Supporting Information

Light-emitting porphyrin-derivative obtained from a subproduct of the cashew nut shell liquid: a promising material for OLED applications

Nayane Maria de Amorim Lima¹, Harold José Camargo Avila^{2,‡}, Cleber Fabiano do Nascimento Marchiori³, Samuel Gondim Sampaio¹, João Paulo Ferreira Mota¹, Viviane Gomes Pereira Ribeiro⁴, Claudenilson da Silva Clemente¹, Giuseppe Mele⁵, Marco Cremona² and Selma Elaine Mazzetto¹

- ¹ Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceara (UFC), Campus do Pici, 60440-900, Fortaleza-CE, Brazil.
- ² Molecular Optoelectronic Laboratory (LOEM), Physics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900, Rio de Janeiro-RJ, Brazil.
- ³ Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
- ⁴ Institute of Exact and Natural Sciences ICEN, University of International Integration of Afro-Brazilian Lusophony, 62790-000, Redenção-CE, Brazil.
- ⁵ Department of Innovation Engineering, University of Salento, Via Arnesano, 73100, Lecce, Italy.
- ‡ Permanent address: Department of Physics, University of Atlantic, Puerto Colombia, Atlántico, Colombia
- * Correspondence: cremona@fis.puc-rio.br; Tel.: +55-21-35271268

Figure S1. ¹H NMR (CDCl₃, 500 MHz) spectrum of free base porphyrin (H₂P).

Figure S2. ¹H NMR (CDCl₃, 500 MHz) spectrum of zinc porphyrin (ZnP).

Figure S3. ¹H NMR (CDCl₃, 500 MHz) spectrum of copper porphyrin (CuP).

Figure S4. ¹³C NMR spectrum of H₂P (500 MHz, CDCl₃).

Figure S5. ¹³C NMR spectrum of ZnP (500 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum of CuP (500 MHz, CDCl₃).

Figure S7. MS (MALDI-TOF) of H₂P m/z: calcd for 2000.9224 u; found [M+H⁺] 2000.0000 u

Figure S8. MS (MALDI-TOF) of ZnP m/z: calcd for 2064.2966 u; found [M+H+] 2064.0000 u

Figure S9. MS (MALDI-TOF) of CuP m/z: calcd for 2062.4526 u; found [M+H⁺] 2062.0000 u

Figure S10. X-ray powder diffraction spectra of CuP, H₂P and ZnP compounds.

Figure S11. Cyclic voltammogram of H₂P in CH₂Cl₂, 50 mM of TBAPF₆. Scan rate = 50 mV/s.

Figure S12. Cyclic voltammogram of ZnP in CH₂Cl₂, 50 mM of TBAPF₆. Scan rate = 50 mV/s.

Figure S13. Cyclic voltammogram of CuP in CH₂Cl₂, 50 mM of TBAPF₆. Scan rate = 50 mV/s.

Figure S14. Fluorescence excitation spectrum of H₂P monitored at 657 nm.

Figure S15. Fluorescence excitation spectrum of ZnP monitored at 601 nm.