot \lambda + 0.00112 \cdot \lambda^2$$

$$EF_{comp} = 371.23109 - 1126.44011 \cdot Nkt + 1432.93383 \cdot Nkt^2 - 29.70991 \cdot Nkt \cdot \lambda + 0.43446 \cdot \lambda^2$$

$$EF_{trac} = 197.47187 + 1051.58888 \cdot Nkt - 61.52851 \cdot \lambda - 50.61817 \cdot Nkt \cdot \lambda + 2.36001 \cdot \lambda^2$$

$$EF_{tens} = 532.62137 - 851.88933 \cdot Nkt + 357.76776 \cdot Nkt^{2} + 13.91383 \cdot \lambda - 0.34594 \cdot \lambda^{2}$$

256 S5.14 Arruda-Boyce hyper-elastic model for EVA.

$$EF_{shear} = 443.03704 - 815.96357 \cdot Nkt + 573.86517 \cdot Nkt^{2} + 10.01283 \cdot \lambda - 15.063 \cdot Nkt \cdot \lambda$$

$$EF_{comVol} = -1151.42377 + 4636.76594 \cdot Nkt + 175.84276 \cdot Nkt^2 - 0.02159 \cdot \lambda - 0.04255 \cdot Nkt \cdot \lambda + 0.00117 \cdot \lambda^2$$

$$EF_{comp} = -32.04627 + 940.69416 \cdot Nkt - 20.19724 \cdot \lambda - 16.12471 \cdot Nkt \cdot \lambda + 0.74803 \cdot \lambda^2$$

$$EF_{trac} = 4.91399 + 25.53328 \cdot Nkt^2 - 1.95244 \cdot Nkt \cdot \lambda + 0.02786 \cdot \lambda^2$$

 $EF_{tens} = 496.09381 - 875.14162 \cdot Nkt + 517.78397 \cdot Nkt^2 + 7.92435 \cdot \lambda - 8.23417$ $\cdot Nkt \cdot \lambda$ 261 262 S5.15 Arruda-Boyce hyper-elastic model for PUR. 263 $EF_{shear} = 884.10358 - 807.84821 \cdot Nkt + 18.95852 \cdot \lambda + 14.42898 \cdot Nkt \cdot \lambda$ $-0.6924 \cdot \lambda^2$ 264 $EF_{comVol} = -1853.06435 + 8184.12015 \cdot Nkt - 0.06229 \cdot \lambda - 0.05012 \cdot Nkt \cdot \lambda$ $+ 0.00231 \cdot \lambda^{2}$ 265 $EF_{comp} = 714.18438 - 1009.39545 \cdot Nkt + 276.74001 \cdot Nkt^2 + 18.541 \cdot \lambda$ + 4.47422 $\cdot Nkt \cdot \lambda - 0.52967 \cdot \lambda^2$ 266 $EF_{trac} = 192.03576 + 1036.39488 \cdot Nkt - 59.06482 \cdot \lambda - 50.614 \cdot Nkt \cdot \lambda + 2.3021$ $\cdot \lambda^2$ 267 $EF_{tens} = \ 1104.64969 - 620.13626 \cdot Nkt + 13.57893 \cdot \lambda + 10.82928 \cdot Nkt \cdot \lambda$ $-0.50292 \cdot \lambda^2$ 268 269 S5.16 Arruda-Boyce hyper-elastic model for SBR. 270 $EF_{shear} = 345.66083 - 758.6238 \cdot Nkt + 721.73296 \cdot Nkt^2 + 8.8817 \cdot \lambda - 17.40945$ $\cdot Nkt \cdot \lambda$

271

 $EF_{comVol} = -2063.42994 + 8184.12015 \cdot Nkt - 0.06229 \cdot \lambda - 0.05012 \cdot Nkt \cdot \lambda + 0.00231 \cdot \lambda^2$

272

$$EF_{comp} = 44.81323 + 709.16551 \cdot Nkt^2 - 31.25226 \cdot Nkt \cdot \lambda + 0.42723 \cdot \lambda^2$$
273

$$EF_{trac} = 210.08771 + 1056.59961 \cdot Nkt - 63.91641 \cdot \lambda - 48.90095 \cdot Nkt \cdot \lambda$$

 $+ 2.38979 \cdot \lambda^{2}$

274

$$EF_{tens} = 510.44981 - 819.16068 \cdot Nkt + 482.55608 \cdot Nkt^2 + 7.95319 \cdot \lambda - 8.94834 \cdot Nkt \cdot \lambda$$

275

Materials **2019**, *11*, x FOR PEER REVIEW

277 S6. Correlation (Corr), p-value, MAE and RMSE obtained for each of the polynomial models

278

Table S21. ANOVA values of "*EFs*" second-order polynomial models for the NBR material.

Model	Var.	Corr	<i>p</i> -value	train.MAE	train.RMSE	test.MAE	test.RMSE
.5	EF_shear	0.995	5.883E-72	0.0119	0.0242	0.0091	0.0115
Rivli	EF_comVol	0.999	4.307E-182	0.0016	0.0021	0.0014	0.0017
l-yər	EF _comp	0.999	8.020E-118	0.0035	0.0055	0.0026	0.0028
1001	EF _trac	0.999	1.190E-108	0.0051	0.0073	0.0069	0.0112
<u> </u>	EF _tens	0.999	2.622E-93	0.0067	0.0092	0.0079	0.0152
6	EF _shear	0.931	0.04746	0.095	0.110	0.117	0.154
oyce	EF_comVol	0.999	3.646E-17	2.138E-05	2.410E-05	0.0043	0.0049
ida-h	EF _comp	0.952	0.0241	0.071	0.0843	0.113	0.135
Arru	EF _trac	0.978	0.00518	0.055	0.0702	0.105	0.121
	EF _tens	0.980	0.00431	0.063	0.0731	0.0339	0.0419
	EF _shear	0.999	3.560E-51	8.130E-05	0.0001	0.0341	0.0356
	EF_comVol	1	2.174E-118	1.426E-10	2.047E-10	0.0031	0.00312
Gen	EF _comp	0.999	1.015E-55	4.020E-05	5.292E-05	0.0535	0.0539
	EF _trac	0.999	4.451E-31	0.0012	0.0016	0.0211	0.0240
	EF _tens	1	2.057E-108	3.479E-08	4.773E-08	2.079E-08	2.527E-08
	EF _shear	0.997	2.879E-06	0.0142	0.0213	0.0286	0.0353
Jgden	EF _comVol	0.999	0.00075	0.01031	0.0124	0.0103	0.0144
	EF _comp	0.993	4.963E-05	0.0250	0.0329	0.0384	0.0442
Ŭ	EF _trac	0.999	1.40198E-09	0.0052	0.0069	0.0416	0.0455
	EF _tens	0.999	3.27453E-08	0.0015	0.0019	0.0034	0.0051

279

Table S22. ANOVA values of the *"EFs"* second-order polynomial models for the PUR material.

Model	Var.	Corr	<i>p</i> -value	train.MAE	train.RMSE	test.MAE	test.RMSE
.5	EF _shear	0.989	1.655E-55	0.0179	0.0325	0.0132	0.0153
Rivl	EF_comVol	0.999	2.496E-213	0.00071	0.00094	0.00069	0.0008
l-yər	EF _comp	0.999	1.906E-98	0.00660	0.00851	0.0081	0.0088
lonr	EF _trac	0.999	7.564E-103	0.00702	0.0092	0.0106	0.0173
2	EF _tens	0.998	2.826E-83	0.0120	0.0149	0.0121	0.0136
0	EF _shear	0.995	0.000295	0.0239	0.03031	0.0426	0.0457
oyce	EF_comVol	0.999	2.529E-18	9.521E-06	1.236E-05	1.638E-05	1.755E-05
ıda-l	EF _comp	0.994	0.00397	0.0306	0.03552	0.0217	0.0352
Arrı	EF _trac	0.976	0.00621	0.0566	0.07305	0.1098	0.1251
	EF _tens	0.995	0.000276	0.0230	0.02990	0.0408	0.0438
	EF _shear	0.999	1.424E-66	3.647E-08	4.974E-08	2.608E-08	3.123E-08
	EF_comVol	0.999	1.080E-118	1.323E-10	1.900E-10	0.00129	0.00129
Gen	EF _comp	0.999	5.124E-66	1.750E-07	2.339E-07	0.00010	0.00011
	EF _trac	0.999	5.722E-28	0.00392	0.00527	0.01562	0.0184
	EF _tens	0.999	1.692E-110	2.582E-08	3.537E-08	1.5341E-08	1.871E-08
	EF _shear	0.999	1.448E-11	2.628E-05	3.084E-05	0.00010	0.00016
n	EF _comVol	0.999	0.00027	0.00760	0.0090	0.00697	0.0098
)gde	EF _comp	0.999	9.759E-08	0.00196	0.00249	0.00452	0.0068
Ŭ	EF _trac	0.999	4.859E-10	0.00423	0.00570	0.01847	0.0248
	EF _tens	0.999	9.832E-16	1.866E-05	2.479E-05	6.927E-05	0.00010

283

0	0	5
7	о	J

Table S23. ANOVA values of the "*EFs*" second-order polynomial models for the EVA material.

Model	Var.	Corr	<i>p</i> -value	train.MAE	train.RMSE	test.MAE	test.RMSE
Ę	EF _shear	0.99	6.743E-90	0.00712	0.01134	0.00548	0.00638
Rivli	EF_comVol	0.999	1.504E-188	0.00136	0.00180	0.00122	0.00151
ney-]	EF _comp	0.999	1.632E-242	4.566E-05	6.382E-05	3.175E-05	3.791E-05
Aon	EF _trac	0.999	2.041E-97	0.00601	0.00872	0.0071	0.01018
	EF _tens	0.999	3.197E-101	0.00536	0.00682	0.0060	0.00885
e	EF _shear	0.918	0.065922	0.128	0.145	0.0700	0.0857
oyc	EF_comVol	0.999	3.520E-13	1.679E-05	1.917E-05	0.0027	0.0031
ıda-h	EF _comp	0.995	0.000256	0.0226	0.029	0.0400	0.0429
Arru	EF _trac	0.923	0.016074	0.094	0.1128	0.0856	0.1029
	EF _tens	0.939	0.038465	0.108	0.125	0.0726	0.0839
	EF _shear	0.999	6.736E-56	7.231E-05	9.531E-05	0.0055	0.0055
L.	EF_comVol	1	1.806E-115	5.851E-12	7.676E-12	0.0025	0.0025
Gen	EF _comp	1	1.610E-78	1.732E-07	2.307E-07	4.094E-07	5.983E-07
	EF _trac	0.999	3.028E-33	0.0018	0.0024	0.0627	0.0643
	EF _tens	0.999	6.946E-49	6.629E-05	8.829E-05	0.0053	0.0055
	EF _shear	0.998	2.748E-11	0.0118	0.0147	0.0155	0.01807
u	EF_comVol	0.999	0.000654	0.0090	0.011	0.0094	0.0112
Jgde	EF _comp	0.999	1.924E-08	0.00121	0.0015	0.0017	0.0037
U	EF _trac	0.998	1.114E-06	0.0125	0.017	0.0209	0.0250
	EF _tens	0.999	0.00012	0.00520	0.0065	0.0076	0.0116

2	0	0
7	0	0

Table S24. ANOVA values of the "EFs" second-order polynomial models for the SBR material.

Model	Var.	Corr	<i>p</i> -value	train.MAE	train.RMSE	test.MAE	test.RMSE
.5	EF _shear	0.998	2.2706E-82	0.00801	0.0152	0.00737	0.0089
Rivl	EF_comVol	0.999	8.218E-190	0.00132	0.00175	0.00117	0.00146
ley-]	EF _comp	0.999	2.258E-121	0.00218	0.00360	0.00154	0.00182
10n1	EF _trac	0.999	2.542E-143	0.00183	0.00266	0.0017	0.0023
2	EF _tens	0.999	1.943E-105	0.00480	0.00617	0.0048	0.0065
c)	EF _shear	0.919	0.0640	0.1311	0.15819	0.0972	0.1257
oyo	EF_comVol	1	2.529E-18	9.521E-06	1.236E-05	1.638E-05	1.755E-05
ıda-l	EF _comp	0.956	0.00411	0.0767	0.0871	0.0577	0.0717
Arrı	EF _trac	0.980	0.00424	0.0522	0.0669	0.1051	0.1197
	EF _tens	0.943	0.0333	0.1079	0.1237	0.0670	0.0809
	EF _shear	0.999	1.0974E-55	4.190E-05	5.466E-05	0.00918	0.01058
÷	EF_comVol	1	1.733E-118	1.391E-10	1.997E-10	0.00248	0.00249
Gen	EF _comp	0.999	7.114E-51	8.067E-05	0.00010	0.01226	0.01327
	EF _trac	0.999	8.838E-33	0.00032	0.00043	0.00710	0.00725
	EF _tens	0.999	1.291E-48	7.112E-05	9.473E-05	0.00813	0.00847
	EF _shear	0.998	4.705E-07	0.00978	0.01552	0.01963	0.02516
g	EF _comVol	0.999	0.000569	0.00951	0.01139	0.00927	0.01281
)gde	EF _comp	0.995	1.538E-05	0.02249	0.02752	0.01770	0.02218
Ŭ	EF _trac	0.999	7.265E-09	0.00115	0.00154	0.01208	0.01727
	EF _tens	0.999	1.304E-07	0.00220	0.0029	0.00711	0.00921

291 S7. Multi-Response Optimization

292 Tables <u>\$25</u>, <u>\$26</u>, <u>\$27</u> and <u>\$28</u> show the combination of C_i constants that are most appropriate 293 for modeling the mechanical behaviour of NBR, EVA, SBR and PUR materials according to 294 hyper-elastic models (Mooney-Rivlin, Arruda-Boyce, Gent and Ogden) by desirability 295 functions. The first column in all tables shows hyper-elastic material models that were 296 proposed. The second column shows the C_i constants and the EF_{norm} for each standardized 297 test. The third column shows the goal that was established in the optimization process for 298 both C_i constants and EF_{norm}. The fourth and fifth columns show, respectively, the minimum 299 and maximum values of C_i constants and EF_{norm} (range). The sixth column shows the degree 300 of importance considered in the optimization process, whereas the seventh and eighth 301 columns show, respectively, the optimal values obtained for the C_i constants and the EF_{norm}, 302 and the desirability values.

- 303
- 304

Table S25. Adjustment of the Ci constants of the Hyper-elastic models for the NBR material.

Model	Ci and EFNorm,k	Goal	min	max	Importance	Value	Desirability
	C10	In range	-0.25	1.25	1.0	0.367	1
	C01	In range	-0.3	1	1.0	-0.069	1
lin	C11	In range	0	0.5	1.0	0.005	1
rivli	$EF_{Norm,Shear}$	Min.	96.174	2241.868	1.0	96.07	1
Jey.	$EF_{Norm,ComVol}$	Min.	297.456	34666.017	1.0	2627.096	0.932
100	$EF_{Norm,Comp}$	Min.	62.996	2971.651	1.0	173.942	0.962
Σ	$EF_{Norm,Trac}$	Min.	1.753	280.073	1.0	11.888	0.964
	$EF_{Norm,Tens}$	Min.	63.309	1751.024	1.0	232.418	0.9
					Overall Desi	rability	0.951
	Nkt	In range	0.26	0.9	1.0	0.578	1
e	Chain	In range	2	25	1.0	24.644	1
oyc	EFNorm,Shear	Min.	70.357	392.841	1.0	67.291	1
a-b	$EF_{Norm,ComVol}$	Min.	63.665	5208.335	1.0	2571.347	0.513
pn.	$EF_{Norm,Comp}$	Min.	32.527	492.684	1.0	39.565	0.985
Arr	$EF_{Norm,Trac}$	Min.	3.574	1000.113	1.0	1.282	1
7	$EF_{Norm,Tens}$	Min.	115.47	457.292	1.0	292.62	0.482
					Overall Desi	rability	0.753
	Е	In range	0.6	3.7	1.0	2.144	1
	inv1	In range	63	79.5	1.0	76.465	1
	$EF_{Norm,Shear}$	Min.	45.332	269.846	1.0	45.527	0.999
ant	EFNorm,ComVol	Min.	520.843	7934.909	1.0	3690.353	0.573
Ğ	$EF_{Norm,Comp}$	Min.	46.923	341.163	1.0	46.641	1
	$EF_{Norm,Trac}$	Min.	2.125	21.072	1.0	2.145	0.999
	$EF_{Norm,Tens}$	Min.	35.373	485.943	1.0	261.921	0.497
					Overall Desi	rability	0.777
ua	k1	In range	0	0.5	1.0	0.254	1
)gd(k2	In range	-0.5	-0.125	1.0	-0.261	1
0	EFNorm,Shear	Min.	46	309.481	1.0	70.573	0.907

Materials **2019**, *11*, x FOR PEER REVIEW

$EF_{Norm,ComVol}$	Min.	399.743	8071.295	1.0	3139.578	0.643
$EF_{Norm,Comp}$	Min.	19.145	421.35	1.0	55.628	0.909
$EF_{Norm,Trac}$	Min.	4.182	31.899	1.0	4.644	0.983
$EF_{Norm,Tens}$	Min.	27.798	522.41	1.0	282.316	0.485
				Overall Desirability		0.759

307

41 of 48

Model	Ci and EFNorm,k	Goal	min	max	Importance	Value	Desirability
	C10	In range	-0.25	1.25	1.0	0.982	1
	C01	In range	-0.3	1	1.0	-0.056	1
lin	C11	In range	0	0.5	1.0	0.005	1
-riv	EFNorm,Shear	Min.	112.854	1654.109	1.0	111.625	1
ney.	$EF_{Norm,ComVol}$	Min.	249.253	34970.176	1.0	13303.154	0.624
100	EFNorm,Comp	Min.	73.712	2566.555	1.0	276.739	0.919
Σ	$EF_{Norm,Trac}$	Min.	1.163	266.489	1.0	18.319	0.935
	$EF_{Norm, Tens}$	Min.	152.375	1039.498	1.0	421.419	0.697
					Overall Desi	rability	0.821
	Nkt	In range	0.26	0.9	1.0	0.643	1
e	Chain	In range	2	25	1.0	3.75	1
oyc	$EF_{Norm,Shear}$	Min.	203.456	825.433	1.0	460.967	0.586
a-b	EFNorm,ComVol	Min.	274.31	5512.494	1.0	3407.264	0.402
ndå	EF Norm,Comp	Min.	87.588	626.636	1.0	252.565	0.694
Arr	$EF_{Norm,Trac}$	Min.	9.289	987.47	1.0	547.094	0.45
~	$EF_{Norm,Tens}$	Min.	578.934	1051.183	1.0	775.986	0.583
					Overall Desi	rability	0.532
	Ε	In range	0.6	3.7	1.0	2.982	1
	inv1	In range	63	79.5	1.0	70.645	1
	EFNorm,Shear	Min.	353.641	857.605	1.0	470.45	0.768
ent	$EF_{Norm,ComVol}$	Min.	249.261	8239.069	1.0	6276.983	0.246
Ğ	EFNorm,Comp	Min.	74.689	665.016	1.0	207.921	0.774
	$EF_{Norm,Trac}$	Min.	7.661	34.656	1.0	7.662	1
	$EF_{Norm, Tens}$	Min.	684.051	1076.193	1.0	775.157	0.768
					Overall Desi	rability	0.645
	k1	In range	0	0.5	1.0	0.329	1
	k2	In range	-0.5	-0.125	1.0	-0.499	1
_	$EF_{Norm,Shear}$	Min.	315.165	897.24	1.0	453.004	0.763
den	EFNorm,ComVol	Min.	703.902	8375.454	1.0	6235.196	0.279
08	EFNorm,Comp	Min.	33.614	691.354	1.0	137.955	0.841
-	$EF_{Norm,Trac}$	Min.	9.621	41.194	1.0	9.179	1
	$EF_{Norm,Tens}$	Min.	663.501	1107.37	1.0	769.026	0.762
					Overall Desi	rability	0.671

Table S26. Adjustment of the Ci constants of the Hyper-elastic models for the PUR material.

31	1	Table S27. Adjustment of the Ci constants of the Hyper-elastic models for the EVA material.						rial.
-	Model	Ci and EFNorm,k	Goal	min	max	Importance	Value	Desirability
		C10	In range	-0.25	1.25	1.0	0.572	1
		C01	In range	-0.3	1	1.0	-0.292	1
	lin	C11	In range	0	0.5	1.0	0.002	1
	-riv	$EF_{Norm,Shear}$	Min.	61.501	1893.316	1.0	153.139	0.95
	Jey.	$EF_{Norm,ComVol}$	Min.	225.662	20789.563	1.0	1471.67	0.939
	1001	$EF_{Norm,Comp}$	Min.	78.213	3245.309	1.0	137.191	0.981
	Σ	$EF_{Norm,Trac}$	Min.	1.193	69.898	1.0	3.567	0.965
		$EF_{Norm,Tens}$	Min.	71.945	1798.992	1.0	192.881	0.93
-						Overall Desir	rability	0.952
		Nkt	In range	0.26	0.9	1.0	0.567	1
	e	Chain	In range	2	25	1.0	15.054	1
	oyc	EFNorm,Shear	Min.	73.393	380.402	1.0	187.217	0.629
	a-b	$EF_{Norm,ComVol}$	Min.	65.893	3164.011	1.0	1531.532	0.527
	pn	$EF_{Norm,Comp}$	Min.	52.119	766.343	1.0	228.846	0.753
	Arr	EFNorm, Trac	Min.	1.087	24.657	1.0	2.771	0.929
	4	EF Norm, Tens	Min.	88.508	409.325	1.0	215.548	0.604
_						Overall Desir	rability	0.674
		Е	In range	0.6	3.7	1.0	2.237	1
		inv1	In range	63	79.5	1.0	63.1	1
		$EF_{Norm,Shear}$	Min.	65.828	410.551	1.0	160.167	0.726
	ent	$EF_{Norm,ComVol}$	Min.	263.955	4795.415	1.0	2412.535	0.526
	Ğ	$EF_{Norm,Comp}$	Min.	13.739	614.821	1.0	331.24	0.472
		$EF_{Norm,Trac}$	Min.	1.829	9.326	1.0	1.84	0.999
		$EF_{Norm,Tens}$	Min.	51.687	437.976	1.0	199.245	0.618
_						Overall Desi	rability	0.644
		k1	In range	0	0.5	1.0	0.361	1
		k2	In range	-0.5	0.062	1.0	-0.119	1
	_	$EF_{Norm,Shear}$	Min.	77.888	447.312	1.0	181.346	0.72
	der	$EF_{Norm,ComVol}$	Min.	286.864	4877.019	1.0	1985.402	0.63
	õã	$EF_{Norm,Comp}$	Min.	12.6	695.009	1.0	297.922	0.582
	-	EFNorm, Trac	Min.	1.284	11.388	1.0	2.182	0.911
		EFNorm, Tens	Min.	55.985	474.442	1.0	217.144	0.615
_						Overall Desi	rability	0.682

Table S27. Adjustment of the Ci constants of the Hyper-elastic models for the EVA material.

Model	Ci and EFNorm,k	Goal	min	max	Importance	Value	Desirability
	C10	In range	-0.25	1.25	1.0	0.112	1
	C01	In range	-0.3	1	1.0	0.152	1
lin	C11	In range	0	0.5	1.0	0.005	1
ıey-rivli	EFNorm,Shear	Min.	91.287	1795.679	1.0	162.006	0.959
	EFNorm,ComVol	Min.	391.249	34759.81	1.0	2329.807	0.944
100	EFNorm,Comp	Min.	35.444	3060.174	1.0	167.375	0.956
М	$EF_{Norm,Trac}$	Min.	2.145	293.328	1.0	4.091	0.993
	$EF_{Norm, Tens}$	Min.	101.068	1774.579	1.0	275.728	0.896
					Overall Desi	rability	0.949
	Nkt	In range	0.26	0.9	1.0	0.579	1
e	Chain	In range	2	25	1.0	17.354	1
oyc	$EF_{Norm,Shear}$	Min.	93.858	281.635	1.0	127.498	0.821
a-b	EFNorm,ComVol	Min.	63.944	5302.129	1.0	2677.111	0.501
pn	EFNorm,Comp	Min.	57.417	581.207	1.0	97.294	0.924
Arr	$EF_{Norm,Trac}$	Min.	4.017	1013.368	1.0	-58.919	1
A.	$EF_{Norm,Tens}$	Min.	128.999	433.737	1.0	245.892	0.616
					Overall Desi	Overall Desirability	
	Ε	In range	0.6	3.7	1.0	1.899	1
	inv1	In range	63	79.5	1.0	79.46	1
	$EF_{Norm,Shear}$	Min.	96.5	309.763	1.0	119.881	0.89
ent	EFNorm,ComVol	Min.	427.05	8028.703	1.0	3091.726	0.649
Ğ	$EF_{Norm,Comp}$	Min.	54.818	429.685	1.0	91.734	0.902
	$EF_{Norm,Trac}$	Min.	3.275	33.698	1.0	8.386	0.832
	$EF_{Norm,Tens}$	Min.	102.337	462.388	1.0	275.889	0.518
					Overall Desirabili	ty	0.741
	k1	In range	0	0.5	1.0	0.124	1
	k2	In range	-0.5	-0.125	1.0	-0.426	1
-	$EF_{Norm,Shear}$	Min.	94.375	343.729	1.0	126.842	0.87
der	EFNorm,ComVol	Min.	493.537	8165.088	1.0	2831.922	0.695
0 8	EFNorm,Comp	Min.	32.54	509.873	1.0	119.565	0.818
-	$EF_{Norm,Trac}$	Min.	3.405	45.155	1.0	4.209	0.981
	$EF_{Norm,Tens}$	Min.	103.401	498.855	1.0	284.985	0.541
					Overall Desi	rability	0.765

Table S28. Adjustment of the Ci constants of the Hyper-elastic models for the SBR material.

315

317 S8. Validation

319

Figure S14. Force-displacement curve obtained from the FE simulations when the optimal constants
Ci are compared to the force-displacement obtained experimentally for the Hyper-elastic
Mooney-Rivlin model for PUR material in standardized tests: (a) Compression, (b) Volumetric
Compression, (c) Shear, (d) Plane Stress and (e) Tensile.

327 (e)
 328 Figure S15. Force-displacement curve obtained from the FE simulations when the optimal constants
 329 Ci are compared to the force-displacement obtained experimentally for the Hyper-elastic
 330 Mooney-Rivlin model for EVA material in standardized tests: (a) Compression, (b) Volumetric
 331 Compression, (c) Shear, (d) Plane Stress and (e) Tensile.

Figure S16. Force-displacement curve obtained from the FE simulations when the optimal constants
Ci are compared to Vs the force-displacement obtained experimentally for Hyper-elastic
Mooney-Rivlin model for SBR material in standardized tests: (a) Compression, (b) Volumetric
Compression, (c) Shear, (d) Plane Stress and (e) Tensile.

339

338

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

48 of 48